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Quantum phases in the honeycomb-lattice J1–J3 ferro-antiferromagnetic model
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Using large-scale density-matrix renormalzation group calculations and minimally augmented spin-wave
theory, we demonstrate that the phase diagram of the quantum S = 1

2 J1–J3 ferro-antiferromagnetic model on
the honeycomb lattice differs dramatically from the classical one. It hosts the double-zigzag and Ising-z phases
as unexpected intermediaries between ferromagnetic and zigzag states that are also extended beyond their
classical regions of stability. In broad agreement with quantum order-by-disorder arguments, these collinear
phases replace the classical spiral state.
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Introduction. Ever since the Anderson’s seminal work on
the resonating valence-bond state [1], the significant role
that can be played by quantum fluctuations in magnets with
competing interactions has remained at the forefront of con-
densed matter physics, inspiring a multitude of quests for
exotic states, models that can realize them, and real ma-
terials that can host them [2–7]. The elusive spin-liquid
states with strongly entangled spins are but one example
[2]; others include valence-bond phases with spatial sym-
metry breaking [8–14], quantum multipolar spin nematics
that are quantum analogues of liquid crystals [15–18], and
an especially extensive class of unconventional magnetically
ordered phases that do not appear in the classical solutions
of the underlying spin models [19–28]. It is the latter group
of phenomena that creates a broader context for the present
study.

The ordered phases that are not favored classically but are
stabilized in the quantum S = 1

2 limit have attracted significant
attention in the search for Kitaev magnets on the honeycomb
lattice [29–32]. Recently, this extensive experimental and the-
oretical effort has expanded to the Co2+ materials [33–46]. It
appears that the minimal XXZ-anisotropic J1–J3 model with
“mixed” ferro-antiferromagnetic (FM-AFM) couplings, given
by

H =
∑

n=1,3

∑
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(
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i Sx
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i Sy
j + �nSz

i Sz
j

)
, (1)

provides a tantalizingly close description for many of these
compounds [43–49], calling for its unbiased study. Here
〈i j〉1(3) stands for the first-(third-)neighbor bonds, J1 =−1
is the energy unit, J3 >0, and 0��n�1 are the XXZ
anisotropies. We note that earlier pre-Kitaev searches for
exotic quantum states have focused on a pure AFM J1–
J2–J3 honeycomb-lattice model [50–61], motivated by the
expectation of stronger fluctuations due to the lattice’s low
coordination number and by the degeneracies in its classical
phase diagram [53].

The model (1) was studied in the 1970s [62], yielding
the classical phase diagram reproduced in Fig. 1(a). These
phases are independent of �n because all relevant classical

states are coplanar. The ground state is FM for small J3, while
zigzag (ZZ) order is preferred for large J3, and the ferrimag-
netic spiral phase (Sp) continuously interpolates between FM
and ZZ.

In this Letter, we combine density-matrix renormalization
group (DMRG) and minimally-augmented spin-wave theory
(MAGSWT) to obtain the ground-state phase diagram of the
quantum S = 1

2 model (1). We focus on the partial XXZ ver-
sion of the model (1), with the J3 term left in the Heisenberg
limit, �3 =1, referred to as the J�

1 –J3 model. This choice
is motivated by real materials, in which further exchanges
tend to be more isotropic [32,63]. The standard version of the
model with equal anisotropies, �1 =�3, referred to as the full
XXZ or J�

1 –J�
3 model, is considered too.

Phase diagram. Our phase diagram for the S = 1
2 J�

1 –J3

model is given in Fig. 1(b). In a dramatic deviation from
the classical case, we find two unconventional phases stabi-
lized by quantum fluctuations—the double-zigzag (dZZ) and
Ising-z (Iz) phases—as intermediary between the FM and ZZ
phases. The FM and ZZ phases also extend well beyond their
classical regions to completely supersede the noncollinear
classical spiral phase.

The solid lines are phase boundaries interpolating transi-
tion points obtained from the DMRG long-cylinder DMRG
“scans” by varying J3 or �, as well as from the more precise
measurements. The dashed lines are phase boundaries of the
same phases obtained by MAGSWT, with both approaches
described below.

The qualitative agreement between these approaches is
quite remarkable. Both methods produce the classically un-
stable dZZ and Iz phases, both expand the FM and ZZ phases
beyond their classical ranges, and both eliminate the Sp phase.
These findings are also in a broad agreement with order-by-
disorder arguments [20,27], which generally favor collinear
phases.

We note that recent studies of related models also found
the Sp phase to be absent [64,65]. However, our conclusions
on the nature and extent of the quantum phases that replace it
differ substantially from theirs. For the details on these dif-
ferences for the J1–J3 and other models, see the Supplemental
Material (SM) [66] and the discussions below.
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FIG. 1. The classical (a) and quantum (b) phase diagrams of the
XXZ J�

1 –J3 model (1) with the ferromagnetic (FM), zigzag (ZZ),
spiral (Sp), double-zigzag (dZZ), and Ising-z (Iz) phases. The solid
lines are phase boundaries interpolating transition points (diamonds)
inferred from the DMRG scans along J3 (red) and � (yellow). The
vertical and dashed lines are classical and MAGSWT phase bound-
aries, respectively. Spins are in-plane for all phases except Iz, see
also Fig. 2.

