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Magnetism and electronic structure of a Dy adatom on a MgO(001) substrate
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The electronic structure and magnetism of an individual Dy atom adsorbed on the MgO(001) substrate is
investigated using a combination of the density functional theory with the Hubbard-I approximation to the
Anderson impurity model. The divalent Dy2+ adatom in f 10 configuration is found. The calculated x-ray
absorption and magnetic circular dichroism spectra are compared to the experimental data. Quantum tunneling
between degenerate |J = 8.0, Jz = ±4.0〉 states leads to the formation of a |J = 8.0, Jz = 0.0〉 ground state with
an in-plane orientation of the magnetic moment. It explains the absence of remanent magnetization in a Dy
adatom on the top of the MgO(001) substrate. Our studies can provide a viable route for further investigation
and prediction of the rare-earth single-atom magnets.
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Lanthanide atom adsorption on suitable surfaces is a viable
pathway for creating atomic scale magnetic memories [1] and
quantum logic devices [2]. Dysprosium (Dy) exhibits a large
magnetic anisotropy and can be protected against quantum
tunneling in a uniaxial crystal field [3]. It has been used
for molecular magnets with record-high blocking tempera-
ture [4], and the surface adsorbed single-atom magnets with
a long magnetization lifetime [5].

Recently, it was shown experimentally [6] that the elec-
tronic properties of Dy adatoms on MgO thin films grown
on the top of metal Ag(001) substrate change with the
thickness of the supporting MgO layer. X-ray absorption spec-
troscopy (XAS) and magnetic circular dichroism (XMCD)
at 2.5 K reveal a predominance of bulklike 4 f 9 Dy for
Dy@MgO/Ag(001) with the MgO layer thickness less than
5 ML. By an increase of the MgO layer thickness, Dy atoms
acquire the 4 f 10 configuration. They display the butterfly-type
magnetic hysteresis loop, indicating quantum tunneling of the
magnetization (QTM).

Despite the relatively simple coordination of the atom sup-
port structure, it remains challenging to predict theoretically
an influence of the substrate and adsorption geometry on the
Dy 4 f -shell charge and magnetic configurations. Theoretical
calculations often require prior knowledge of the experimental
data [6]. Density functional theory (DFT) is used to obtain
the optimized adsorption geometry. The XAS spectra are then
fitted making use of MultiX multiplet calculations [7] together
with a point charge model with the positions and values of the
Born charges deduced from DFT.

In this work, we present an alternative theoretical ap-
proach, based on the combination of relativistic DFT with
the multiorbital impurity Hamiltonian, and we apply it to
investigate the electronic and magnetic character of a Dy
adatom at MgO(001). Our calculations suggest that the mul-
ticonfigurational aspect of the Dy 4 f -shell together with a
correct atomic limit need to be taken into account in order

to reproduce the magnetic and spectroscopic properties of
Dy@MgO.

The DFT+U correlated electronic structure theory in a
rotationally invariant, full potential implementation [8,9] min-
imizes the total energy functional

E tot(ρ, n̂) = EDFT(ρ) + E ee(n̂) − Edc(n̂), (1)

where EDFT(ρ) is the usual density functional of the to-
tal electron and spin densities, ρ(r), including SOC. E ee

is an electron-electron interaction energy, and Edc is a
“double-counting” term, which accounts approximately for
an electron-electron interaction energy already included in
EDFT. Both are functions of the local orbital occupation matrix
n̂ = nγ1γ2 in the subspace of the f spin-orbitals {φγ = φmσ }.

Minimization of the DFT+U total energy functional
Eq. (1) leads to the solution of the generalized Kohn-Sham-
Dirac equations,

[−∇2 + VDFT(r) + (VU − Vdc) + ξ (l · s)]�k(r) = εk�k(r),
(2)

where VU is an effective DFT+U potential, and Vdc is the
spherically symmetric DFT+U double-counting term [10,11]
The self-consistent solution of Eq. (2) generates not only the
ground-state energy and charge/spin densities, but also effec-
tive one-electron states and energies. The basic difference of
DFT+U calculations from DFT is their explicit dependence
on the on-site spin- and orbitally resolved nγ1γ2 occupation
matrices.

