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Magnetization near a constriction between BCS superconductors by spin-dependent tunneling
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Spin-dependent electron tunneling through a voltage-biased microconstriction between two bulk supercon-
ductors is shown to create a dc component of the magnetization in the superconductors near the constriction and
an ac Josephson-like spin current. The static magnetization appears in one superconductor even if the other is
replaced by a normal conductor. Although spin-dependent tunneling generates quantum spin fluctuations also
in the absence of a bias, the formation of spin-triplet Cooper pairs, necessary for the creation of magnetization,
is blocked by destructive interference between different quasielectron and quasihole tunneling channels, unless
there is an asymmetry between the tunneling densities of states for electrons and holes. Breaking the symmetry
in the electron-hole tunnel density of states and creating electron-hole tunneling imbalance by biasing the device
destroys the destructive interference and enables triplet Cooper-pair formation. As a result, magnetizing the
superconductor becomes possible. The role of the voltage in lifting the blockade hindering the spin-triplet Cooper
pair formation is an example of an electrically controlled dissipationless spintronic phenomenon.
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Introduction. Tunable magnetizations play an obvious role
in spintronics and in quantum information processing, which
is why the question addressed in this work, how to mag-
netize a superconductor, is of great current interest. In its
ground state, the BCS wave function of a homogeneous su-
perconductor describes Cooper-paired electron states. These
states are time reversed with respect to each other and are
eigenstates of an operator that projects the electronic spin
on a certain axis, denoted here as the z axis, which is
defined by the order parameter (pairing potential) that in-
duces the pairing. The nature of this superconducting pairing
can change significantly in spin-inhomogeneous materials
such as structures with paramagnetic impurities, conduc-
tors affected by spatially inhomogeneous magnetic fields,
hybrid superconducting structures comprising ferromagnetic
parts, etc. Examples are the suppression of superconductiv-
ity in alloys with paramagnetic impurities [1], the triplet
proximity effect at superconductor-ferromagnet interfaces or
spin-orbit active normal-superconducting interfaces [2–6],
and anomalous Josephson effects in hybrid superconducting
structures [7–10]. Many such interfaces are listed in Eschrig’s
review [11].

Two bulk superconductors connected by a weak link in
the form of a microconstriction (Fig. 1) is an example of a
hybrid structure, where an inhomogeneity affects the super-
conducting properties locally on the scale of the diameter a
of the constriction cross section. The extent of the influence
of the constriction depends on the relation between a and the
coherence length ξ , which is the length scale of superconduct-
ing correlations. This is because the superconducting order
parameter at any point in space is determined self-consistently
in a way that involves all electrons within the coherence length
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ξ around the point. If ξ � a the order parameter close to
the constriction is mostly determined by bulk electron pairs
located far away, in a region where there are very few elec-
trons that have tunneled through the constriction. This is due
to the fact that the density of tunneled electrons diminishes
with the distance r from the point contact as 1/r2 (for a three-
dimensional superconductor). In this case we are allowed to
use the bulk value � of the homogeneous superconductor’s or-
der parameter even in the vicinity of the weak link and assume
that the order parameter pairs electrons that are eigenstates of
the spin operator ŝz.

Depending on the nature of the weak link, we may have
different scenarios for electron transfer between the super-
conductors through the constriction. Here we consider the
mechanism of spin-dependent tunneling. The spin depen-
dence may arise from, e.g., scattering off magnetic inclusions
or spin-orbit interactions in the weak link (see below). Our
results do not rely on the origin of the specific spin-dependent
tunneling, but do depend on its symmetry.

