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Kerr nonlinearity induced strong spin-magnon coupling
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One pillar of quantum magnonics is the exploration of the utilization of the mediation role of magnons in
different platforms to develop quantum technologies. The efficient coupling between magnons and various
quantum entities is a prerequisite. Here, we propose a scheme to enhance the spin-magnon coupling by the
magnonic Kerr nonlinearity in a YIG sphere. We find that the Kerr-enhanced spin-magnon coupling invalidates
the widely used single-Kittel-mode approximation to magnons. It is revealed that the spin decoherence induced
by the multimode magnons in the strong-coupling regime becomes not severe, but suppressed, manifesting as
either population trapping or persistent Rabi-like oscillation. This anomalous effect is because the spin changes
to be so hybridized with the magnons that one or two bound states are formed between them. Enriching the
spin-magnon coupling physics, the result supplies a guideline to control the spin-magnon interface.
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Introduction. Magnons are the elementary excitation of a
collective spin wave in magnetic materials. The quantized
interactions of magnons with different quantum platforms
have inspired many novel applications in quantum technolo-
gies [1–11]. Besides quantum transduction [12], memory
[13], sensing [14,15], and unidirectional invisibility [16], us-
ing the coupling between magnons and photons or phonons,
the efficient couplings of magnons to spins have attracted
much attention due to their potential realization of quantum
networks [17] and quantum sensing [18–20]. The efficient
spin-magnon couplings via either direct interactions [21–28]
or the indirect way by exchanging photons or phonons
[29–32] have been proposed. How to enhance the spin-
magnon coupling strength is a prerequisite to explore their
applications.

The Kerr nonlinearity of magnons in magnetic materials
supplies a useful mechanism in quantum-state engineering
[33,34]. Based on it, magnon-polariton bistability [35–37] and
tristability [38,39], which are useful in the microwave nonre-
ciprocal transmission [40], high-order sideband [41–43] and
entanglement generations [44], and quantum phase transition
[45], have been reported. A scheme to enhance the spin-
magnon coupling using the Kerr nonlinearity was proposed
in Ref. [46]. These works on quantum magnonics were gen-
erally based on an approximation in which the magnons are
effectively treated as a single first-order Kittel mode [47–50].
It has been revealed that the higher-order magnonic modes
are non-negligible in the presence of the Kerr nonlinearity
[51–53]. References [23–25] studied the interactions between
spins and multimode magnons. However, they are under the
Markovian approximation, which is only valid in the weak-
coupling condition.

Here, we investigate the non-Markovian dynamics of a
spin defect coupled to magnons in a YIG sphere. A scheme
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to enhance the spin-magnon coupling by the magnonic Kerr
nonlinearity is proposed. We find that the increasing of the
coupling invalidates the widely used single-mode approxi-
mation of magnons to describe the matter-magnon coupling.
The strong coupling also causes the spin to exhibit features
with a suppressed decoherence, i.e., from the conventional
oscillating damping to either the population trapping or the
persistent Rabi-like oscillation. Our analysis reveals that such
an anomalous decoherence is due to the formation of different
numbers of spin-magnon bound states. Indicating that the Kerr
nonlinearity endows the spin-magnon interface with a good
controllability, our result paves the way to design quantum
magnon devices.

System and spectral density. We consider a spin defect as
a magnetic emitter coupled to the magnons attached to a YIG
sphere in the presence of the Kerr nonlinearity (see Fig. 1). Its
Hamiltonian reads [22,26]

ĤKerr = h̄ω0σ̂
†σ̂ +

∑
k

[
h̄ωkb̂†

kb̂k − (h̄K/2)b̂†2
k b̂2

k

−(gkb̂†
k σ̂ − �d eiφd b̂†

ke−iωd t + H.c.)
]
. (1)