The fundamental limitation of DFT+U calculations is that
they rely on a single Slater determinant approximation for
the f -manifold. However, as pointed out in Refs. [13,14], it
makes the DFT+U results extremely sensitive to the initial
conditions, which leads to numerous metastable solutions.

To avoid convergence to a metastable state, various strate-
gies have been proposed. The occupation matrix control
(OMC) has recently been exploited by Krack [15] for the
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two f -electrons, however the identified ground state does not
agree with earlier DFT+U results of Dorado et al. [16]. Alter-
natively, the so-called U -ramping method relies on a gradual
increase of the Coulomb-U parameter of DFT+U. While this
approach has had some success, it has been shown to give
higher energies than the OMC method [17].

Recently, we proposed the extension of DFT+U [18]
making use of a combination of DFT with the exact diago-
nalization of the Anderson impurity model [19]. The complete
seven-orbital 4 f shell model includes the full spherically sym-
metric Coulomb interaction, the spin-orbit coupling, and the
crystal field. The corresponding Hamiltonian can be written
as

Ĥimp =
∑
mσ

ε f f †
mσ fmσ

+
∑

mm′σσ ′

[
ξ l · s + 	̂CF + 	EX

2
σ̂z

]σ σ ′

mm′
f †
mσ fm′σ ′

+ 1

2

∑
mm′m′′
m′′′σσ ′

Umm′m′′m′′′ f †
mσ f †

m′σ ′ fm′′′σ ′ fm′′σ , (3)

where f †
mσ creates a 4 f electron. The ξ parameter specifies

the SOC strength, and it is taken from DFT calculations in
a standard way [20], making use of the radial solutions of
the Kohn-Sham-Dirac scalar-relativistic equations (2), and the
radial derivative of the spherically symmetric part of the DFT
potential. 	CF is the crystal-field potential, and 	EX is the
exchange field strength. The parameter ε f (= −μ, the chemi-
cal potential) defines the number of f -electrons. The last term
describes the Coulomb interaction in the f -shell. The actual
choice of these parameters will be discussed later.

This model assumes the weakness of the hybridization
between the localized f -electrons and the itinerant s-, p-, and
d-states described in DFT. Thus, the quantum impurity Ander-
son model [19] is reduced to the atomic limit, and corresponds
to the Hubbard-I approximation (HIA).

The Lanczos method [21] is employed to find the lowest-
lying eigenstates of the many-body Hamiltonian Himp and
to calculate the self-energy matrix [
(z)]γ ,γ ′ in the sub-
space of the f spin-orbitals {φγ = φmσ } at low temperature
(kBT = β−1 = 2 meV). Once the self-energy is found, the lo-
cal Green’s function G(z) for the electrons in the 4 f manifold
reads

G(z) = ([G(z)DFT]−1 + 	ε − 
(z))−1, (4)

where GDFT(z) is the “noninteracting” DFT Green’s func-
tion, and 	ε is chosen so as to ensure that n f =
−π−1Im Tr

∫ EF

−∞ dz[G(z)] is equal to the number of 4 f elec-
trons derived from Eq. (2). Then, with the aid of the local
Green’s function G(z), we evaluate the occupation matrix
nγ1γ2 = −π−1 Im

∫ EF

−∞ dz [G(z)]γ1γ2 .
This matrix nγ1γ2 is used to construct an effective DFT+U

potential VU in Eq. (2). Note that the DFT potential VDFT

in Eq. (2) acting on the f -states is corrected to exclude the
nonspherical double-counting with VU [12]. Equations (2) are
iteratively solved until self-consistency over the charge den-
sity is reached. The new DFT Green’s function GDFT and the
new value of the 5 f -shell occupation are obtained from the

FIG. 1. Supercell model for rare-earth impurity on MgO(001).
Dy atoms are shown in blue, O atoms are in red, and Mg atoms in
green.

solutions of Eq. (2). The next iteration is started by solving
Eq. (3) with the updated value of ε f = −μ in Eq. (3), which
is determined by the condition μ = Vdc [18].