An immediate consequence of spin dependence of the tun-
neling is that the eigenvalue of ŝz is no longer conserved for
tunneling electrons and hence all the projections of the spin
fluctuate quantum mechanically. This opens the question of
whether or not these fluctuations result in the appearance of
magnetization in the BCS superconductors due to the emer-
gence of spin-polarized Cooper pairs. The answer to this
question is the scope of this paper. Although spin-dependent
tunneling generates quantum spin fluctuations, we find that for
an unbiased system the formation of spin-triplet Cooper pairs
is blocked by destructive interference between different quasi-
electron and quasihole tunneling channels. More precisely, the
blockade occurs if the densities of states of quasielectron and
quasihole excitations are the same (which is the case if the
normal electron density of states is constant across the fermi
level). This blockade can, however, be lifted by applying a
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FIG. 1. Sketch of the system considered. A spin-orbit active one-
dimensional weak link of length d (red) bridges two superconducting
leads, L and R (blue). The tunneling amplitude J given by Eq. (11)
is obtained if an external electric field, applied in the negative y
direction, interacts with an electron moving along the x direction
with momentum k and generates a pseudomagnetic field Bso in the z
direction. An external magnetic field B should also be applied in the
y-direction.

voltage bias that creates an electrostatically induced imbal-
ance between the tunneling channels.

Without a blockade, two types of spin-dependent tunneling
processes for creating spin-triplet Cooper pairs are possible
(Fig. 2). The first type of tunneling involves the reflection of
one of the electrons of a Cooper pair, which first tunnels from
one lead to the other and then back, while flipping its spin. It
gives rise to static magnetization in each of the superconduct-
ing leads, proportional to the square of the order parameter
(energy gap) in that lead. Either a bias voltage or an intrinsic
imbalance in the densities of states suffice for creating this
static magnetization. The second type of processes is due to
transmission of a Cooper pair from one superconducting lead
to the other by the sequential tunneling of the two paired
electrons, with one of them flipping its spin. In the presence
of a bias voltage it leads to a time-dependent magnetization
and an ensuing oscillatory spin current, both proportional to
a product of the order parameters of the two superconductors.
Both processes are examples of electrically controlled dissi-
pationless spintronic phenomena.

Description of the system. The Hamiltonian of the junction
comprises the terms

H = HL + HR + Htun, (1)

FIG. 2. Two types of double-tunneling events contributing to the
magnetization on the left superconductor. An arrow to the right (left)
represents J ∗ (J ). If, during one of these events, an electron flips
its spin, a spin-singlet Cooper pair is converted to a spin-triplet pair,
with a finite magnetic moment.

for left and right BCS superconducting leads coupled by spin-
dependent tunneling,

Htun =
∑
k,p

∑
σ,σ ′

(c†
kσ
J kσ,pσ ′cpσ ′ + c†

pσ ′J ∗
kσ,pσ ′ckσ )

≡ HLR + HRL, (2)

where ckσ (cpσ ) is the annihilation operator of an electron with
wave vector k (p) and spin index σ . The tunneling amplitudes
J (matrices in spin space) are not specified for the time being.
Different electrochemical potentials, μL and μR, are assigned
to the quasiparticles in the left and right leads, charging oppo-
sitely the superconductors, thus creating charge surface layers
at the vicinity of the weak link [12]. These account for a finite
bias applied to the junction by adding to the Hamiltonian
the terms −μLNL − μRNR, with NL(R) = ∑

k(p),σ c†
k(p)σ ck(p)σ

being the number operators. The applied voltage eV = μL −
μR is conveniently treated by performing a gauge transfor-
mation [13,14], U (t ) = exp [ − ieV

2 (NL − NR)t], which turns
the tunneling Hamiltonian (2) into Htun(t ) = exp[ieV t]HLR +
exp[−ieV t]HRL. At this stage [14] one may replace the tun-
neling amplitude by

J kσ,pσ ′ (t ) = exp[i(φ0/2 + eV t )]J kσ,pσ ′ , (3)

where φ0 is the phase difference between the order parameters
of the two superconducting electrodes.

Magnetization and spin current. Here we present expres-
sions for the magnetization and the spin current that appear in
the left superconducting lead; those pertaining to the right lead
are obtained in a similar fashion. Formally, the magnetization
ML(t ) is given by

ML(t ) = (g/2)μB

∑
k,σ,σ ′

〈c†
kσ (t )σσσ ′ckσ ′ (t )〉, (4)

where σ is the vector of the Pauli matrices and the angu-
lar brackets indicate quantum-mechanical averaging. We use
units where (g/2)μB = 1, g being the g factor and μB the Bohr
magneton, and h̄ = 1.

