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We predict a photoinduced Hall effect in an isotropic conventional two-dimensional superconductor with
a built-in supercurrent exposed to a circularly polarized light. This second-order with respect to the elec-
tromagnetic field amplitude effect occurs when the frequency of the field exceeds double the value of the
superconducting gap. It reveals itself in the emergence of a Cooper-pair condensate flow in the direction
transverse to the initial built-in supercurrent, which arises to compensate for the light-induced electric current of
quasiparticles photoexcited across the gap. The initial supercurrent breaks both the time-reversal and inversion
symmetries, while the presence of dilute disorder in the sample provides the breaking of the Galilean invariance.
We develop a microscopic theory of the supercurrent Hall effect in the case of weak disorder and show that
the Hall supercurrent is directly proportional to the quasiparticle recombination time, which can acquire large
values.
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Introduction. The measurement of the optical response
in superconductors is a powerful experimental technique to
explore their quantum properties, which have been the fo-
cus of research for more than 50 years [1–9]. Despite such
an extensive period of time, the study of the interaction of
electromagnetic (EM) fields with superconductors remains a
challenging topic since, as it is known, superconducting (SC)
samples usually expel external EM fields [10]. Besides being
of fundamental importance, the research on light-controlled
transport of Cooper pairs is aimed at applications [11,12].
Examples of possible (but not yet implemented) light-matter
interaction phenomena in superconductors include various
nonlinear and higher-order response effects [13–15], in partic-
ular, the electric-field-induced enhancement of SC properties
[16,17], giant second-harmonic generation under supercurrent
injection [18], and light-mediated superconductivity [19–21],
to name a few. Another route, which we inspect in this Letter,
would be a photoinduced anomalous Hall effect—a possibility
to manipulate a dc supercurrent flow by utilizing a Hall-like
response.

The anomalous Hall effect in non-SC samples represents a
stationary transport phenomenon, which constitutes the emer-
gence of a transverse component of electric current in the
absence of an external magnetic field [22]. The examples are
the spin Hall effect, where the spin-orbit interaction plays the
role of the magnetic field, the valley Hall effect [23–26] in
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two-dimensional (2D) Dirac materials [27–30], and the pho-
toinduced anomalous Hall effect, actively studied in various
systems [31]. Is it possible to find a setup for such an effect to
involve Cooper pairs?

Before answering this question, let us briefly review the
optical response theory in superconductors. As it is known,
in clean single-band Bardeen-Cooper-Schrieffer (BCS) super-
conductors [32], the presence of particle-hole and inversion
symmetries does not allow for momentum-conserving op-
tical transitions [10,32,33]. The optical excitations under
inversion symmetry can occur if they account for either im-
purity scattering [33,34] or a multiband structure [35,36].
The first theoretical analysis of the dynamical conductivity
of superconductors exposed to EM fields with the frequency
exceeding the SC gap was made by Mattis and Bardeen [34],
who considered the “dirty case”. They showed that in the
absence of electron scattering on impurities (“clean case”),
optical transitions across the SC gap exerted by a uniform light
are forbidden. The reason is that the holelike and electronlike
states are orthogonal to each other, and thus they give vanish-
ing matrix elements describing the optical transitions across
the SC gap. Soon, the Mattis-Bardeen theory was tested in
a number of experiments [37]; it was also generalized to the
case of strong electron-phonon interactions [38,39] and super-
conductors with an arbitrary electron mean free path [40].

Nevertheless, an optical transition can still take place in
clean superconductors with broken inversion symmetry or
in the presence of a spin-orbit interaction [35]. Inversion
symmetry here can be broken in the presence of a built-in
supercurrent [36,41,42]. However, the presence of a super-
current is not a sufficient condition for optical transitions to
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occur since the Galilean invariance in parabolic single-band
superconductors suppresses the transitions [4].