The loop procedure is repeated until the convergence of
the 4 f -manifold occupation n f is better than 0.02. After
the self-consistent solution of DFT+U(HIA) is obtained, the
mean-field total energy Etot = EDFT + 	E ee is calculated as
a sum of DFT total energy EDFT, and the energy correction
	E ee = E ee − Edc. Importantly, this solution is unique as
it stems from the many-body ground state of Eq. (3) with the
exact atomic limit.

We make use of the 2 × 2 × 1 lateral supercell (a = 4.21
Å) of 3 ML of MgO to which the rare-earth Dy adatom is
added on the oxygen site (see the supplemental material [22]).
To obtain the supercell geometry, we performed the standard
DFT (with the exchange-correlation functional of Perdew,
Burke, and Ernzerhof [26]) Vienna ab initio simulation pack-
age (VASP [27]) calculations together with the projector
augmented-wave method (PAW [28]). Moreover, assuming
that localized 4 f electrons have a rather small impact on the
geometry, we used the rare-earth Lu adatom instead of Dy, and
we treated 14 closed 4 f -shell electrons of Lu as valence. The
system was relaxed until the forces on the Lu adatom and on
the topmost 2 ML of MgO were 0.001 eV/Å. The calculated
2.1 Å Lu-O bond length to the underneath oxygen is in good
quantitative agreement with the DFT+U results of Ref. [6]
for the Dy-O bond length. Calculated adsorption geometry is
shown in Fig. 1.

The structural information obtained from the VASP sim-
ulations was used as an input for further DFT+U(HIA)
electronic structure calculations that employ the relativistic
version of the full-potential linearized augmented plane-wave
method (FP-LAPW) [29]. In the FP-LAPW, the SOC is in-
cluded in a self-consistent second-variational procedure [30].
This two-step approach synergetically combines the speed and
efficiency of the highly optimized VASP package with the
state-of-the-art accuracy of the FP-LAPW method
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The Slater integrals F0 = 7.00 eV, and F2 = 9.77 eV, F4 =
6.53 eV, and F6 = 4.83 eV, were chosen to parametrize the
Coulomb interaction term in Eq. (3), and to construct the
DFT+U potential VU in Eq. (2). They correspond to the val-
ues for Coulomb U = 7.00 eV and exchange J = 0.82 eV.
The above choice of the Slater integrals is justified [31] by
agreement between the density of states (DOS) calculated
with DFT+U(HIA) and the experimental valence-band pho-
toemission for the bulk Dy.

The exchange splitting 	EX in Eq. (3) corresponds to the
interorbital exchange energy between the localized 4 f and
itinerant s and d shells [32,33]. The 	EX can be estimated
as

	EX = 2Jf sS6s + 2Jf d S5d ,

where Jf s and Jf d are the interorbital exchange constants [33].
The spin-polarized DFT calculations with the magnetization
directed along the z-axis yield 	EX ≈ 10 meV, which can be
taken as a lower bound value for the interorbital exchange
energy [32].

We performed the DFT+U(HIA) calculations treating 	EX

as a parameter in Eq. (3). In these spin-polarized calculations,
we applied the DFT non-spin-polarized exchange-correlation
potential to the f -states in Eq. (2) in order to exclude the
contribution of the f -intraorbital exchange field into the
double-counting Vdc. The spin-polarized functional is used for
all other states.

We solve self-consistently Eq. (2), and we obtain the de-
pendence of the total spin magnetic moment per unit cell
M(	EX) [see Fig. 2(a)] and the total energy E tot(	EX) Eq. (1)
[see Fig. 2(b)] on the magnitude of 	EX. Note that the upper
bound limit of 	EX ≈ 40 meV is set by reaching the saturation
of the magnetic moment.

The total energy versus the magnetic moment dependence
E tot(M ) is shown in Fig. 2(c). Using the Landau expan-
sion [34] of the magnetic energy,

E tot(M ) = const + αM2 − βM4,

we obtain the magnetic moment M =
√

α
2β

, which corre-
sponds to the minimum of E tot. The corresponding value of
	EX ≈ 20 meV yields the value of the interorbital exchange
splitting in Eq. (3).