The spin current associated with the left lead is the time
derivative of the magnetization,

Ispin
L (t ) ≡ ṀL(t ) = d

dt

〈 ∑
k,σ,σ ′

c†
kσ (t )σσσ ′ckσ ′ (t )

〉
. (5)

The detailed calculation of Eqs. (4) and (5) is relegated to the
Supplemental Material [15].

The magnetization comprises two distinct contributions,
whose physical origins, as discussed above, are quite
different:

ML(t ) = ML,dc + ML,ac(t ). (6)

The dc magnetization reads

ML,dc

=
∑
k,p

�2
L

4E3
k

∑
σ,σ ′

σσ ′σ
[
W s

σσ ′ (k, p) + σσ ′W s
−σ ′−σ (−k,−p)

]

×
[

fp − fk

(Ek − Ep)2 − (eV )2

(
ξp

Ep

(Ep − Ek ) + eV

)

+ 1 − fk − fp

(Ek + Ep)2 − (eV )2

)(
ξp

Ep

(Ep + Ek ) + eV

)]
, (7)
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with

W s
σσ ′ (k, p) =

∑
σ1

J kσ,pσ1
J ∗

kσ ′,pσ1
. (8)

In Eq. (7), Ek(p) = (ξ 2
k(p) + �2

L(R) )
1/2

and fk(p) =
[ exp (Ek(p)/(kBT )) + 1]

−1
(ξk(p) is the single-particle energy

measured from the common chemical potential of the
unbiased device). Note that the static magnetization appears
in the superconducting lead even when the other lead is not a
superconductor.

Examining the structure of the spin-dependent amplitudes
which involves JJ † (when the tunneling amplitudes are
considered as matrices in spin space), it is seen that the static
magnetization indeed results from processes in which one of
the electrons of a Cooper pair tunnels from one lead to the
other and then back, while flipping its spin. However, though
time-reversal symmetry is broken by the bias voltage, this is
not enough to ensure a nonzero static magnetization. The most
transparent example is that of spin-dependent tunneling due to
spin-orbit interaction which by itself conserves time-reversal
symmetry. In that case [16]

J pσ,kσ ′ = J ∗
−p−σ,−k−σ ′ , (9)

and consequently the spin-dependent factor is∑
σ,σ ′

σσσ ′W s
σσ ′ (k, p)(1 + σσ ′)

= 2ẑ[W s
↑↑(k, p) − W s

↓↓(k, p)], (10)

which vanishes when the spin-orbit coupling is due to the
Rashba interaction. Stated differently, the Aharonov-Casher
phase [17] accumulated via one tunneling process is canceled
by the accompanying backward time-reversed second tunnel-
ing process, so that the spin dependence of the tunneling
disappears. Similarly to the conductance of two normal metals
coupled by spin-orbit active tunneling barrier, that exhibits
spin effects only when time-reversal symmetry in the barrier
is broken, for instance by a magnetic field [18], a nonzero
dc magnetization will be established in the superconducting
lead(s) when a Zeeman field (in energy units), B, acts on the
electrons passing through the tunneling barrier. In that case
J pσ,kσ ′ (B) = J ∗

−p−σ,−k−σ ′ (−B) and the cancellation of the
Aharonov-Casher phase disappears.