Two ways to break the Galilean symmetry are known:
(i) by accounting for the nonparabolicity of electronic bands
[41,43] and (ii) by accounting for the electron-impurity scat-
tering. Both these scenarios have been realized for frequencies
exceeding double the value of the SC gap. Recently, it became
clear [44,45] that various relaxation time parameters may play
an important role depending on the ratio between the EM field
frequency and SC gap. It was shown that at low frequencies,
the optical conductivity in the presence of a supercurrent is
proportional to the inelastic electron relaxation time, and not
to the elastic one. At low frequencies and temperatures close
to the SC critical temperature Tc, the inelastic time is deter-
mined by the energy relaxation processes of quasiparticles.
The energy relaxation time being much larger than the elastic
one may result in giant optical conductivity and power absorp-
tion in the presence of a supercurrent-carrying state [44,45].

In this Letter, we show that even in a single-band BCS
superconductor [32], the breaking of both inversion and time-
reversal symmetries by means of a built-in supercurrent,
and the breaking of Galilean invariance by (weak) electron-
impurity scattering results in the photoinduced transport of
a Cooper-pair condensate in the direction transverse to the
built-in supercurrent. Hereby we define the photoinduced
anomalous supercurrent Hall effect. At temperatures kBT �
� with � the SC order parameter, the equilibrium density
of quasiparticles above the gap is negligibly small in the
absence of external radiation. Therefore, we expect that the
photoinduced Hall current should be proportional to the in-
elastic relaxation time τR associated with the recombination
processes of quasiparticles across the gap. Then, large τR at
low temperatures will provide large values of the EM field-
induced supercurrent, opening a way for the experimental
verification of its existence.

The idea behind the photoinduced supercurrent Hall effect
can be roughly explained using phenomenological arguments.
Let us consider a 2D layer with a built-in stationary super-
current generated either by a transport current or an external
applied magnetic field. The supercurrent is a consequence of
the nonzero supermomentum ps of the Cooper pairs, associ-
ated with the phase difference of the condensate at the edges
of the sample. Furthermore, if an isotropic 2D superconductor
in a supercurrent-carrying regime is normally illuminated by
an external EM radiation characterized by the in-plane vector
potential A(t ) = A exp (−iωt ) + A∗ exp (iωt ), the emerging
photoinduced stationary current of quasiparticles excited
across the SC gap in the most general form reads

j = aω|A|2ps + bω[A(A∗ · ps) + (A · ps)A∗]

+ icω[ps × [A × A∗]]. (1)

The first term in Eq. (1) gives the longitudinal (aligned along
the supercurrent) photoexcited current density; the second
term contains both the longitudinal and transverse quasi-
particle currents; the third term gives only the transverse
response [46]. Anisotropic contributions characterized by the
coefficients bω and cω are induced by linearly and circularly
polarized radiation, respectively.

x

z
y A = A0(1, iσ)

ps

jy

FIG. 1. System schematic: A two-dimensional superconductor
with a built-in supercurrent exposed to an external EM field normally
incident to the 2D plane. The EM field has a circular polarization,
characterized by the vector potential A. The built-in supercurrent,
which represents a Cooper-pair condensate flow, is aligned along the
x axis, and it is described by the momentum ps. A photoinduced
quasiparticle current jy emerges in the transverse direction.

The phenomenological expression (1) is similar to the
equation which describes the stationary photoinduced trans-
port phenomena in non-SC 2D systems [47]. These effects are
stationary since the corresponding response is proportional
to AαA∗

β [see Eq. (1)]. In non-SC systems, the role of ps

is played by an external in-plane static electric field F. The
corresponding longitudinal current is known as photocon-
ductivity, whereas the transverse part is referred to as the
photovoltaic Hall effect [47]. That transverse response is the
result of the emergence of a photoinduced correction to the
distribution function of photoelectrons δ f (v, E, F). Indeed,
the theoretical analysis based on the Boltzmann transport
equation shows [47] that there emerge third-order correc-
tions to the electron distribution function, δ f (v, E, F) ∝
(vE)(vE∗)(vF). These corrections are of an anisotropic form
reflecting the phenomenon called the anisotropic alignment
of photoelectrons [47], which constitutes the physical reason
for the photovoltaic Hall effect in the case of a circularly
polarized EM field.

