
PHYSICAL REVIEW B 108, L180506 (2023)
Letter

Ferromagnetic ordering of magnetic impurities mediated by supercurrents
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We investigate the behavior of magnetic impurities placed on the surface of superconductor thin films with
spin-orbit coupling. Our study reveals long-range interactions between the impurities, which decay according to a
power law, mediated by the interplay between the superfluid response described by the London equations and the
anomalous supercurrents due to magnetoelectric effects. Importantly, these interactions possess a ferromagnetic
component when considering the influence of the electromagnetic field, leading to the parallel alignment of the
magnetic moments in the case of two impurities. In a Bravais lattice of magnetic impurities, superconductivity
facilitates the establishment of ferromagnetic order within specific parameter ranges. These findings challenge
the conventional understanding that ferromagnetism and superconductivity are mutually exclusive phenomena.
Our theoretical framework provides a plausible explanation for the recently observed remanent flux and transport
signature of ferromagnetism in iron-based superconductors, particularly Fe(Se,Te).
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Introduction. Ferromagnetic ordering is often seen as in-
compatible with conventional superconductivity due to the
presence of an effective exchange field in ferromagnets. This
exchange field has the effect of breaking up Cooper pairs,
which are composed of electrons in a singlet state [1]. The
coexistence of these two orders, however, does exist in hybrid
superconductor/ferromagnet (S/F) structures [2,3]. In these
structures, the proximity effect plays a crucial role in enabling
the coexistence of superconductivity and ferromagnetism.
Singlet pairs can be transformed into triplet pairs through the
exchange field of the F region. As a result, a local magnetic
moment is produced, extending over distances of the order
of superconducting coherence length ξs. This phenomenon is
referred to as the magnetic or inverse proximity effect [4,5].
The generated magnetic moment is oriented in the opposite
direction to the magnetization of the ferromagnetic region. In
the case of a small ferromagnetic island, this results in the
screening of its magnetic moment [6]. If a second ferromag-
netic region (F region) is positioned at a distance smaller than
ξs from the first ferromagnet, the energetically favorable ar-
rangement is an antiparallel orientation of the magnetizations
of the two F regions.

The antiparallel alignment serves as the basis for the
FSF superconducting spin valve [7–10]. The studies on FSF
structures with conventional superconductors indicate an an-
tiferromagnetic coupling between the magnets, mediated by
the inverse proximity effect. This coupling strength decreases
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exponentially with the distance between the ferromagnetic
regions.

This situation changes in thin superconducting films with
spin-orbit coupling (SOC). The combination of the exchange
field generated by a magnetic impurity (m1 in Fig. 1) and
the SOC results in the spontaneous generation of anomalous
currents through the spin-galvanic effect. In the case of a
Rashba SOC they flow perpendicular to the magnetization
(green arrows in Fig. 1) [11,12]. These anomalous currents
are spatially localized [13] over the coherence length from
the impurity. Charge conservation implies the emergence of
a phase gradient, ensuring ∇ · j = 0 and the appearance of
circulating currents [14] (black arrows in Fig. 1).

If we assume that a magnetic moment m1 points in the
positive x direction (Fig. 1), then it generates a nonlocal
circular supercurrent which flows in the negative y direction
at the position of the magnetic impurity m2 and to the pos-
itive y direction at the position of m3. The orientations of
m2,3 are determined by minimization of the free energy: To
reduce the kinetic energy of the superflow they will generate
anomalous currents that suppress the currents induced by m1.
Consequently, m2 will point in the positive x direction and m3

to the negative x direction. In other words, the supercurrent-
mediated magnetic interaction is ferromagnetic between m1

and m2 while it is antiferromagnetic for m1 and m3. Thus, in
general, for two magnetic impurities, m1 and m2 the magnetic
interaction will have the form

FI = J⊥m̂1⊥m̂2⊥ − J‖m̂1‖m̂2‖ , (1)

where m̂ is the unit vector in the direction of m. ⊥ (‖) denotes
the component in the direction perpendicular (parallel) to r =
r1 − r2, and both J⊥ and J‖ are positive.
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FIG. 1. Schematic picture of magnetic impurities on top of a
superconductor thin film with spin-orbit coupling. The red arrows
represent the magnetization of the impurities. The green arrows are
the exchange field-induced localized anomalous currents. The black
loop represents the total current induced by the exchange field, phase
gradient, and electromagnetic field.