An explicit example is worked out in the Supplemental
Material [15]. For electrons tunneling through a weak link of
length d lying along x̂, in which a Rashba interaction whose
pseudomagnetic field is along ẑ and a Zeeman field along ŷ
are active, the tunneling amplitude reads

J (By)

J0

=
[

− exp[iksodσz] + σy

m∗By

k2
F

(
cos(ksod )

− i

√
k2

F + k2
so

kso

sin(ksod )

)]
. (11)

Here J0 is the bare tunneling amplitude, kso is the strength of
the Rashba interaction (in momentum units), kF is the Fermi
momentum in the weak link, and a Coulomb blockade of
double-electron tunneling was assumed [16,18]. Exploiting
this tunneling amplitude, one finds that the spin-dependent

factor in Eq. (7) is −[8m∗By/k2
F] cos(ksod )[sin(ksod )x̂ +

cos(ksod )ŷ], proportional to By.
In contrast, the ac part of the magnetization results from

quite different tunneling processes. As shown in Ref. [15], it
necessitates that both leads will be superconductors, and has
features resembling the Josephson current. It reads

ML,ac(t ) =
∑
k,p

�L�R

2EkEp

Re

[ ∑
σ,σ ′

σσσσ ′Wa
σσ ′ (k, p, t )

]

× eV − ξk

E2
k − (eV )2

(
(2Ek − Ep)( fp − fk )

(Ek − Ep)2 − (eV )2

− (2Ek + Ep)(1 − fk − fp)

(Ek + Ep)2 − (eV )2

)
, (12)

where

Wa
σσ ′ (k, p, t ) = ei(φ0+2eV t )

∑
σ ′′

σ ′′J kσ ′,pσ ′′J −k−σ,−p−σ ′′ ,

Wa
↑↓(k, p, t ) = ei(φ0+2eV t )(J k↓,p↑J ∗

k↑,p↑ − J k↓,p↓J ∗
k↑,p↓).

(13)

The ac oscillations are similar to those of the Josephson
current. So is also the appearance of the product JJ , herald-
ing that the processes leading to the ac magnetization (and
the ensuing spin current) result from pair transfer. The spin
current through the junction [see Eq. (5)] is obtained from
the time derivative of the last term in Eq. (12) [see also
Eq. (13)]. For instance, assuming for brevity that the spin
factor

∑
σ,σ ′ σσσσ ′Wa

σσ ′ (k, p, t ) is due solely to a Rashba in-
teraction in the weak link rendering the tunneling amplitudes
time-reversal symmetric [Eq. (9)], this factor becomes [15],

2
∑

σ

ẑ cos(φ0 + 2eV t )σ (|J kσ,pσ |2 − |J kσ,p−σ |2)

+ 4 sin(φ0 + 2eV t )

[
ŷ Re

∑
σ

σJ k−σ,pσJ ∗
kσ,pσ

− x̂ Im
∑

σ

σJ k−σ,pσJ ∗
kσ,pσ

]
. (14)

For a weak link [15] (in the x-y plane) comprising two seg-
ments, rL and rR, of equal length, d/2, whose angles with the
x-direction are θ and −θ , respectively, one finds that when
the electric field creating the Rashba spin-orbit interaction is
along ẑ, the spin factor becomes

− 8 sin(φ0 + 2eV t ) sin(ksod ) cos(θ )(x̂ sin2(ksod/2) sin(2θ )

+ ŷ[cos2(ksod/2) − sin2(ksod/2) cos(2θ )]), (15)

while when this field is directed along ŷ the spin factor van-
ishes.

If kBT 
 eV � �L = �R = � the magnitude of ML,ac(t )
as given by Eq. (12) can be estimated to be of order
μB(eV/�)(RQ/Rn), where RQ = h̄/e2 ∼ 4 k� is the resis-
tance quantum and Rn is the resistance of the weak link in
the normal state [15]. This corresponds to an induced ac
magnetization of order 1–10 mT [15], which could perhaps
act as a point source of spin waves that may be detected if a
ferromagnetic substrate is used.
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By taking the time derivative of Eq. (12), which adds a
factor 2eV/h̄, we get a Josephson-like spin current carried by
Cooper pairs through the weak link. It is interesting to com-
pare the prefactor Ispin

0 with the critical current for the ordinary
Josephson (charge) current, given as Icharge

0 = (π�)/(eRn) by
the Ambegaokar-Baratoff formula [19]. One finds that the
ratio between these currents, normalized respectively to μB

and e, is (Ispin
0 /μB)/(Icharge

0 /e) ∼ (eV/�)2, which can be of
order 1.

