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The de Haas–van Alphen (dHvA) oscillations are oscillations in the magnetization as a function of the inverse
magnetic field. These oscillations are usually considered to be a property of the Fermi surface and, hence,
a metallic property. Recently, however, such oscillations have been shown to arise, both experimentally and
theoretically, in certain insulators which have a narrow gap and an inverted band structure. In this Letter, we
develop a theory to study the effect of many-body interactions on these unconventional oscillations. We consider
a weak interaction, focusing on the effect of renormalization of the quasiparticle spectrum on these oscillations.
We find that the interaction has an unusual effect: Unlike in metals, in a certain regime the amplitude of
oscillations may be enhanced substantially, both at zero and nonzero temperatures, even when the interaction
is perturbatively weak.
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One of the striking consequences of Landau quantization
in a magnetic field in metals is the appearance of quantum
oscillations. These are oscillations in physical observables of
metals, both thermodynamic and transport, with a change in
the magnetic field. The underlying mechanism is simple: As
the magnetic field increases, the spacing between the Landau
levels widens. This forces the highest occupied level to spill
out of the Fermi level and become depopulated periodically,
which manifests as oscillations in various observables. Evi-
dently, these oscillations are expected only in metals and are
measured routinely in experiments to map the Fermi surface
of such systems [1,2].

In recent years, however, quantum oscillations have been
reported experimentally in various insulators. The de Haas–
van Alphen (dHvA) oscillations, which refer to oscillations in
the magnetization, have been observed in the Kondo insulator
SmB6 [3–6], while Shubnikov–de Haas (SdH) oscillations,
which refer to oscillations in the resistivity, have been ob-
served in the Kondo insulator YbB12 [7], quantum well
heterostructures [8,9], WTe2 [10], and moiré graphene [11].
Such unexpected findings prompted intensive theoretical in-
vestigations which have now revealed that contrary to the
canonical picture, quantum oscillations can indeed arise in
insulators, provided the insulators have a narrow gap and an
inverted band structure [12–16].

Although the phenomenon is now well understood at
the noninteracting level, the effect of interactions on these
unconventional oscillations remains insufficiently explored.
Research in this direction has predominantly concentrated on
specific models of correlated insulators where the interaction
causes the opening of the gap [17–20] but not on generic
band insulators with an interaction. Exploring the latter is
important since it offers a controlled approach to compare
oscillations in insulators with those in metals. Moreover,
from an experimental perspective, investigating this aspect is
significant since some of the systems where unconventional
oscillations have been observed are of this nature [8,9], and

the abundance of possibilities in this category suggests more
explorations in the future.

In this Letter, we develop a theory of quantum oscilla-
tions in interacting band insulators, focusing specifically on
dHvA oscillations. We consider weak interactions, incorporat-
ing them within the Hartree-Fock approximation. Notably, we
find that in a certain parameter regime, even weak interactions
can significantly modify the amplitude of oscillations unlike
in metals. This arises because interactions now compete with
a new energy scale in the form of a gap which is absent in a
metal, thus influencing oscillations in a qualitatively different
manner.

To put our results for the insulator in context, we first
review the theory of dHvA oscillations in metals. The oscil-
lating part of the magnetization is given by Mosc = − ∂�osc

∂B ,
where �osc is the oscillating part of the grand potential and
B is the external magnetic field. In a three-dimensional inter-
acting metal with a parabolic spectrum of spinless electrons,
considering only the renormalization of the energy spectrum
due to a static interaction potential at the Hartree-Fock level,
it is found that [2,21] (h̄ = 1)

�̃osc =
∞∑

l=1

Ãl (T ) cos

[
2π l

μ̃

ω̃c
− π

(
l + 1

4

)]
, (1)

where ω̃c = eB/m̃ is the cyclotron frequency with e as the
absolute value of the charge and m̃ as the mass of an electron,
respectively, μ̃ is the chemical potential, and Ãl (T ) is the
temperature (T )-dependent amplitude of the lth harmonic of
oscillations given by (kB = 1)