Previous studies on Rashba superconductors [14,15],
specifically regarding the current distribution around a mag-
netic impurity and the induced magnetic interaction, have
obtained an interaction resembling the two-dimensional (2D)
dipole-dipole interaction (DDI) form with J⊥ = J‖, which
does not result in either a ferromagnetic or an antiferromag-
netic ground state for two impurities [16]. However, those
studies have neglected the influence of the electromagnetic
(EM) field. On the other hand, we know from Pearl’s seminal
work [17] that the EM field plays a crucial role in determining
the current distribution in conventional superconducting thin
films. This leads to the natural question of the effect of the
EM field on the magnetic coupling between impurities in a
superconductor with spin-orbit coupling (SOC).

In this Letter, we present a theory elucidating the im-
pact of the electromagnetic field on the magnetic coupling
between impurities. We predict a ferromagnetic coupling in
superconducting systems exhibiting magnetoelectric effects
related to SOC, independently of the microscopic details
[18]. We demonstrate that a combination of these effects
and the superfluid response of the condensate, via the Lon-
don equation, alters drastically the spatial dependence of the
couplings J⊥(‖). We establish that the supercurrent-mediated
magnetic interaction exhibits the form of a DDI that is
generated by the so-called Keldysh potential [19,20], and
interpolates between the 2D and 3D DDI. It can also be
viewed as a 2D DDI combined with a ferromagnetic in-
teraction, leading to a ferromagnetic ground state for two
impurities.

Furthermore, we emphasize the crucial role of the EM
field in a 2D impurity lattice. Without taking into account the
EM field, the interaction energy density becomes unphysically
divergent as the system size approaches infinity. However,
when the EM field is included, the energy density converges
in the limit of large system size.

In the remainder of this Letter, we provide a detailed
derivation of these results and discuss recent experimental
results suggesting a superconducting-induced ferromagnetic
order of impurities in Fe(SeTe) [21], and propose other super-
conductors to verify our findings.

Theory. We consider magnetic impurities on top of a two-
dimensional superconducting system, which can, for example,
be a thin film on a substrate or superconductivity induced at
the surface of a topological insulator. In these systems, the
inversion symmetry is broken because of the presence of the
intrinsic polar vector—the normal ẑ to the transport plane.
Additionally, the exchange field induced by the impurity’s
magnetic moment m locally breaks the time-reversal sym-
metry. In the presence of SOC, the breaking of these two
symmetries implies the existence of a spontaneous current
jan(r), known as anomalous current. This current is localized
around the magnetic defect on the scale of the coherence
length. The direction of the net anomalous current Jan =
�m̂ × ẑ is uniquely fixed by the symmetry [22,23], while its
amplitude, parametrized by the coefficient �, is determined
by the microscopic details of the underlying superconductor.
To illustrate this point, in the Supplemental Material (SM)
(Sec. 1) [24] we calculate � in different regimes for Rashba
and Dirac superconductors.

It is convenient to parametrize the anomalous current den-
sity induced by all magnetic impurities in terms of an effective
“background” vector potential a(r) using the London equa-
tion jan(r) = −e2Da(r), where D is the superfluid weight and
e is the electron charge. The change of the free energy due to
the supercurrent then reads

F =
∫

d3r
1

8
D[∇φ − 2eA − 2ea]2δ(z) + 1

2μ0
B2, (2)

where A is the electromagnetic vector potential, B = ∇ × A is
the corresponding magnetic field, μ0 is the magnetic constant,
and we assume the superconductor film located at z = 0. The
first term in Eq. (2) is the free energy of the superconductor
FSC, attributed to the superflow. It reflects the superconducting
response to the vector potential, and the existence of the
anomalous current. The second term ∼B2 is the energy of
magnetic field generated by the supercurrent. Note that A lives
in three dimensions while ∇φ and a are defined in the 2D
superconductor. Taking the derivative of FSC with respect to
−A, one obtains the 2D supercurrent flowing in the plane of
the superconductor,

j = 1
2 eD[∇φ − 2eA − 2ea]δ(z). (3)