Discussion. Nondissipative electron transport in a super-
conductor is a property of its single macroscopic quantum
ground state (here taken to be the BCS ground state) and is
therefore subject to various interference phenomena. A well-
known example of such an interference phenomenon is the dc
Josephson effect, where a nondissipative current between two
superconductors connected by a weak link is a function of the
phase difference between their ground states.

In this paper we have presented a quantum interfer-
ence phenomenon, which governs spin-dependent tunneling
through a weak link between two bulk superconducting leads.
We have shown that a bias on the junction (together with such
tunneling) creates spin-triplet Cooper pairs, giving rise to both
a Josephson-like ac spin current and a static magnetization
in the leads. While static magnetizations can appear in the
absence of a bias in superconductors lacking balance between
their quasielectron and quasihole states, the spin current ne-
cessitates the junction to be biased. As we discuss below, the
vanishing of the ac spin current in the absence of a bias voltage
can be viewed as the result of destructive interference between
different channels of electron tunneling.

Tunneling processes, which make the spins fluctuate and
create spin-triplet Cooper pairs, can be viewed as scattering
events between different eigenstates of the spin operator ŝz

and can be treated by second-order perturbation in the tunnel-
ing Hamiltonian. We have identified two possible processes
capable of creating spin-triplet Cooper pairs, one involving
the transmission of a Cooper pair from one lead to the other
while being converted from a spin-singlet to a spin-triplet
Cooper pair. The other represents the reflection of one of the
electrons of a Cooper pair, which first tunnels from one lead
to the other and then in a second step tunnels back, flipping its
spin going either from left to right or from right to left. Here
spin-singlet Cooper pairs are converted to being spin-triplet
pairs, while staying in the same lead. In the presence of a
bias voltage, the transmission-type tunneling gives rise to a
time-dependent magnetization and an oscillatory spin cur-
rent, while the reflection-type leads to a static magnetization.
The latter can occur even in an unbiased system, provided
that the leads’ densities of states are imbalanced, having for
instance an excess of quasielectron states as compared to
the quasihole ones. We note that if none or both of the
paired electrons flip their spin during a transmission event
the transferred spin-singlet Cooper pair will contribute to the
Josephson charge current, while if during the reflection event
the electron does not flip its spin while tunneling back and
forth, or flips it twice, no effect will be produced.

In both types of tunneling, transmission and reflection, the
system is in a virtual state after the first tunneling event, with
one electron in an excited quasielectron or quasihole state in

the left lead and the other electron in an excited quasielectron
or quasihole state in the right lead. This follows from the
Bogoliubov representation of an electron operator in terms of
the quasielectron and quasihole ones, γ , for instance

ckσ = ukγkσ + σvkγ
†
−k−σ

, (16)

where u2
k = (1 + ξk/Ek )/2 and v2

k = (1 − ξk/Ek )/2. There
are obviously four possibilities, (left excitation, right ex-
citation) = (quasi-electron, quasi-electron), (quasi-electron,
quasi-hole), (quasi-hole, quasi-hole), and (quasi-hole, quasi-
electron), corresponding to four different channels for tun-
neling. This can be seen by inspecting the perturbation
expression [Eq. (14) of Ref. [15]] for the left-lead magneti-
zation, ML(t ),

ML(t ) = −
∑

k,σ,σ ′
σσσ ′

∫ t

dt1

∫ t1

dt2

× 〈[Htun(t2), [Htun(t1), c†
kσ (t )ckσ ′ (t )]]〉, (17)

(see Ref. [15] for details).
The total probability amplitude for spin-triplet Cooper pair

formation by either transmission or reflection as described
above is the sum of the probability amplitudes associated
with the four channels. Since these are probability ampli-
tudes rather than probabilities they will, in the language of
quantum mechanics, interfere with each other. As seen in the
expressions for the magnetization above, it vanishes when the
junction is not biased and the quasielectron and quasihole
states in the superconductors are balanced, i.e., this inter-
ference is then destructive and no spin-triplet Cooper pairs
are formed. More precisely, the (quasielectron, quasihole)
and (quasihole, quasielectron) channel amplitudes interfere
destructively as do the (quasielectron, quasielectron) and
(quasihole, quasihole) channel amplitudes. This is the result
of the electron-hole symmetry in BCS superconductors and
holds for both types of tunneling, transmission and reflection.