Ãl (T ) = ω̃c
(eB)3/2

8π4l5/2

2π2lT/ω̃c

sinh(2π2lT/ω̃c)
. (2)

Above, and henceforth, the presence (absence) of a tilde de-
notes renormalized (bare) values of the respective quantities.
Expressions (1) and (2) are, in fact, identical to the ones that
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FIG. 1. Schematic band structure for the Hamiltonian in (4) with
ε1k and ε2k having curvatures of different sign. Dotted curves show
bands before hybridization. The hybridization results in a gap.

appear in the noninteracting case, except for the appearance
of renormalized parameters [22,23],

μ → μ̃ = μ(1 + b), (3a)

ωc → ω̃c = eB

m̃
= eB

m
(1 + a), (3b)

where b and a capture the degree of renormalization in μ

and m, respectively. One can readily summarize the following
salient features:

(1) The phase does not change with interaction.
(2) The change in frequency is negligible: Because μ �

ωc,V , where V is the strength of interaction, μ̃/ω̃c ≈ μ/ωc.
(3) At T = 0, the change in the amplitude is small in pro-

portion to the strength of the weak interaction since Ãl (0) ∼
ω̃c. The amplitude decreases monotonically with rise in T .

We now proceed to investigate dHvA oscillations in an
insulator. Consider the following Hamiltonian:

H =
∑
i,k

εikc†
ikcik +

∑
k

(γkc†
1kc2k + H.c.) + Hint. (4)

Here, c†
ik (cik), i = 1, 2, denotes the creation (destruction)

operators for particles with momentum k in the ith band with
dispersion εik in three dimensions. These two bands are hy-
bridized by γk. For simplicity, we choose ε1k = k2

2m1
− 	 and

ε2k = − k2

2m2
with m1,2,	 > 0, and assume γk = γ to be in-

dependent of k with |γ | � 	. Also, all particles are assumed
to be spinless. The first two terms in Eq. (4) describe the
noninteracting part, which is easily diagonalized leading to an
insulator with an inverted band structure and a narrow gap—
see Fig. 1. The chemical potential μ is chosen to lie inside the
gap. The last term in Eq. (4), Hint, introduces an interparticle
interaction, whose exact form is not necessary for the results
to be derived—we only assume that the interaction is static
and weak so that its effect can be included perturbatively at
the Hartree-Fock level which leads to a renormalization of the
energy levels but no broadening.

In the presence of a magnetic field, discrete Landau levels
are produced that are affected by the interaction. We calculate

the grand potential using the standard formula [22]

�̃ = −T Tr

⎛
⎝∑

ζm

ln{−[G̃−1(ζm)]}
⎞
⎠. (5)

Here, ξm = (2m + 1)πT , with m ∈ Z, are the Matsubara fre-
quencies, Tr stands for the trace over all energy states, and
G̃ is the Green’s function corresponding to (4) in a magnetic
field given by G̃−1 = G−1 − �, where G is the noninteract-
ing Green’s function and � is the self-energy due to the
interaction. In the band basis, we have G−1

11 = iζm − ωc1(n +
1
2 ) − k2

z

2m1
+ 	 + μ, G−1

22 = iζm + ωc2(n + 1
2 ) + k2

z

2m2
+ μ, and

G−1
12 = G−1

21 = −γ , where n is the Landau level index and
ωc1,2 = eB/m1,2. In general, � is a function of both B and
T and requires a substantial effort to calculate. However, as
far as dHvA oscillations in three dimensions are concerned, it
suffices to consider � calculated at zero B and T —as in the
case of metals, the effect of nonzero B and T leads to sub-
leading corrections in orders of ωc1,2/	 � 1 and T/	 � 1,
respectively [23–25]. Within this approximation, we evaluate
the oscillating part of Eq. (5) and find

�̃osc =
∞∑

l=1

Ãl (T ) cos

[
2π l

	̃

ω̃c1 + ω̃c2
− π

(
l + 1

4

)]
, (6)

where

Ãl (T ) = (eB)3/2

π2l3/2
T

∑
ζm>0

e− π l
ω̃c1 ω̃c2

√
ζ 2

m (ω̃c1+ω̃c2 )2+4ω̃c1ω̃c2γ̃ 2

× cosh

[
π lζm(ω̃c2 − ω̃c1)