Minimizing the free energy with respect to φ gives the
charge conservation ∇ · j = 0. In the following, we choose
the Coulomb gauge ∇ · A = 0. This implies that the phase
gradient cancels the longitudinal part al of the effective gauge
field, which is written in the momentum q space as qφ =
2eal = 2eq(q · a)/q2. The current of Eq. (3) is then fully
determined by the transverse component at = a − al , that is,
j = −e2D(A + at ).

By minimizing the total free energy with respect to the vec-
tor potential ∂F

∂A = 0, we obtain the Maxwell equation μ0 j =
∇ × B, which in the Coulomb gauge reads

∇2A = e2μ0D[A + at ]δ(z). (4)
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The solution of this equation for a given distribution of
the anomalous background gauge field a(r) determines the
induced vector potential and the charge current. At the so-
lution point, by substituting the Maxwell equation back into
Eq. (2), we get the change of free energy due to super-
currents generated by the magnetic impurities (see Sec. 2A
in SM [24]),

F = −1

2

∫
d2r ja. (5)

Remarkably, the free energy is determined by the supercurrent
in the regions in which a(r) is finite.

We now consider magnetic regions (impurities) with in-
plane magnetizations mi located at the points ri, such that
the distance between the regions is much larger than the
coherence length and their sizes. In this case, the distri-
bution of the induced supercurrents almost everywhere as
well as the change of the free energy become independent
on the size/shape of the impurities and the corresponding
anomalous vector potential in Eq. (2) can be approximated
as a(r) = 1

e2D

∑
i �i(mi × ẑ)δ(r − ri ). Here, we assume the

size of the magnetic regions is much smaller than the Pearl
length. Unlike the previous works [25–27] considering a
large magnetic region, no vortices are excited around the
magnet.

By solving the Maxwell-London equation (4) and in-
serting the supercurrent j = −e2D(A + at ) into Eq. (5) we
can identify the part of the free energy responsible for the
supercurrent-induced long-range magnetic interaction (see
Sec. 2B in SM [24]),

FI = − �2

4πe2D

∑
i �=i

(m̂i · ∇)(m̂ j · ∇)V (ri j ) = 1

2

∑
i �= j

F i j
I ,

(6)

where ri j = |ri − r j | is the distance between magnetic impu-
rities, and V (r) is the dimensionless Keldysh potential,

V (r) = π

2

[
H0

(
r

r0

)
− Y0

(
r

r0

)]
. (7)

Here, H0 is the Struve function, Y0 is the Bessel function of
the second kind, and r0 is the Pearl length r0 = 2/e2Dμ0 [17],
which characterizes the screening effect of the magnetic field
due to B2 term in the free-energy Eq. (2).

The appearance of the Keldysh potential is quite remark-
able. Usually, it describes the electrostatic potential of a point
charge confined to a polarizable insulating plane [19,20]. It in-
terpolates between the 2D (V ∼ − ln r) and the 3D (V ∼ 1/r)
forms of the Coulomb potential with the crossover scale given
by r0 in Eq. (7). Here, it plays a similar role by interpolating
between the 2D and 3D form of the induced DDI between the
impurity spins.

Working out the derivatives in the pairwise part F i j
I of the

interaction energy Eq. (6) we find

F i j
I = J⊥(ri j )m̂i⊥m̂ j⊥ − J‖(ri j )m̂i‖m̂ j‖ , (8)

with

J⊥(r) = − �2

2πe2D

1

r

dV

dr
, J‖(r) = �2

2πe2D

d2V

dr2
. (9)

with EM field

(a) (b)
without EM field

(c)

FIG. 2. (a) Superconductivity-induced magnetic interaction as a
function of Pearl length. The red and blue colors denote J‖ and J⊥,
respectively. The circles are the exact results calculated from Eq. (9)
and the lines are the approximate values obtained from Eq. (10).
(b) Ground states of two magnetic impurities with and without the
EM field. (c) Distribution of the supercurrent induced by the two
magnetic impurities. The distance between the two impurities is
r = r0/2.