As we are interested in the Hall-like transport in supercon-
ductors, we focus on the transverse component of the current
(1), jy = bω(AxA∗

y + A∗
xAy)ps + icω(AxA∗

y − A∗
xAy)ps, by

choosing the direction of condensate flow along the x axis,
ps = (ps, 0), as in Fig. 1. Using the terminology of the
two-fluid model, we call jy the photoexcited current of
quasiparticles contributing to the normal-state component of
electron fluid. It provides an accumulation of carriers of
charge at the transverse boundaries of the sample. In the case
of a non-SC material, such an accumulation results in the
emergence of the Hall electric field. In the case of a SC mate-
rial, instead, the electric field cannot penetrate the SC sample.
Therefore, the transverse quasiparticle current jy should be
accompanied by an induced transverse condensate flow js in
such a way that the Hall electric field is compensated and thus

js + jy = 0. (2)

This current-compensation relation reflects a general prop-
erty of superconductors [48]. It is based on the fact that the
electric field inside the bulk of a SC sample vanishes, which
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FIG. 2. Feynman diagrams describing the photoinduced quasiparticle electric current. Blue lines stand for the Green’s functions of
quasiparticles, red wavy lines indicate the external EM field A, green circles represent the quasiparticle velocity vertex v, and dashed lines
denote the supercurrent momentum ps.

is commonly used in theory and experiments on thermoelec-
tric, acoustoelectric, and photoelectric transport phenomena
in superconductors [18,49–51]. A more precise microscopic
study shows that the electric field does penetrate into the
SC sample up to a distance λ, which is of the same order
as the SC coherence length at low temperatures T � Tc, but
at higher temperatures, T − Tc � Tc, λ is determined by the
quasiparticle energy relaxation processes and it may reach an
extremely large value, much greater than the SC coherence
length [52,53]. Here, we study the former case, T � Tc, and
thus the only requirement is that the width of the sample
should be much bigger than λ.

Even though the net transverse current vanishes in the
volume of a 2D SC sample, the emergence of js produces
a Hall-like condensate phase difference on the transverse
boundaries of the sample, �φH ∝ − jyw, where w is the width
of the sample in the y direction. This phase difference is
directly related to the coefficients bω and cω, which determine
the quasiparticle optical response across the SC gap.

Here, we focus on the Hall-like response in the case of a
circularly polarized external EM field A = A0(1, iσ ), where
σ = ±1 indicates the left/right polarization of the EM field.
Then, the response is determined by the last term in Eq. (1)
and thus the coefficient cω. In 2D superconductors, this term is
also (as in the non-SC case) due to the anisotropic corrections
to the distribution function of photoexcited quasiparticles. A
theoretical description of such processes in superconductors
cannot be treated via the Boltzmann equation approach, as
they are only applicable in the case of small EM field fre-
quencies, ω � 2�, and thus the processes of quasiparticle
photoexcitations across the SC gap with ω > 2�, are beyond
its applicability [54]. Instead, a microscopic theory based on
the Green’s functions technique is required.

The microscopic approach to the photoinduced current den-
sity. In the absence of relaxation processes, the Hamiltonian
of a 2D superconductor with an isotropic s-type BCS pairing
exposed to an external EM field reads (in h̄ = kB = c = 1
units)

Ĥ =
(

ξ (p − ps − eA(t )) �

� −ξ (p + ps + eA(t ))

)
. (3)

Here, ξ (p) ≡ ξp = p2/2m − EF is the electron kinetic energy
measured from the Fermi energy EF , and we assume � to
be real valued. The current density operator and the current

density obey the standard relations,

ĵ = −δĤ

δA , j(t ) = −i Sp{ĵ Ĝ<(t, t )}, (4)

where Ĝ<(t, t ) is a lesser component of the Green’s function
defined by the matrix equation (i∂t − Ĥ )Ĝ(t − t ′) = δ(t − t ′)
in the Nambu and Keldysh representation. Expanding Eq. (4)
up to first order with respect to ps and up to second order
with respect to A(t ) yields a set of Feynman diagrams for the
stationary current shown in Fig. 2.