ω̃c1ω̃c2

]
. (7)

Details of the derivation are provided in the Supplemental
Material (SM) [26]. The above expressions are characterized
by the following renormalized parameters:

ωc1,2 → ω̃c1,2 = eB

m̃1,2
= eB

m1,2
(1 + a1,2), (8a)

	 → 	̃ = 	(1 + b), (8b)

γ → γ̃ = γ (1 + t ), (8c)

μ → μ̃ = μ + δμ. (8d)

Note that, while ω̃c1,2, 	̃, and γ̃ appear explicitly in
Eqs. (6) and (7), μ̃ enters implicitly through the Matsubara
sum. Thus, it affects only the T dependence of the oscillations,
and has no effect on the T = 0 behavior, as long as μ and μ̃

lie in the gap. For simplicity, we have assumed μ̃ = − 	̃m̃1
m̃1+m̃2

,
chosen such that it lies at the intersection of the two renormal-
ized bands prior to hybridization [27]. Equation (6) along with
Eqs. (7) and (8) generalize Eqs. (1)–(4) from an interacting
metallic system to an interacting gapped system. Thus, for a
given form of Hint in Eq. (4), one simply needs to calculate the
renormalization parameters ai, b, t to study the effect of the
interaction on dHvA oscillations. We will come back to this
calculation later; for now, we discuss the qualitative features
that arise from these expressions. It is seen that the phase
remains unaltered and the frequency does not change appre-
ciably since 1 � 	̃

ω̃c1+ω̃c2
≈ 	

ωc1+ωc2
; thus, both these quantities

remain qualitatively similar to those in metals. In contrast, the
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FIG. 2. The effect of the interaction on the amplitude at T = 0 according to Eqs. (8) and (9). Ã1(0) denotes the amplitude of the first
harmonic at T = 0 in the presence of the interaction. It is normalized by its noninteracting value A1(0). We show its variation with a1 and t
keeping a2 = 0.2 fixed in all the plots. The points Q, R, and S are arbitrarily chosen in the interaction-parameter space defined by (a1, a2, t )
which are referred to in Fig. 3.

amplitude is significantly affected by interactions, in a way
that is qualitatively different from that in metals.

First, we consider Ãl (0), the amplitude at T = 0. Changing
the summation to an integral over the frequency in Eq. (7), we
find

Ãl (0) = |γ̃ |(eB)3/2

2π3l3/2
K1

(
4π l|γ̃ |

ω̃c1 + ω̃c2

)
, (9)

where Kα is the modified Bessel function of the second kind.
Equation (9), together with Eq. (8), gives a quantitative de-
scription of how the amplitude is affected by an interaction.
It leads to an unusual feature that is unique to the insulating
case: Even a weak interaction can lead to a substantial change
in the amplitude of oscillations at zero temperature. Indeed,
the fate is decided by a delicate interplay between γ̃ and m̃1,2

in Eq. (9). Using the parametrization of Eq. (8) in Eq. (9),
we plot the first-harmonic amplitude in Fig. 2 for different
values of m1/m2 (determining the particle-hole asymmetry)
and γ /ωc1 (determining the strength of the gap as compared
to the Landau level spacing). It is seen that when γ /ωc1 ∼ 1,
there is a pronounced enhancement in the zero-temperature
amplitude, which can amount to even an order of magnitude.