Here, σ̂ = |g〉〈e| is the transition operator of the spin defect
with frequency ω0 from the excited state |e〉 to the ground
state |g〉, b̂k is the annihilation operator of the kth magnon
mode with frequency ωk , and gk = μ0m · H̃∗

k (r), with m be-
ing the spin magnetic moment and H̃k (r) being the vacuum
amplitude of the kth magnon mode concentrated around the
YIG sphere, is their coupling strength. An inhomogeneous
rf magnetic excited field is needed to trigger the multimode
magnons [54]. The magnons are further driven by a mi-
crowave field with frequency ωd , amplitude �d , and phase φd .
The Kerr nonlinearity quantified by K is caused by the mag-
netocrystalline anisotropy of the YIG sphere. It has been used
to generate the magnon squeezing [34], which is attractive to
the application of the magnons [1,55]. Rewriting the magnon
operators as the sum of their steady-state mean value and fluc-
tuations, i.e., b̂k = 〈b̂k〉 + δb̂k , and neglecting the high-order
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FIG. 1. Schematic illustration of the system. A magnetic emitter
interacts with the magnons in a YIG sphere with radius R in a static
magnetic field He, and an induced magnetic field Ms. A driving field
with frequency ωd is applied.

fluctuation terms in the strong driving condition, Eq. (1) in
the rotating frame with Ĥ0 = ωd (σ̂ †σ̂ + ∑

k b̂†
kb̂k ) becomes

(see Supplemental Material [56])

ĤLinear = h̄�0σ̂
†σ̂ +

∑
k

{
h̄(ωk − �k )b̂†

kb̂k

− [gkb̂†
k σ̂ + (h̄Kk/2)b̂2

k + H.c.]
}
, (2)

where �0 = ω0 − ωd , �k = ωd + 2Kk , and Kk = K〈b̂k〉2.
We have rewritten δb̂k as b̂k for brevity. Making the Bogoli-
ubov transformation Ŝ = exp[

∑
k rk (b̂2

k − b̂†2
k )/2], with rk =

1
4 ln( ωk−�k+Kk

ωk−�k−Kk
), to Eq. (2) and neglecting the counter-rotating

terms [46], we obtain

Ĥ = h̄�0σ̂
†σ̂ +

∑
k

[h̄ζkb̂†
kb̂k − (Gkb̂†

k σ̂ + H.c.)], (3)

where ζk = (ωk − �k )/ cosh (2rk ) and Gk = erk gk/2. We find
that the spin-magnon coupling is exponentially enhanced and
the magnon frequencies are suppressed by the Kerr nonlinear-
ity assisted by the microwave driving. This is one of our main
results. To simplify our discussion, we approximate �k � ωd

due to ωd � Kk and rk ≡ r by neglecting their k dependence,
which is valid by properly choosing �d and ωd in our finite
magnonic bandwidth case [54].

Consider that the YIG sphere is at low temperature such
that the magnons are initially in the vacuum state [44,57].
After tracing over the magnonic degrees of freedom from
the dynamics of the spin-magnon system, we derive an exact
master equation of the spin as (see Supplemental Material
[56])

ρ̇(t ) = i�(t )[ρ(t ), σ̂ †σ̂ ] + �(t )[2σ̂ ρ(t )σ̂ † − {σ̂ †σ̂ , ρ(t )}].
(4)

The renormalized frequency is �(t ) = −Im[ċ(t )/c(t )] and
the decay rate is �(t ) = −Re[ċ(t )/c(t )], where c(t ) satisfies

ċ(t ) + i�0c(t ) +
∫ t

0
dτc(τ ) f (t − τ ) = 0, (5)

under c(0) = 1. The convolution in Eq. (5) makes the dynam-
ics non-Markovian with all the memory effects incorporated

in the time-dependent coefficients in Eq. (4). The magnonic
correlation function is f (t − τ ) = ∫ ζmax

ζmin
dζJ (ζ )e−iζ (t−τ ) and

the spectral density is [22]

J (ζ ) = ημ0

4h̄π
Im{m∗ · k2G[r, r, ζ cosh(2r) + �] · m}, (6)

where k = [ζ cosh(2r) + �]/c and η = e2r cosh (2r). The
Green’s tensor reads k̄2G(r, a, ω̄) = ∑

α,β∈{r,θ,ϕ}[H
β

0,α +
Hβ

α ]eαeβ , where H = −∇φ and H0 takes the similar form
as H but in the absence of the YIG sphere. The potential φ

caused by the YIG satisfying φ = 1
4π

∇a
1

|r−a| is subject to

the boundary condition of (1 + χ )( ∂2

∂x2 + ∂2

∂y2 )φ + ∂2φ

∂z2 = 0

in r � R and ∇2φ = 0 in r > R [58]. χ is the magnetic
susceptibility tensor and determined by the Landau-Lifshitz-
Gilbert equation as [59,60]