To gain insight into the r dependence, it is instructive to use a
highly accurate representation of V (r) in terms of elementary
functions [20], which yields

J⊥ = �2

2πe2D

r0

r2(r + r0)
, J‖ = �2

2πe2D

r0(2r + r0)

r2(r + r0)2
. (10)

The interaction as a function of the Pearl length is shown in
Fig. 2(a). The important general property is that for any finite
r0, one obtains J‖ > J⊥.

Let us analyze the case of two impurities. For convenience,
we write the interaction as

FI = J⊥ + J‖
2

(m̂1⊥m̂2⊥ − m̂1‖m̂2‖) − J‖ − J⊥
2

m̂1 · m̂2. (11)

The first term on the right-hand side alone does not generate
a difference in the free energies of the ferromagnetic and
antiferromagnetic states but rather leads to degenerate ground
states with θ1 = −θ2, where θ1 and θ2 are the angles between
the impurities’ magnetic moments and r as shown in Fig. 2(b).
The second term, with the form of an isotropic ferromagnetic
interaction, breaks the ground-state degeneracy, resulting in
a ferromagnetic ground state. This ferromagnetic interaction
stems from the B2 term in the free energy, which was ignored
in previous works [14,15]. In the limit where the EM field can
be neglected μ0 → 0 and r0 → ∞, we get J‖ = J⊥, and in the
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FIG. 3. (a), (b) Schematic picture of the ferromagnetic and the
layered antiferromagnetic states of a Bravais magnetic impurity lat-
tice. (c) Temperature dependence of the interaction strength. The
red line and blue line denote J‖ and J⊥, respectively, in units of
J⊥(T = 0). The distance between the two impurities is r = r0(T =
0)/2. (d) Phase diagram for a 2D impurity lattice. The lattice con-
stant here is d1 = d2 = r0(T = 0)/50. When T is close to Tc (gray
shaded region), the Pearl length becomes too long and there might
be numerical uncertainties due to the finite-size effect.

case of superconductors with large Rashba SOC we recover
the result of Ref. [15] (see Sec. 3 in SM [24]).

The supercurrent j(r) induced by a magnetic impurity with
magnetization m at the origin, takes the form [24]

j(m, r) = e2D

�
[J‖m̂ × ẑ − (J‖ + J⊥)(m̂ × ẑ · r̂)r̂], (12)

where r̂ ≡ r/|r|. Due to the linearity of the problem, the total
current induced by all impurities is given by the sum jtot =∑

i j(mi, r − ri ). The current distribution for two impurities is
shown in Fig. 2(c). Experimentally, the supercurrent distribu-
tion can be determined by measuring the local current-induced
magnetic field [28].

Superconductivity-induced ferromagnetism in a 2D Bra-
vais lattice. Next, we consider an infinite Bravais lattice of
magnetic impurities, as shown in Fig. 3(a). Below we assume
d1 = d2 and the shape of the lattice is controlled by the angle
θ . It is a triangular lattice when θ = π/3 and a square lattice
when θ = π/2. Here, we concentrate on the case where θ is
between π/3 and π/2. In this system, the interaction energy

density is given by E = 1
2V

∑
i �= j F i j

I , where V is the area of
the 2D lattice. We notice that the inclusion of the EM field is
crucial for computing energy. Otherwise, the interaction F i j

I
scales as 1/r2 and the energy density unphysically diverges in
the thermodynamics limit. With the screening effect of the EM
field, according to Eq. (10), F i j

I crosses over from the 2D to
3D DDI and decays as 1/r3 at r → ∞, resulting in convergent
and extensive energy.