Next, we consider the dependence of the amplitude on T .
This is calculated numerically from Eq. (7) and is presented
in Fig. 3 for various choices of interaction parameters m1/m2

and γ /ωc1 as used in Fig. 2. In the limit T � γ , as expected,
the T dependence follows the usual metallic behavior, con-
tributed by the two participating bands. It only depends on
m̃1,2 and is independent of γ̃ . In the other limit, T � γ , the T

dependence deviates from the metallic behavior, and depends
on both m̃1,2 and γ̃ . The deviation is most striking when
m1/m2 � 1 and γ /ωc1 ∼ 1. In this regime [Fig. 3(d)], there
is a sizable enhancement in the amplitude in the form of a
nonmonotonic upturn driven by T on top of the enhancement
at T = 0 discussed earlier. An interesting observation is that
since the behavior of the amplitude at low T in the particle-
hole asymmetric case is very sensitive to γ /ωc1, for a given
material (with a fixed γ and γ̃ ) the effect of temperature
depends crucially on the field at which the oscillations are
being studied to extract the amplitude. Indeed, Figs. 3(c) and
3(d) can be interpreted as the temperature dependence of the
amplitude of the same dHvA oscillation but at different field
values.

An expression for the T dependence of the amplitude at
low T can be obtained by employing the Euler-Maclaurin
formula to carry out the Matsubara sum in Eq. (7),

Ãk (T ) ≈ Ãk (0) − α

[
1

2π

∫ πT

0
f (x)dx − T

2
f (πT )

+ T

12
f ′(πT )

]
, (10)

where f (x) is the summand in Eq. (7) with ζm → x and α =
(eB)3/2

π2l3/2 . Equation (10) reproduces the numerically obtained
curve for Ã1(T ) very well for T � γ . This can be further re-
duced to a closed analytical form by expanding in T ; however,
the resulting expression is accurate only when T � γ and
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FIG. 3. The temperature dependence of the amplitude in the presence of the interaction. Ã1(T ) denotes the amplitude of the first harmonic
at temperature T in the presence of the interaction. It is normalized by its noninteracting zero-temperature value A1(0). We show its variation
with T for the various cases considered in Fig. 2. Q, R, S denote three choices of (a1, a2, t ) defined in Fig. 2. P denotes the noninteracting case.
The curves are derived from a numerical calculation of Eq. (7).

does not describe the features that arise at T � γ . We discuss
this in SM [26].

Having discussed the qualitative features, we now return
to the calculation of the renormalization parameters ai, b, t .
These are related to the self-energy � as follows (see SM
[26]),

ai = v−1
Fi ∂k�ii|kF , (11a)

b = 1

	
[�22 − �11 + μ(a1 − a2)]|kF , (11b)

t = 1

γ
�12|kF , (11c)

δμ = μa2 − �22|kF
, (11d)

where vF and kF are the Fermi velocity and momentum,
respectively. To calculate �, we need Hint . We consider the
following form (volume taken as unity):

Hint =
∑

i, j,k,k′,q

Vi jqc†
ik+qc†

jk′−qc jk′cik. (12)

The above term describes an interaction of strength Vi jq be-
tween particles belonging to either the same band (i = j) or
different bands (i �= j). For simplicity, we have only con-
sidered an interband interaction which preserves the band
index, but extending the calculation to a more general form
of the interaction is straightforward. As remarked earlier, �

needs to be calculated at zero B and T . At the Hartree-
Fock level, we have �ii(k) = ∑

k′[(Vii0 − Viik′−k )〈c†
ik′cik′ 〉 +

V120〈c†
jk′c jk′ 〉] ( j �= i) and �12(k) = −∑

k′ V12k′−k〈c†
1k′c2k′ 〉.

The averages over the ground state at T = 0, denoted by 〈· · · 〉,
are easily computed (see SM [26]). Finally, we obtain

�ii(k) ≈
∑

k′
[(Vii0 − Viik′−k )nF (ξik′ ) + V120nF (ξ jk′ )],

(13a)

�12(k) = γ
∑

k′
V12k′−k

nF (E−k′ )

(E+k′ − E−k′ )
, (13b)

where ξik′ = εik′ − μ, nF (x) is the Fermi function, and E±k′ =
1
2 [(ε1k′ + ε2k′ ) ±

√
(ε1k′ − ε2k′ )2 + 4γ 2]. In deriving �ii, we

have neglected terms of O(γ 2/	2).
The amplitude of oscillations is determined by ω̃c1,2 and