χxx = χyy = γ 2h0Ms

γ 2h2
0 − ω2 − i�0ω

≡ χ,

χxy = χ∗
yx = i

γωMs

γ 2h2
0 − ω2 − i�0ω

≡ iκ, (7)

where γ is the gyromagnetic ratio, �0 = 2γ h0α, with α being
the Gilbert parameter, is the damping parameter, h0 = h0ez =
He + Hd , with He being the external static field and Hd =
−Ms/3 being the demagnetization field, and Ms is the satura-
tion magnetization. Putting the spin on the equatorial plane of
the YIG sphere, i.e., θ = π/2, and choosing m = −μB(ex +
iey) = −μBeiϕ (er + ieϕ ), we have the nonzero components of
the Green’s tensor as Im[m∗ · G · m] = μ2

B[Im(Grr + Gϕϕ ) +
Re(Grϕ − Gϕr )] [22,24,48]. The analytic form of G(r, a, ω̄)
is given in (see Supplemental Material [56]). The Green’s ten-
sor and the spectral density show resonance peaks determined
by [59,60]

(n + 1 − mκ )Pm
n (ξ0) + ξ0Pm′

n (ξ0) = 0, (8)

where Pm
n is the associated Legendre polynomial and ξ0 =

(1 + 1/χ )1/2. The magnon modes corresponding to n =
−m = 1, 2, and 3 in the absence of the Kerr nonlinearity are
the dipole or Kittel mode ωK = γ (h0 + Ms/3), the quadrupo-
lar mode ωQ = γ (h0 + 2Ms/5), and the octupolar mode ωO =
γ (h0 + 3Ms/7), respectively. In the presence of the Kerr
nonlinearity, they become ζK,Q,O = (ωK,Q,O − �)/ cosh(2r).
Ranging all m and n, it was found that the frequency range of
J (ζ ) is from ζmin = (γ h0 − �)/ cosh(2r) to ζmax = [γ (h0 +
Ms/2) − �]/ cosh(2r) [54].

Spin dynamics. A widely used approximation in study-
ing matter-magnon coupling is the Markovian approximation
[23–25,47,50,61–63]. It is valid when their coupling is weak
and the timescale of f (t − τ ) is much smaller than the
one of the matter. After replacing c(τ ) by c(t ) and ex-
tending the upper bound of the time integral to infinity,
the Markovian approximate solution of Eq. (5) is cMA(t ) =
e−[�+iϒ(�0 )]t , where ϒ(�0) = P

∫
dζJ (ζ )/(�0 − ζ ) is the

Lamb shift and � = πJ (�0) is the spontaneous emission
rate. The exponential-decay feature of |cMA(t )|2 characterizes
a unidirectional energy flow from the spin to the magnons
and the destructive effect of the magnons on the spin. This
approximation cannot reflect the energy back flow induced by
the strong spin-magnon coupling [22,26].
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A pseudocavity method was proposed to study the strong
light-matter coupling in an absorptive medium [64–68].
Keeping only the Kittel mode ζK, we approximate J (ζ )

as a Lorentzian form J (ω) = J (ζK )(γp/2)2

(ω−ζK )2+(γp/2)2 . The system is
effectively seen as a spin coherently interacting with a pseu-
docavity mode â with frequency ζK and damping rate γp in
a coupling strength g2 = πJ (ζK)γp/2. Here, γp is relevant
to the damping parameter �0. Thus, the spin dynamics is
phenomenologically described by

ρ̇(t ) = i[ρ(t ),�0σ̂
†σ̂ + ζKâ†â + g(âσ̂ † + H.c.)]

+ γp

2
[2âρ(t )â† − {â†â, ρ(t )}]. (9)

Although partially reflecting the energy backflow from the
magnons to the spin, this method misses important physics
from the magnonic higher-order resonant modes.