The 3D DDI-induced ordered state in a 2D electric dipole
lattice has been studied in Ref. [29]. It has been shown that
a ferroelectric state forms in a triangular lattice, while a
square lattice favors a layered antiferroelectric state. Since the

superconductivity-induced magnetic interaction has a form
between 2D and 3D DDI, we expect similar ground states in
our model. By minimizing the energy we find that at T = 0
the ground state can be either a ferromagnetic state [Fig. 3(a)]
induced by the net ferromagnetic interaction J‖−J⊥

2 , or a lay-
ered antiferromagnetic state [Fig. 3(b)] due to the 2D DDI
J‖+J⊥

2 . At finite temperatures, the order parameter 	(T ) needs
to be determined self-consistently. The superfluid weight D
and the Pearl length r0 are calculated using 	(T ). The cor-
responding temperature dependence of J‖ and J⊥ is shown in
Fig. 3(c). With increasing temperature, the superfluid weight
is decreased, leading to the suppression of the magnetic inter-
action. In addition, the relative value of the net ferromagnetic
interaction J‖−J⊥

2 compared with the 2D DDI J‖+J⊥
2 becomes

smaller at higher temperatures, suggesting a transition to an
antiferromagnetic phase at some finite temperature. The phase
diagram obtained numerically is shown in Fig. 3(d). At T = 0,
the triangular lattice (θ = π/3) has a ferromagnetic ground
state, while the square lattice is antiferromagnetic. By setting
μ0 → 0, we find that the ground state is always an antiferro-
magnetic state without the magnetic field.

Example: Iron-based superconductor. Recent experiments
[21,30–33], provide compelling evidence of observing a ferro-
magnetic ordering in the superconducting state. Specifically,
in Ref. [21], a hysteretic magnetization was observed in
Fe(Se,Te) with Fe impurities only when the system is in
the superconducting state. This observation suggests that it
may be the supercurrent that mediates the interaction between
the magnetic impurities. According to Refs. [30,33], the fer-
romagnetism dwells on the surface of the superconductor,
indicating that the SOC is crucial for the formation of the
ferromagnetic state. It is also believed that the topological
surface band is of Dirac type [34,35] and therefore it can be
described by the Hamiltonian

H0 = (−iv∇ × σ − μ)τ3 + 	τ1 +
∑

i

J0mi · σδ(r − ri ),

where v is the Fermi velocity, μ is the chemical potential, J0

is the exchange interaction, and the last term describes the
exchange field induced by magnetic impurities. The anoma-
lous currents induced locally at the impurities and entering our
theory via the parameter � can be expressed straightforwardly
in terms of the impurity scattering T matrix (see Sec. 4 in SM
[24]). Realistic values of effective parameters for Fe(Se,Te)
are given by [36,37] v = 0.216 eV Å, EF = 4.5 meV, 	 =
1.5 meV, |m| = 5, J0 = 50 meV × (0.4 nm)2. With these
values, we obtain that at T = 0 the supercurrent-mediated
magnetic interaction between two magnetic impurities sep-
arated by 10 nm is of the order of meV, comparable with
the superconducting gap. Thus, thermal fluctuations can be
neglected for low enough temperatures T 	 	.

Conclusion. We have demonstrated that a combination of
London-Pearl screening and magnetoelectric effects can in-
duce long-range magnetic interactions between impurities in
superconductors. We have shown that the induced magnetic
interaction has the form of a 2D dipole-dipole interaction
combined with a ferromagnetic coupling. In addition to
possible candidates such as the discussed iron-based super-
conductors or 2D superconducting structures with a polar axis
perpendicular to the plane, our results should be valid for
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any superconductor showing a magnetoelectric effect. These
are gyrotropic superconductors as discussed in Ref. [38]. Ex-
amples of these are Li2Pt3B, Li2Pd3, B [39,40], Mo3Al2C
[41], TaRh2B2, NbRh2B2 [42], and Td−WTe2 [43,44]. Also
interesting are materials with isotropic gaps exhibiting in-
trinsic magnetism (see Ref. [45] and references therein).
Among these materials, LaNiC2, La7(Ir, Rh)3, and Zr3Ir are
gyrotropic and hence they may exhibit the magnetoelectric
effect. Our predicted effect may be relevant for explaining the
intrinsic magnetism observed in these materials.

Finally, applications of our effect in superconducting spin-
tronics [46,47] are envisioned, where low-dissipation electric
currents can be used to spin-polarize systems.
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