In the absence of impurities, a single-band superconductor
with a parabolic electron dispersion possesses Galilean invari-
ance with or without a built-in supercurrent. Consequently,
optical absorption vanishes in both cases. Meanwhile, the
second-order stationary response is a consequence of pho-
toabsorption across the gap. Thus, it vanishes in a clean case
both in the absence and presence of the supercurrent. The
inspection of all the diagrams in Fig. 2 confirms this statement
(see Supplemental Material [55]), except one diagram shown
in Fig. 2(l). The calculation of this diagram gives a nonzero
current density, which seemingly violates the Galilean invari-
ance of the theory. To restore the Galilean invariance, one has
to account for additional terms reflecting the BCS electron-
electron interaction-induced vertex corrections [43,55].

The optical absorption and the photoinduced electric cur-
rent (1) acquire finite values when Galilean invariance is
violated [43]. We consider the case when the violation oc-
curs due to the presence of electron-impurity scattering in
the sample, characterized by an effective lifetime τi. Another
important ingredient for the effect to take place is by tak-
ing account of the relaxation processes of the photoexcited
quasiparticles, characterized by τR. These processes restrict
the accumulation of the photoexcited quasiparticles above the
SC gap leading to a stationary regime with a stationary but
nonequilibrium distribution function.

Altogether, the relaxation processes can be described by
the effective inverse lifetime

1

τp
= 1

τi

|ξp|
εp

+ 1

τR
, (5)

where εp =
√

ξ 2
p + �2 is a quasiparticle dispersion with ξp =

(p2 − p2
F )/2m. We will assume that under external EM ra-

diation, photoexcited quasiparticles are generated at the gap
edge, 2� � ω − 2� > 0, possessing the momentum p ≈ pF

(|ξp| → 0). In this case, the dominant inelastic process is the
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recombination across the SC gap since τp = τiτRεp/(τR|ξp| +
τiεp) ≈ τR at |ξp| → 0.

At temperatures T � � and at the bottom of the quasipar-
ticle branch, the recombination time reads [56,57]

1

τR
∝ T

EF
e−2�/T max{�, 1/τi}. (6)

This expression holds both for the clean �τi � 1 and dirty
�τi � 1 cases. Since any recombination process represents
a transition across the SC gap back to the SC condensate
after forming a Cooper pair, the intensity of such a process
is proportional to the thermal density of quasiparticles above
the gap. This density is small at low temperatures, which is
reflected in the exponential factors in Eq. (6). Thus, τR can
acquire large values.

To analyze the current in a superconductor with impu-
rities, we again address the Feynman diagrams in Fig. 2.
Figures 2(f)–2(i) give only a longitudinal contribution, while
Figs. 2(a)–2(c) result in both a longitudinal and transverse
response if exposed to a linearly polarized EM field (which
we also do not consider here). The remaining diagrams,
Figs. 2(d), 2(e), and 2(j)–2(l), describe the longitudinal and
transverse response in both cases of linear and circular light
polarization. For circularly polarized light, Figs. 2(d) and 2(e)
reveal the major contribution in the vicinity of the resonance
ω ≈ 2� [58].

After some algebra, we find the transverse current density
at tending to zero temperature [55],

jy = σ
8e3

m
psA2

0

∑
p

γ v2
y

u2v2(u2 − v2)

(2εp − ω)2 + (
1/τ 2

p

) , (7)

where γ −1 = 2τi|ξp|; u2 = (1 + ξp/εp)/2 and v2 = (1 −
ξp/εp)/2 are Bogoliubov coefficients. The integration over the
momentum p in Eq. (7) can be performed in a general form
[55]. However, the formula can be additionally simplified
using the substitution [(2εp − ω)2 + 1/τ 2

p ]−1 → πτpδ(ω −
2εp), where τp ≈ τR at p ≈ pF . Restoring the dimensionality,
we find the transverse photocurrent,

jy = σ
e3

2mh̄2 psA2
0

�2

h̄2ω2

τR

τi
�(h̄ω − 2�), (8)

which is determined by a large parameter τR/τi. Formulas (7)
and (8) are the central results of this Letter. Figure 3 shows a
normalized cω = jy/A2

0 for different parameters.
Discussion. First, Eq. (8) confirms that the Hall-like trans-

port is absent in clean SC samples, as it is required by Galilean
invariance. Indeed, in a clean limit, τi → ∞, the recombina-
tion time does not depend on the electron-impurity scattering
time, Eq. (6), and thus in Eq. (8) the current is inversely
proportional to τi, consequently vanishing in clean samples.