The crucial condition for the magnetization to appear is an
imbalance of quasielectron and quasihole states. If a voltage
bias V is applied to the weak link there will be an electric field
between the two superconductors that will break the balance
between the effect of these states by shifting the energy of the
quasihole and quasielectron states by eV . This shift lifts the
destructive interference, so that the probability for spin-triplet
Cooper-pair formation becomes finite and allows us to view
the role of the bias voltage for magnetizing the superconduct-
ing leads as a field effect on spin-dependent tunneling. The
application of a bias voltage also affects the superconducting
phase difference according to the Josephson relation, leading
to oscillatory magnetization, which implies the existence of a
spin current.

We emphasize that the consequences of Cooper-pair trans-
mission and single-electron reflection of one-half of a Cooper
pair for the magnetization of the superconductors are qual-
itatively different. The transmission of spin-triplet Cooper
pairs—when triggered by a bias voltage—resembles the
ac Josephson charge-current carried by spin-singlet Cooper
pairs. In contrast, the reflection process gives rise to a
static (time-independent) magnetization, which can be trig-
gered and tuned electrically by a dc bias voltage. This static
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magnetization is a ground state property of the superconduc-
tors, it exists in the remaining superconductor even if the
other is replaced by a normal metal, and it is not related
to any charge or spin current in the device. This is in con-
trast to the nonequilibrium, time-dependent, and nonlinear
response of quasielectrons and quasiholes in many suggested
voltage-biased superconducting hybrid structures containing
ferromagnetic elements [10,20–24]. Both the predicted dc and
ac magnetization effects are interesting examples of dissipa-
tionless superconducting spintronic phenomena.

The effect of spin-polarized Cooper-pair tunneling can be
enhanced if one of the bulk superconductors is replaced by a
small superconducting grain. In this case spin-triplet Cooper
pairs injected into the grain can be accumulated over time
until a stationary state is reached, where no supercurrent flows
and a certain fraction of the Cooper pairs is spin polarized.
The physics would be similar to that of a superconducting
magnetic alloy, where paramagnetic impurities give rise to
spin-flip scattering [1]. In our case spin-dependent tunneling
plays the role of impurity-induced spin scattering, an impor-
tant difference is that the scattering is not random but well
controlled and electrostatically tunable. As a result, a tunable
net magnetization of the grain can be expected.

In the magnetic-alloy case suppression of spin-singlet pair-
ing is controlled by the parameter (h̄/τs)/�, where τs is the
spin-flip scattering time. In our case the role of τs is deter-
mined by the modulus of the inverse probability amplitude
for an electron to tunnel and flip its spin [25], h̄J2

0 /[�|Wa
↑,↓|].

Here � is the width of electronic states in the grain due to
tunneling when it is in the normal state and Wa

↑,↓ is defined in
Eq. (13). If the parameter [�|Wa

↑,↓|/J2
0 ]/� can reach a value

of order 1 then a significant fraction of Cooper pairs would be
spinpolarized.

Finally, we note that the effect of spin-singlet and spin-
triplet Cooper pairs on the superconducting charge- and spin
currents are different. When it comes to the charge current,
only the injection of spin-singlet Cooper pairs into the ground
state of a BCS superconductor can be supported. Therefore
spin-triplet Cooper pairs are filtered out from contributing
to superconducting charge transport. When it comes to the
spin current, only spin-triplet Cooper pairs can contribute and
spin-singlet Cooper pairs are filtered out. We hence observe
an interesting example of spin-charge separation.
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