To fully capture the physics of the strong spin-magnon
coupling enhanced by the Kerr nonlinearity and uncover the
condition under which the pseudocavity method is applicable,
we investigate the exact spin dynamics by choosing �0 =
ζK. The steady-state solution of Eq. (5) is computable by a
Laplace transform. It converts Eq. (5) into c̃(s) = [s + i�0 +∫ ζmax

ζmin
dζ

J (ζ )
s+iζ ]−1. c(t ) is obtained by making an inverse Laplace

transform to c̃(s), which requires finding its poles via (see
Supplemental Material [56])

E

h̄
= �0 +

∫ ζmax

ζmin

J (ζ )

E/h̄ − ζ
dζ ≡ Y (E ), (10)

where E = ih̄s. First, the roots E of Eq. (10) are exactly the
eigenenergies of the total spin-magnon system. To prove this,
we expand the eigenstate as |φE 〉 = x|e, {0k}〉 + ∑

k yk|g, 1k〉.
Substituting |φE 〉 into Ĥ|φE 〉 = E |φE 〉, we readily obtain
Eq. (10). Second, because Y (E ) is a decreasing function
in the regimes E ∈ (−∞, h̄ζmin] and [h̄ζmax,+∞), Eq. (10)
has one isolated root Eb in (−∞, h̄ζmin] or [ζmax,+∞)
provided Y (h̄ζmin) < h̄ζmin or Y (h̄ζmax) > h̄ζmax. The eigen-
state corresponding to Eb is called the bound state. On
the other hand, Y (E ) is nonanalytical in the regime E ∈
[h̄ζmin, h̄ζmax] due to the singularity in its integration. There-
fore, Eq. (10) has an infinite number of roots in this regime,
which form an energy band. Using the residue theorem,
we have c(t ) = ∑M

j=1 Zje
−i
h̄ Eb

j t + ∫ ζmax

ζmin
�(E )e−iEt dE , where

�(E ) = J (E )
[E−�0−ϒ(E/h̄)]2+[πJ (E )]2 , M being the number of the

bound states, and Zj = [1 + ∫ ζmax

ζmin

J (ζ )dζ

(Eb
j /h̄−ζ )2 ]−1 the residue

contributed by the jth bound state. Oscillating with time in
continuously changing frequencies E/h̄ of the band energies,
the integrand tends to zero in the long-time limit due to the
out-of-phase interference. Thus, the steady-state solution of
Eq. (10) is [69]

lim
t→∞ c(t ) =

{
0, no bound state,∑M

j=1 Zje
−i
h̄ Eb

j t , M bound states.
(11)

Assuming the spin is initially in |e〉 and solving Eq. (4),
we obtained that the excited-state population is just |c(t )|2
(see Supplemental Material [56]). Thus, Eq. (11) reveals that
thanks to the Kerr-nonlinearity-enhanced spin-magnon cou-
pling, the formation of the bound states would prevent the

FIG. 2. (a) Spectral density J (ζ ) in different spin-YIG distance
a. (b) Kittel-mode frequency ζK and enhancement coefficient η in
different r. (c) Evolution of the excited-state population |c(t )|2 from
the Markovian approximation (red dotted line), the pseudocavity
method (cyan dashed line), and the non-Markovian dynamics (blue
line). The inset is J (ζ ) and the fitted Lorentzian form J (ζ ). We use
ωd = 1 GHz, γ = 28 GHz T−1, �0 = 8 × 10−3 GHz, Ms = 0.178 T,
h0 = 0.5 T, R = 30 nm, r = 2 in (a) and (c), and a = 26 nm in (c).

spin from relaxing to its ground state. Since it is not obtained
from both the Markovian approximation and the pseudocav-
ity method, such an anomalous decoherence manifests the
distinguished role played by the non-Markovian effect and
the feature of the energy spectrum of the total spin-magnon
system in the decoherence of the spin. This is another main
result of our work.

Numerical results. We plot in Fig. 2(a) the spectral density
J (ζ ) in different spin-YIG distance a for r = 2. The driving-
field frequency ωd is chosen as ωd = 1 GHz and the Kerr
coefficient K relates to the volume V of the three-dimensional
YIG sphere, i.e., K ∝ V −1 [34], and is about kHz [46], which
makes the validity of � � ωd . We really see that J (ζ ) exhibits
obvious peaks at ζ = 537, 549, and 554 MHz irrespective of
the value of a, which match well with our analytical frequen-
cies ζK,Q,O of the Kittel, quadrupolar, and octupolar modes
evaluated from Eq. (8). With decreasing a, J (ζ ) shows an
increase due to the near-field enhancement [26]. It signifies
a strong spin-magnon coupling in the small-a regime. Fig-
ure 2(b) shows the effect of the Kerr nonlinearity on enhancing
the spin-magnon coupling. It reveals that with increasing r
from zero to 2, ζK decreases from 15 GHz to 537 MHz, while
the prefactor η of J (ζ ) increases from 1 to 1200. An efficient
increase of about four orders of magnitude of η/ζK manifests
a dramatic boost of the spin-magnon coupling strength. It
confirms that the Kerr nonlinearity can be used to enhance
the spin-magnon coupling [37,38,46].