The inelastic electron tunneling spectroscopy (IETS) mea-
sures the magnetic excitations on an individual atom. The
IETS spectra and corresponding intra-atomic exchange energy
EEX = 2	EXS4 f of a Dy adatom on graphene/Cu (97 meV)
and graphene/Ir(111) (90 meV) were measured experimen-
tally [33]. For the Dy@MgO case, EEX ≈ 80 meV is obtained
by making use of the calculated value for 	EX ≈ 20 meV,
and S4 f = 2 according to Hund’s first rule, in reasonable
agreement with the available experimental data [33]. The
calculated ground-state f -electron occupation n f = Tr[n̂],
magnetic spin 〈MS〉 = −2〈Sz〉μB/h̄ = −Tr[σ̂zn̂]μB/h̄, orbital
〈ML〉 = −〈Lz〉μB/h̄, dipole 〈MD〉 = −6〈Tz〉μB/h̄ moments,
and RLS = 〈ML〉

〈MS〉+〈MD〉 value, the ratio of the orbital to the
effective spin moment, are shown in Table I. The itinerant
part of the magnetization of 0.10 μB includes the Dy adatom
6s-states m6s = 0.02μB, and 5d-states m5d = 0.02 μB mag-
netic moments. Note that the calculation of these moments is

FIG. 2. The total spin magnetic moment per unit cell vs the
exchange splitting 	EX dependence (a); The total energy per unit
cell vs the exchange splitting 	EX dependence (b); the total energy
as a function the magnetic moment dependence, E tot(M ) = const +
αM2 − βM4 (c). The total energy minimum position is marked by a
dashed line.

associated with some uncertainty, and it depends on the choice
of the Dy adatom “muffin-tin” radius.
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TABLE I. The f -electron occupation nf , spin 〈MS〉, orbital 〈ML〉,
〈MS〉 plus magnetic dipole 〈MD〉 moments (in μB), and the ratio
RLS = 〈ML 〉

〈MS 〉+〈MD〉 for the Dy adatom on MgO(001). The nonzero
Stevens parameters Bq

k (in µeV).

nf 〈MS〉 〈ML〉 〈MS〉+〈MD〉 RLS

Dy@MgO 9.91 3.65 5.92 4.64 1.28
CF B0

2 B0
4 B0

6 B4
4 B4

6

−20.55 0.23 −0.02 1.81 0.04

The total (TDOS) and f -projected ( f DOS) DOS calculated
from the solutions of Eq. (2) are shown in Fig. 3(a). The
MgO band gap is at ≈ 3-to-1 eV below the Fermi level. The
sharp 4 f -spin-↓ peaks are located at the top of the MgO
valence band gap. The smooth TDOS peak ≈ 1 eV below
the Fermi level has a capacity of two electrons, which are
transferred from the Dy adatom to the MgO substrate. Note
that qualitatively similar metallization of an insulating SrTiO3

surface due to a Dy adatom has been reported recently [35].
The many-body ground-state solution of Eq. (3) has Nf =

10 (number of particles) and J = 8 (total moment) quan-
tum numbers. They correspond to the f 10 ion configuration,

FIG. 3. The spin-resolved total (TDOS) and the f -projected
( f DOS) DOS (a); the M4,5 edge XAS and XMCD spectra (normal
incidence) (b) for Dy@MgO(001).

FIG. 4. Scheme of quantum many-body levels of the lowest
J = 8.0 multiplet obtained from the solutions of Eq. (3) (	ex =
0) with the 	CF parameters taken from spin-polarized calculations
(squares), with the uniaxial (diagonal) contributions to the 	CF only
(diamonds).

and define the Dy adatom valence as Dy2+. The f -electron
occupation n f = 9.91 calculated with the aid of Eq. (4) is
consistent with the f 10 configuration obtained from Eq. (3).
We used Eq. (3), with the self-consistently determined param-
eters as an input for the Quanty code [36,37], to estimate the
M4,5-edge XAS and XMCD spectra (for details, see the sup-
plemental material [22]). The computed spectra [Fig. 3(b)] are
in reasonable agreement with available experimental data [6].