Next, let us estimate the magnitude of transverse photocur-
rent density and compare it with the built-in longitudinal su-
percurrent. For ps/m = js/(ens), ω ∼ 1 THz, ns = 1013 cm−2

[59], τi = 10−11 s−1, τR = 10−7 s−1, and for the EM field
intensity I = 1 W/cm2, we find jy/ js ∼ 0.1. Thus, the trans-
verse current represents a correction to the built-in current, as
expected, but a considerable correction. As concerns the lon-
gitudinal photocurrent, Figs. 2(d) and 2(e) give an estimation

FIG. 3. Circularly polarized EM field-induced nonlinear trans-
verse conductivity as a function of the normalized frequency of
the EM field [coefficient cω from Eq. (1) normalized on cn =
(e3/4mπ )(τR/τi ) as a function of ω/� in h̄ = 1 units]. The cal-
culations were performed using Fig. 2(d). [Figure 2(c) gives the
same contribution.] Blue, red, and black curves correspond to the
normalized relaxation times τR� = 4, 20, ∞, correspondingly.

jx ≈ jy/(ωτi ), and for ωτi � 1, the longitudinal correction to
current is smaller than the transverse current.

It is important to note that the developed theory is fully
gauge invariant in the xy plane. In derivations, we used the
gauge ϕ = 0 for the EM field with a normal incidence to the
2D plane, and considered the second-order response, which
is transverse to the direction of EM wave propagation. None
of the collective modes is excited in the SC sample in this
case. However, in the case of an oblique incidence of the exter-
nal EM field (not considered here), the long-range Coulomb
forces appear in the sample, and then the gauge invariance
requires taking into account the collective excitations of the
order parameter [4,60].

Furthermore, we assumed that the given built-in super-
current does not affect the characteristics of the relaxation
processes, which play an essential role in the theory. This
assumption is valid since we only consider linear in ps pho-
tocurrent (1). In principle, the electron-impurity scattering
time and the quasiparticle recombination time being scalars
may only acquire corrections proportional to p2

s or higher
orders, which is beyond our consideration.

As for the possible experiments, a typical setup to measure
the transverse phase difference is by enclosing the transverse
edges of the sample (in the y direction) by a supercon-
ducting loop. In this case, the Hall-like photoinduced phase
difference produces a correction δ� ∝ jy to flux through the
loop, � = n�0 + δ�, with �0 the flux quantum and n an
integer. Such a flux correction can be measured by a super-
conducting quantum interference device (SQUID) with high
accuracy. A similar experimental technique was used to study
the thermoelectric-induced condensate phase difference [50],
and it was also proposed for the detection of acoustoelectric
phenomena in superconductors [49].

Another method requires attaching a normal-metal probe
to the transverse sample edges to measure directly the
photoinduced quasiparticle current at the normal metal–
insulator–superconducting (NIS) junction [61]. This method
was also used to measure the thermoelectric-induced conden-
sate phase difference in superconductors [62].
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Finally, there exists the possibility of a measurement by
optical methods [12,42], in particular, by the Kerr (or Faraday)
effect. There, the Hall-like response can be detected through
the change in polarization of the reflected or transmitted EM
field [63,64].

Conclusion. We developed a theory of a photoresponse
in a single-band 2D isotropic superconductor with a built-in
supercurrent, exposed to an external circularly polarized elec-
tromagnetic field. This theory accounts for the presence of im-
purities in the sample (via a random impurity potential), which
destroys the Galilean invariance for the transverse transport
to take place. Using this theory, we predicted a photoin-
duced second-order transport phenomenon—the emergence

of a transverse (Hall-like) photoinduced supercurrent—and
demonstrated that its magnitude is primarily determined by
the quasiparticle recombination time. This photoinduced su-
percurrent Hall effect opens a way to manipulate the direction
of superconducting condensate flow via optical tools without
external magnetic fields.

Acknowledgments. We were supported by the Institute for
Basic Science in Korea (Project No. IBS-R024-D1), Ministry
of Science and Higher Education of the Russian Federa-
tion (Project No. FSUN-2023-0006), and the Foundation for
the Advancement of Theoretical Physics and Mathematics
“BASIS”. V.M.K. is grateful to O. V. Kibis for valuable
discussions.