Figure 2(c) shows the comparison of |c(t )|2 obtained by
three methods when a = 26 nm. The exponential decay in
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FIG. 3. (a) Evolution of |c(t )|2 in different a. The black dashed
lines are the corresponding steady-state values from Eq. (11). The
time for the cases of a = 9 and 13 nm is magnified by a factor of
0.03. Energy spectrum of the whole system in different (b) a and
(d) r obtained by solving Eq. (10). |c(∞)|2 from solving Eq. (5)
denoted by the dots and from Eq. (11) denoted by the solid lines
in different (c) a and (e) r. The red region covers the values during
its persistent oscillation. (f) |c(∞)|2 when �0 = ζK (brown dot), ζQ

(purple square), and ζO (cyan rhombus). r = 2.0 in (b) and (c), a = 4
nm in (d) and (e), and others are the same as Fig. 2(c).

the Markovian result entirely fails to describe the rapid spin-
magnon energy exchanges obtained via numerically solving
Eq. (5), which is fully captured by the pseudocavity method.
It is the signature of the non-Markovian memory effect owned
by the strong-coupling dynamics [70]. In this case, J (ζ ) is
dominated by the Kittel mode such that a Lorentzian fitting
centered at ζK is sufficient and the pseudocavity method works
well. However, with further decreasing a [see Fig. 2(a)] or in-
creasing r, the high-order magnon modes become dominated,
where the pseudocavity method no longer works.

Figure 3(a) shows the exact |c(t )|2 in different a when
r = 2. The strong spin-magnon coupling favored by both
the near-field enhancement [26] and Kerr nonlinearity causes
|c(t )|2 to exhibit rich behaviors. It is interesting to find
that in contrast to the damping to zero for a = 13 nm,
which has no qualitative difference from the result pre-
dicted by the pseudocavity method, |c(t )|2 approaches a finite
value when a = 9 nm, while it exhibits a lossless Rabi-
like oscillation when a = 4 nm. It reveals an anomalous
behavior in which a small spin-magnon distance with the
Kerr nonlinearity induces a strong spin-magnon coupling,

which, on the contrary, causes a suppressed decoherence.
It is not expected that a stronger spin-magnon coupling al-
ways causes a more severe decoherence to the spin [32,71].
This behavior can be explained by the features of the en-
ergy spectrum of the total spin-magnon system. Figure 3(b)
indicates that two branches of bound states separate the en-
ergy spectrum into three regimes. When a � 10.4 nm, no
bound state is formed and thus |c(t )|2 decays to zero. When
4.8 < a < 10.4 nm, one bound state is present and |c(t )|2
tends to finite values. When a � 4.8 nm, two bound states are
present and |c(t )|2 behaves as a persistent Rabi-like oscillation
in a frequency |Eb

1 − Eb
2 |/h̄. The matching of the long-time

behaviors of the three regimes with the analytical result in
Eq. (11) verifies the distinguished role played by the bound
states and non-Markovian effect in determining the strong-
coupled spin-magnon physics; see Fig. 3(c). Figures 3(d)
and 3(e) indicate that it is just the Kerr-nonlinearity-induced
strong spin-magnon coupling that causes the formation of the
bound states and the accompanying population trapping and
persistent Rabi-like oscillation. Figure 3(f) shows |c(∞)|2 in
the distances a supporting the formation of one bound state.
It demonstrates that the trapped population |c(∞)|2 can be
controlled by choosing �0 as different magnonic resonant
frequencies. All the results prove that the strong spin-magnon
coupling endows the spin with rich anomalous decoherence
governed by the formation of different numbers of bound
states. It supplies a guideline to control the spin coherence via
engineering the feature of the spin-magnon energy spectrum.