γ̃ , which depend on ai and t , respectively. Using Eqs. (13)
in (11), we make an important observation: The two pa-
rameters depend on the interaction in qualitatively different
ways. While t is proportional to the interaction potential, ai is
proportional to its derivative. Thus, while t relies solely on
the interaction strength, ai is influenced by the momentum
dependence of the interaction, in addition to its strength. As a
consequence, generic interactions are more likely to influence
oscillations in an insulator by renormalizing the gap rather
than the mass, and oscillations in insulators are more sus-
ceptible to interactions compared to metals. For instance, if
one assumes a contact potential with Vi jq = U , a constant, ai

vanishes but t is nonzero. Consequently, oscillations in a metal
would remain unchanged, whereas they would be affected in
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FIG. 4. Comparison of amplitude between (a) an insulator and
(b) a metal with (solid) and without (dashed) interactions. The
amplitude is calculated using Eq. (7) and is normalized by its non-
interacting value at T = 0, We have used m1 = m2 = m (electron’s
mass), B = 1 T, and 	

ωc
= 4.3 × 105. In (a) γ

ωc
= 0.9 and in (b) γ =

0 [T is scaled with the γ used in (a) for comparison]. The interaction
term is taken as Vi jq = e2

ε0 (q2+κ2 )
, where κ is the Thomas-Fermi wave

vector. This yields a1 = a2 = 0.022 and t = 0.329 in Eqs. (11).

an insulator, highlighting a key distinction between metals and
insulators. As another example, we consider a particle-hole
symmetric insulator (m1 = m2) interacting via the Thomas-
Fermi screened Coulomb interaction Vi jq = e2

ε0(q2+κ2 ) , where
κ is the Thomas-Fermi wave vector and ε0 is the electrical
permittivity of free space. We plot the amplitude as a function
of T in Fig. 4, comparing the insulating case with its metallic
counterpart. The change in amplitude due to the interaction is
considerably more pronounced in the insulating case.

In summary, we observe the following salient features of
dHvA oscillations in interacting insulators:

(1) The phase does not change with interaction.
(2) The change in frequency is negligible: Because 	 �

ωc1,2,V , where V is the strength of interaction, 	̃/(ω̃c1 +
ω̃c2) ≈ 	/(ωc1 + ωc2).

(3) The change in the amplitude can be substantial even
in a weak interaction, at both T = 0 and T �= 0, in a certain
regime. The amplitude may vary nonmonotonically with T

showing an upturn at low T , which is greatly amplified by
interactions.

In comparing the above features with their counter-
part for metals stated earlier, we find that, while the
phase and the frequency behave similarly, the behavior
of the amplitude is very different, both qualitatively and
quantitatively.

In this Letter, we have considered a weak interaction at
the Hartree-Fock level. Going beyond, one can include the
effects of a finite lifetime induced by interactions or disorder,
which is expected to give rise to other features distinct from
that in metals. We defer these questions for future investiga-
tions. Note, however, the assumption of a weak interaction
does not necessarily imply that our results do not apply to
correlated insulators, such as Kondo and excitonic insulators
[28,29], where the interaction is strong. In such systems,
the strong interaction is primarily responsible for giving rise
to the insulating gap via a phase transition. Once such a
phase is reached, the effective interaction between the new
quasiparticles may indeed be weak. In passing, we note that
in the Kondo insulator SmB6, the dHvA oscillations show
an unusual enhancement of the amplitude at low T [4–6].
This material is strongly particle-hole asymmetric and is most
likely in the regime of Fig. 3(d). The upturn observed in SmB6

experimentally [see, for example, Fig. 5(c) in Ref. [6]] bears
some resemblance to the upturn in Fig. 3(d).

In conclusion, we have presented a theory to study the
effect of many-body interactions on dHvA oscillations in in-
sulators at the Hartree-Fock level. We have shown that the
amplitude of oscillations can change substantially even if the
interaction is weak, unlike in metals. The difference originates
from the interplay between interactions and the gap in the
band structure, a feature absent in metals.
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