[1] M. Tinkham, Rev. Mod. Phys. 46, 587 (1974).
[2] M. Tinkham, Far-Infrared Properties of Solids (Springer,

Boston, 1970), pp. 223–246.
[3] D. N. Basov and T. Timusk, Rev. Mod. Phys. 77, 721 (2005).
[4] P. I. Arseev, S. O. Loiko, and N. K. Fedorov, Phys. Usp. 49, 1

(2006).
[5] A. Charnukha, J. Phys.: Condens. Matter 26, 253203 (2014).
[6] M. Dressel, Adv. Condens. Matter Phys. 2013, 104379

(2013).
[7] K. H. A. Villegas, V. M. Kovalev, F. V. Kusmartsev, and I. G.

Savenko, Phys. Rev. B 98, 064502 (2018).
[8] J.-X. Yin, S. S. Zhang, G. Dai, Y. Zhao, A. Kreisel, G. Macam,

X. Wu, H. Miao, Z.-Q. Huang, J. H. J. Martiny et al., Phys. Rev.
Lett. 123, 217004 (2019).

[9] V. M. Kovalev and I. G. Savenko, Phys. Rev. Lett. 124, 207002
(2020).

[10] M. Tinkham, Introduction to Superconductivity, 2nd ed. (Dover,
New York, 2004).

[11] K. Jiang and J. Hu, Nat. Phys. 18, 1145 (2022).
[12] K. H. A. Villegas, F. V. Kusmartsev, Y. Luo, and I. G. Savenko,

Phys. Rev. Lett. 124, 087701 (2020).
[13] L. P. Gor’kov and G. M. Eliashberg, ZhETF 55, 2430 (1968)

[Sov. Phys. JETP 28, 1291 (1969)].
[14] L. P. Gor’kov and G. M. Eliashberg, ZhETF 56, 1297 (1969)

[Sov. Phys. JETP 29, 698 (1969)].
[15] M. Silaev, Phys. Rev. B 99, 224511 (2019).
[16] B. I. Ivlev and G. M. Eliashberg, Sov. Phys. JETP Lett. 13, 464

(1971).
[17] K. S. Tikhonov, M. A. Skvortsov, and T. M. Klapwijk, Phys.

Rev. B 97, 184516 (2018).
[18] S. Nakamura, K. Katsumi, H. Terai, and R. Shimano, Phys. Rev.

Lett. 125, 097004 (2020).
[19] F. P. Laussy, A. V. Kavokin, and I. A. Shelykh, Phys. Rev. Lett.

104, 106402 (2010).
[20] M. Sun, A. V. Parafilo, K. H. A. Villegas, V. M. Kovalev, and

I. G. Savenko, 2D Mater. 8, 031004 (2021).
[21] M. Sun, A. V. Parafilo, K. H. A. Villegas, V. M. Kovalev, and

I. G. Savenko, New J. Phys. 23, 023023 (2021).
[22] N. Nagaosa, J. Sinova, S. Onoda, A. H. MacDonald, and N. P.

Ong, Rev. Mod. Phys. 82, 1539 (2010).
[23] D. Xiao, G.-B. Liu, W. Feng, X. Xu, and W. Yao, Phys. Rev.

Lett. 108, 196802 (2012).

[24] K. F. Mak, K. L. McGill, J. Park, and P. L. McEuen, Science
344, 1489 (2014).

[25] A. V. Kalameitsev, V. M. Kovalev, and I. G. Savenko, Phys.
Rev. Lett. 122, 256801 (2019).

[26] C. Jin, J. Kim, M. I. B. Utama, E. C. Regan, H. Kleemann,
H. Cai, Y. Shen, M. J. Shinner, A. Sengupta, K. Watanabe, T.
Taniguchi, S. Tongay, A. Zettl, and F. Wang, Science 360, 893
(2018).

[27] X. Xu, W. Yao, D. Xiao, and T. F. Heinz, Nat. Phys. 10, 343
(2014).

[28] N. Ubrig, S. Jo, M. Philippi, D. Costanzo, H. Berger, A. B.
Kuzmenko, and A. F. Morpurgo, Nano Lett. 17, 5719 (2017).