Discussion and conclusions. Quantum magnonics ex-
ploring the efficient couplings between magnons and dif-
ferent kinds of quantum matter has made great progress
[1,4,19,31,32,35,37,72–76]. Many of these works were based
on the single-magnon-mode approximation, which may be
insufficient in the strong matter-magnon coupling. The cou-
pling between single spins and multimode magnons was
studied in Ref. [22], but the Kerr nonlinearity was absent.
The Kerr nonlinearity has been observed in cavity magnon
mechanics formed by the YIG [35,37,75]. The bound state
and its distinguished role in the non-Markovian dynamics
have been experimentally observed in both photonic crys-
tal [77] and ultracold-atom [78,79] systems. The progress
gives strong support that our finding is realizable in state-
of-the-art experiments [76,80]. Note that although only the
YIG is studied, our results are applicable to other magnetic
materials, such as CoFeB [19,81]. As a final remark, the ex-
pectation value of the magnonic fluctuation operator described
by b̂k in Eq. (3) should be zero to ensure the self-consistence
of our linearization approximation to Eq. (1). This can be
proven as follows. The evolved state of the spin-magnon sys-
tem under our studied initial condition |�tot(0)〉 = |e, {0k}〉
reads |�tot(t )〉 = c(t )|e, {0k}〉 + ∑

k dk (t )|g, 1k〉, which read-
ily leads to 〈�tot(t )|b̂k|�tot(t )〉 = 0.

In summary, we have investigated the near-field interac-
tions between a spin defect and magnons in a YIG sphere
with Kerr nonlinearity. It is found that the Kerr nonlinearity
induces a dramatic enhancement to the spin-magnon cou-
pling. Contrary to the belief that a strong coupling always
causes a severe decoherence, such a strong coupling makes
the magnon-induced decoherence to the spin change from
complete damping to either population trapping or persistent
Rabi-like oscillation. This anomalous decoherence is due to

L180409-4



KERR NONLINEARITY INDUCED STRONG SPIN-MAGNON … PHYSICAL REVIEW B 108, L180409 (2023)

the formation of different numbers of spin-magnon bound
states. Breaking the dissipation barrier of the spin, our finding
supplies a guideline to suppress the spin decoherence and
design quantum magnonic devices.

Acknowledgments. This work is supported by the National
Natural Science Foundation of China (Grants No. 12275109,
No. 11834005, and No. 12247101) and the Supercomputing
Center of Lanzhou University.

[1] H. Yuan, Y. Cao, A. Kamra, R. A. Duine, and P. Yan, Quantum
magnonics: When magnon spintronics meets quantum informa-
tion science, Phys. Rep. 965, 1 (2022).

[2] D. Lachance-Quirion, Y. Tabuchi, A. Gloppe, K. Usami, and
Y. Nakamura, Hybrid quantum systems based on magnonics,
Appl. Phys. Express 12, 070101 (2019).

[3] B. Zare Rameshti, S. Viola Kusminskiy, J. A. Haigh, K. Usami,
D. Lachance-Quirion, Y. Nakamura, C.-M. Hu, H. X. Tang,
G. E. Bauer, and Y. M. Blanter, Cavity magnonics, Phys. Rep.
979, 1 (2022).

[4] X. Zhang, C.-L. Zou, L. Jiang, and H. X. Tang, Cavity mag-
nomechanics, Sci. Adv. 2, e1501286 (2016).

[5] A. V. Chumak, A. A. Serga, and B. Hillebrands, Magnon tran-
sistor for all-magnon data processing, Nat. Commun. 5, 4700
(2014).

[6] Y. Nambu, J. Barker, Y. Okino, T. Kikkawa, Y. Shiomi,
M. Enderle, T. Weber, B. Winn, M. Graves-Brook, J. M.
Tranquada, T. Ziman, M. Fujita, G. E. W. Bauer, E. Saitoh, and
K. Kakurai, Observation of magnon polarization, Phys. Rev.
Lett. 125, 027201 (2020).

[7] F.-X. Sun, S.-S. Zheng, Y. Xiao, Q. Gong, Q. He, and K.
Xia, Remote generation of magnon Schrödinger cat state via
magnon-photon entanglement, Phys. Rev. Lett. 127, 087203
(2021).

[8] H. Y. Yuan, P. Yan, S. Zheng, Q. Y. He, K. Xia, and M.-H. Yung,
Steady Bell state generation via magnon-photon coupling, Phys.
Rev. Lett. 124, 053602 (2020).