The scheme of quantum many-body levels of the lowest
J = 8.0 multiplet obtained from the solutions of Eq. (3) is
shown in Fig. 4. Without an external magnetic field, the low-
est energy state of Eq. (3) is a singlet |J = 8.0, Jz = 0.0〉
state. There is another |J = 8.0, Jz = 0.0〉 singlet with the
energy of 0.06 meV above the ground state. Leaving the
only uniaxial (diagonal) contributions to the 	CF yields the
|J = 8.0, Jz = ±4.0〉 ground state (cf. Fig. 4).

The 	CF matrix calculated in the DFT+U(HIA) is used to
build the CF Hamiltonian [38] for the Dy@MgO(001),

ĤCF =
∑

kq

Bq
k Ôq

k , (5)

where Ôq
k are the Stevens operator equivalents, and Bq

k are
the Stevens crystal-field parameters (in standard notations)
for given k and q. The five evaluated nonzero Stevens
parameters—B0

2, B0
4, B0

6, B4
4, and B4

6—are shown in Table I.
The energy diagrams of the CF Hamiltonian (5) are shown in
Fig. S2 (see the supplemental material [22]). Both diagrams,
with the full set of the CF parameters, and with the first three
uniaxial CF parameters, are shown. It is seen that the CF so-
lutions approximate reasonably well the many-body solutions
of Eq. (3) shown in Fig. 4.

The first three parameters B0
2, B0

4, B0
6 yield the uniax-

ial splitting between different Jz eigenstates in Eq. (5) with
the |J = 8.0, Jz = ±4.0〉 ground state, and they correspond
to diagonal contributions to the 	CF. The energy difference
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between the lowest and highest Jz levels, the so-called zero-
field splitting (ZFS) of 65 meV, is found, which is related to
the uniaxial magnetic anisotropy [39]. The transverse B4

4O4
4

term in the CF Hamiltonian connects the |J = 8.0, Jz = ±4.0〉
states so that the quantum tunneling of the magnetization
(QTM) occurs between these two states, and the resulting
|J = 8.0, Jz = 0〉 ground state corresponds to the “in-plane”
magnetic moment orientation. It explains an absence of the
remanent magnetization in Dy@MgO(001) observed experi-
mentally [6].

The giant magnetic anisotropy energy of 250 meV for a
Dy adatom on top of a [2 ML-MgO]/Ag(001) film has been
recently observed [3]. As follows from the analysis of the
experimental data [6], a Dy adatom has a 4 f 9, J = 7.5 ground
state, which is protected from QTM. This MAE exceeds sub-
stantially our estimated value of 65 meV for the uniaxial MAE
for Dy@[3ML-MgO]. A drastic effect of an Ag substrate has
been recently reported for a Fe-phthalocyanine (Pc) molecule
absorbed on MgO, where it was shown that the spin of the
molecule shifts from S = 1 to S = 1

2 due to the presence of an
Ag substrate [40]. We anticipate that an Ag substrate will play
a very essential role in the formation of a 4 f 9, J = 7.5 ground

state for a Dy adatom on ultrathin MgO/Ag films, and we will
give it further consideration.

To conclude, the electronic structure and magnetism of an
individual Dy atom adsorbed on the MgO(001) substrate is
investigated using a combination of the density functional
theory with the Hubbard-I approximation to the Anderson
impurity model. The divalent Dy2+ adatom is found with a
singlet |J = 8.0, Jz = 0.0〉 ground state. The calculated XAS
and XMCD spectra are in reasonable agreement with avail-
able experimental data. No remanent magnetization is found
due to QTM, in agreement with an experimentally observed
butterfly-type magnetic hysteresis loop.
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the Czech Ministry of Education, Youth and Sports (Project
No. SOLID21-CZ.02.1.01/0.0/0.0/16_019/0000760), by the
Czech Science Foundation (GACR) Grant No. 22-22322S,
and from the Israeli Ministry of Aliyah and Integration
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