[29] Y. Liu, Y. Gao, S. Zhang, J. He, J. Yu, and Z. Liu, Nano Res.
12, 2695 (2019).

[30] V. M. Kovalev, W.-K. Tse, M. V. Fistul, and I. G. Savenko, New
J. Phys. 20, 083007 (2018).

[31] J. W. McIver, B. Schulte, F.-U. Stein, T. Matsuyama, G. Jotzu,
G. Meier, and A. Cavalleri, Nat. Phys. 16, 38 (2020).

[32] J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev. 108,
1175 (1957).

[33] G. D. Mahan, Many-Particle Physics (Plenum, New York,
1990).

[34] D. C. Mattis and J. Bardeen, Phys. Rev. 111, 412 (1958).
[35] J. Ahn and N. Nagaosa, Nat. Commun. 12, 1617 (2021).
[36] P. J. D. Crowley and L. Fu, Phys. Rev. B 106, 214526 (2022).
[37] L. H. Palmer and M. Tinkham, Phys. Rev. 165, 588 (1968).
[38] S. B. Nam, Phys. Rev. 156, 470 (1967).
[39] S. B. Nam, Phys. Rev. 156, 487 (1967).
[40] W. Zimmermann, E. Brandt, M. Bauer, E. Seider, and L.

Genzel, Physica C: Superconductivity 183, 99 (1991).
[41] M. Papaj and J. E. Moore, Phys. Rev. B 106, L220504 (2022).
[42] S. Nakamura, Y. Iida, Y. Murotani, R. Matsunaga, H. Terai, and

R. Shimano, Phys. Rev. Lett. 122, 257001 (2019).
[43] Z. Dai and P. A. Lee, Phys. Rev. B 95, 014506 (2017).
[44] M. Smith, A. V. Andreev, and B. Z. Spivak, Phys. Rev. B 101,

134508 (2020).
[45] M. Smith, A. Andreev, and B. Spivak, Ann. Phys. 417, 168105

(2020).
[46] Note that Eq. (1) is valid only for relatively small values of

the supercurrent density, |ps|vF � �, where vF is the electron
Fermi velocity.

[47] M. V. Durnev, Phys. Rev. B 104, 085306 (2021).

L180509-5

https://doi.org/10.1103/RevModPhys.46.587
https://doi.org/10.1103/RevModPhys.77.721
https://doi.org/10.1070/PU2006v049n01ABEH002577
https://doi.org/10.1088/0953-8984/26/25/253203
https://doi.org/10.1155/2013/104379
https://doi.org/10.1103/PhysRevB.98.064502
https://doi.org/10.1103/PhysRevLett.123.217004
https://doi.org/10.1103/PhysRevLett.124.207002
https://doi.org/10.1038/s41567-022-01701-0
https://doi.org/10.1103/PhysRevLett.124.087701
http://www.jetp.ras.ru/cgi-bin/e/index/e/28/6/p1291?a=list
http://www.jetp.ras.ru/cgi-bin/e/index/e/29/4/p698?a=list
https://doi.org/10.1103/PhysRevB.99.224511
http://jetpletters.ru/ps/1584/article_24313.shtml
https://doi.org/10.1103/PhysRevB.97.184516
https://doi.org/10.1103/PhysRevLett.125.097004
https://doi.org/10.1103/PhysRevLett.104.106402
https://doi.org/10.1088/2053-1583/ac0b49
https://doi.org/10.1088/1367-2630/abe285
https://doi.org/10.1103/RevModPhys.82.1539
https://doi.org/10.1103/PhysRevLett.108.196802
https://doi.org/10.1126/science.1250140
https://doi.org/10.1103/PhysRevLett.122.256801
https://doi.org/10.1126/science.aao3503
https://doi.org/10.1038/nphys2942
https://doi.org/10.1021/acs.nanolett.7b02666
https://doi.org/10.1007/s12274-019-2497-2
https://doi.org/10.1088/1367-2630/aad5f8
https://doi.org/10.1038/s41567-019-0698-y
https://doi.org/10.1103/PhysRev.108.1175
https://doi.org/10.1103/PhysRev.111.412
https://doi.org/10.1038/s41467-021-21905-x
https://doi.org/10.1103/PhysRevB.106.214526
https://doi.org/10.1103/PhysRev.165.588
https://doi.org/10.1103/PhysRev.156.470
https://doi.org/10.1103/PhysRev.156.487
https://doi.org/10.1016/0921-4534(91)90771-P
https://doi.org/10.1103/PhysRevB.106.L220504
https://doi.org/10.1103/PhysRevLett.122.257001
https://doi.org/10.1103/PhysRevB.95.014506
https://doi.org/10.1103/PhysRevB.101.134508
https://doi.org/10.1016/j.aop.2020.168105
https://doi.org/10.1103/PhysRevB.104.085306