[9] J. Prokop, W. X. Tang, Y. Zhang, I. Tudosa, T. R. F. Peixoto,
K. Zakeri, and J. Kirschner, Magnons in a ferromagnetic mono-
layer, Phys. Rev. Lett. 102, 177206 (2009).

[10] Z.-Q. Wang, Y.-P. Wang, J. Yao, R.-C. Shen, W.-J. Wu,
J. Qian, J. Li, S.-Y. Zhu, and J. Q. You, Giant spin en-
sembles in waveguide magnonics, Nat. Commun. 13, 7580
(2022).

[11] Z. Li, M. Ma, Z. Chen, K. Xie, and F. Ma, Interaction between
magnon and skyrmion: Toward quantum magnonics, J. Appl.
Phys. 132, 210702 (2022).

[12] R. Hisatomi, A. Osada, Y. Tabuchi, T. Ishikawa, A. Noguchi, R.
Yamazaki, K. Usami, and Y. Nakamura, Bidirectional conver-
sion between microwave and light via ferromagnetic magnons,
Phys. Rev. B 93, 174427 (2016).

[13] X. Zhang, C.-L. Zou, N. Zhu, F. Marquardt, L. Jiang, and
H. X. Tang, Magnon dark modes and gradient memory, Nat.
Commun. 6, 8914 (2015).

[14] C. A. Potts, V. A. S. V. Bittencourt, S. V. Kusminskiy, and
J. P. Davis, Magnon-phonon quantum correlation thermometry,
Phys. Rev. Appl. 13, 064001 (2020).

[15] N. Crescini, C. Braggio, G. Carugno, A. Ortolan, and G. Ruoso,
Cavity magnon polariton based precision magnetometry, Appl.
Phys. Lett. 117, 144001 (2020).

[16] Y.-P. Wang, J. W. Rao, Y. Yang, P.-C. Xu, Y. S. Gui, B. M. Yao,
J. Q. You, and C.-M. Hu, Nonreciprocity and unidirectional

invisibility in cavity magnonics, Phys. Rev. Lett. 123, 127202
(2019).

[17] C. C. Rusconi, M. J. A. Schuetz, J. Gieseler, M. D. Lukin,
and O. Romero-Isart, Hybrid architecture for engineering
magnonic quantum networks, Phys. Rev. A 100, 022343
(2019).

[18] D. Lachance-Quirion, S. P. Wolski, Y. Tabuchi, S. Kono, K.
Usami, and Y. Nakamura, Entanglement-based single-shot de-
tection of a single magnon with a superconducting qubit,
Science 367, 425 (2020).

[19] A. B. Solanki, S. I. Bogdanov, M. M. Rahman, A. Rustagi, N. R.
Dilley, T. Shen, W. Tong, P. Debashis, Z. Chen, J. Appenzeller,
Y. P. Chen, V. M. Shalaev, and P. Upadhyaya, Electric field con-
trol of interaction between magnons and quantum spin defects,
Phys. Rev. Res. 4, L012025 (2022).

[20] D. Prananto, Y. Kainuma, K. Hayashi, N. Mizuochi, K.-I.
Uchida, and T. An, Probing thermal magnon current mediated
by coherent magnon via nitrogen-vacancy centers in diamond,
Phys. Rev. Appl. 16, 064058 (2021).

[21] Y. Tabuchi, S. Ishino, A. Noguchi, T. Ishikawa, R. Yamazaki,
K. Usami, and Y. Nakamura, Coherent coupling between a
ferromagnetic magnon and a superconducting qubit, Science
349, 405 (2015).

[22] T. Neuman, D. S. Wang, and P. Narang, Nanomagnonic cavities
for strong spin-magnon coupling and magnon-mediated spin-
spin interactions, Phys. Rev. Lett. 125, 247702 (2020).

[23] M. Fukami, D. R. Candido, D. D. Awschalom, and M. E. Flatté,
Opportunities for long-range magnon-mediated entanglement
of spin qubits via on- and off-resonant coupling, PRX Quantum
2, 040314 (2021).

[24] C. Gonzalez-Ballestero, T. van der Sar, and O. Romero-Isart,
Towards a quantum interface between spin waves and paramag-
netic spin baths, Phys. Rev. B 105, 075410 (2022).

[25] K. Ullah, E. Köse, R. Yagan, M. C. Onbaşlı, and Ö. E.
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