PARAFILO, KOVALEV, AND SAVENKO PHYSICAL REVIEW B 108, L180509 (2023)

[48] V. Schmidt, The Physics of Superconductors (Springer, Berlin,
1997).

[49] Y. M. Gal’perin, V. L. Gurevich, and V. I. Kozub, Phys. Rev. B
18, 5116 (1978).

[50] D. J. Van Harlingen, D. F. Heidel, and J. C. Garland, Phys. Rev.
B 21, 1842 (1980).

[51] Y. M. Galperin, V. L. Gurevich, V. I. Kozub, and A. L.
Shelankov, Phys. Rev. B 65, 064531 (2002).

[52] Y. N. Ovchinnikov, J. Low Temp. Phys. 28, 43 (1977).
[53] S. N. Artemenko and A. F. Volkov, Sov. Phys. Usp. 22, 295

(1979).
[54] A. Aronov, Y. Gal’perin, V. Gurevich, and V. Kozub, Adv. Phys.

30, 539 (1981).
[55] See Supplemental Material at http://link.aps.org/supplemental/

10.1103/PhysRevB.108.L180509 for details of the analysis of
all the relevant Feynman diagrams.

[56] M. Y. Reizer, Phys. Rev. B 39, 1602 (1989).
[57] M. Y. Reizer, Phys. Rev. B 57, 1147 (1998).

[58] It should be noted that Fig. 2(l) diverges without account-
ing for the impurity-corrected vertices. Accounting for the
impurity-ladder corrections results in the regularization of its
contribution. Nevertheless, its value is still much smaller than
the contributions of diagrams in Figs. 2(d) and 2(e) in the vicin-
ity of the resonance (see details in the Supplemental Material
[55]).

[59] J. M. Lu, O. Zheliuk, I. Leermakers, N. F. Q. Yuan, U. Zeitler,
K. T. Law, and J. T. Ye, Science 350, 1353 (2015).

[60] A. A. Radkevich and A. G. Semenov, Phys. Rev. B 106, 094505
(2022).

[61] G. E. Blonder, M. Tinkham, and T. M. Klapwijk, Phys. Rev. B
25, 4515 (1982).

[62] C. M. Falco, Phys. Rev. Lett. 39, 660 (1977).
[63] S. Li, A. V. Andreev, and B. Z. Spivak, Phys. Rev. B 92,

100506(R) (2015).
[64] A. Hijano, S. Vosoughi-nia, F. S. Bergeret, P. Virtanen, and

T. T. Heikkilä, Phys. Rev. B 108, 104506 (2023).

L180509-6

https://doi.org/10.1103/PhysRevB.18.5116
https://doi.org/10.1103/PhysRevB.21.1842
https://doi.org/10.1103/PhysRevB.65.064531
https://doi.org/10.1007/BF00658956
https://doi.org/10.1070/PU1979v022n05ABEH005495
https://doi.org/10.1080/00018738100101407
http://link.aps.org/supplemental/10.1103/PhysRevB.108.L180509
https://doi.org/10.1103/PhysRevB.39.1602
https://doi.org/10.1103/PhysRevB.57.1147
https://doi.org/10.1126/science.aab2277
https://doi.org/10.1103/PhysRevB.106.094505
https://doi.org/10.1103/PhysRevB.25.4515
https://doi.org/10.1103/PhysRevLett.39.660
https://doi.org/10.1103/PhysRevB.92.100506
https://doi.org/10.1103/PhysRevB.108.104506