The U (1)-preserving Iz phase, with spins ordered Néel-like
along the z axis, has been first discovered in the XY J1-J2

AFM-AFM model [60], where Iz order is stabilized solely
by quantum effects with no exchange coupling favoring it. In
our case, we find the z axis component of the J3 exchange in
the J�

1 -J3 model crucial for stabilizing the Iz phase in a wide
range of parameters, see Fig. 1(b). In contrast to Ref. [65],

we find only a very narrow Iz phase in the J�
1 -J�

3 model. The
spin-liquid phases in this model [64,65] are also not supported
(see the SM [66]).

The dZZ phase has been recently reported experimentally
[43] and found favored by the bond-dependent extensions of
the XY J�

1 –J�
3 model [45,46]. Instead, we find the dZZ phase

already in the Heisenberg limit of the principal J1–J3 model
(1), see Fig. 1(b).

DMRG calculations. DMRG calculations were performed
on the Lx ×Ly-site honeycomb-lattice open cylinders of width
Ly up to 16 (8 honeycomb cells), using the ITensor library
[67]. The majority of the results were obtained on the so-
called X cylinders (XC) [59], in which the first-neighbor bond
is horizontal, while both X and Y cylinders (YC) were used
for more delicate phases [68]. We allow for a spontaneous
breaking of the spin U (1) symmetry [69], enabling us to mea-
sure the local ordered moment 〈Si〉 instead of the correlation
function.

Our main exploratory tool is the long-cylinder “scans,” in
which one parameter, J3 or �, is varied along the length of the
cylinder with Lx up to 40. It provides 1D cuts through the 2D
phase diagram [60,70–72], see Fig. 2, which give approximate
phase boundaries. By narrowing parameter ranges of the scans
one can determine the boundaries with increased precision,
distinguish first- and second-order transitions [15], and un-
cover hidden phases. In cases when the phase boundary is less
obvious, we utilize the fixed parameter (nonscan) calculations
on clusters up to 16×16, with the aspect ratio that closely
approximates the 2D thermodynamic limit [73].

In Fig. 2, we present two long-cylinder scans for the J�
1 –J3

model (1), one in the Heisenberg limit, �=1, and the other in
the XY limit, �=0, vs J3. In the Heisenberg limit, Fig. 2(a),
the transition from FM to ZZ is very sharp and FM phase
seems to terminate right at the classical boundary of this state,
Jcl

3 =0.25. However, one would expect that the FM phase
should retreat from this boundary, as the competing ZZ state

FIG. 2. Long-cylinder scans of the J�
1 –J3 model (1) vs J3 in the (a) Heisenberg (�=1) and (b) XY (�=0) limit. The arrows show the

local ordered moment 〈Si〉. FM, ZZ, and Iz phases are indicated and transitions are determined as described in text. The honeycomb lattice is
in the xy plane while spins shown in the figure are in the xz plane.
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FIG. 3. (a) Ordered moments in the 16×16 nonscan cluster for J3 = 0.24, showing dZZ pattern. (b) Energies of the three competing phases
vs J3, crosses are DMRG results and higher-energy states are metastable. Lines are extrapolated energies, 〈ψi|H (J3)|ψi〉, where ψi are the three
states at J3 =0.24.

is fluctuating in the Heisenberg limit, while the FM state is
exact. The subsequent analysis reveals a hidden intermediate
dZZ state, discussed next. We note that the scan calculation in
Fig. 2(a) misses it not only due to the narrow region of the dZZ
phase, but also because of the high symmetry of the model in
the Heisenberg limit, which requires additional effort to avoid
metastable states.

Figure 2(b) for the XY limit shows transitions from the
FM to Iz and from Iz to ZZ vs J3. By using scans in the
narrower ranges of J3, we verify that the spiral-like spin pat-
terns in the transition regions in Fig. 2(b) are proximity effects
of the neighboring phases, not additional phases. The phase
boundaries shown in Fig. 2(b) and used in the phase diagram
in Fig. 1(b) are the crossing points of the order parameters
vs J3 (see the SM [66]). The error bars are the width of the
transition region in the scans, where a discontinuous transition
is assigned a width equal to the parameter change over one
lattice spacing.

In the Heisenberg limit, the three states, FM, dZZ, and
ZZ, compete in the proximity of the classical FM boundary
J3 =0.25. Because of the high spin symmetry of the model,
and depending on the initial state, all three can be stabilized
in the nonscan DMRG simulations, such as the one shown
in Fig. 3(a) for J3 =0.24 in the 16×16 cluster. As is shown
in Fig. 3(b), the energy of the dZZ is the lowest, with the
FM and ZZ being metastable, suggesting that the transitions
between the corresponding phases are first order. To identify
their phase boundaries, we compare the energies of these three
states as a function of J3 using extrapolations based on the
spin-spin correlations extracted at J3 =0.24 from the center of
the cluster for each of the states. While the FM line is exact in
this limit, the extrapolated energies for ZZ and dZZ are also
very close to the ones given by a direct DMRG calculation at
a different value of J3, justifying the analysis, see Fig. 3(b).
The dZZ phase is found to be confined between J3 = 0.2333
and 0.2596.

The lower spin symmetry away from the Heisenberg limit
helps to reveal the dZZ phase more readily, see Fig. 4(a) for
a long-cylinder scan along the � axis and fixed J3 =0.25,
confirming the presence of this phase in an extended region of
the phase diagram in Fig. 1. A similar � scan for J3 =0.4 in
Fig. 4(b) compliments the J3 scans in establishing boundaries
of the Iz phase.

By using a combination of the narrower ranges of the scans
and fixed-parameter nonscans, we find that the dZZ phase per-
sists somewhat below �=0.5 while the Iz phase ends close to
�=0.4, where the FM-to-ZZ transition appears to be direct,
see Fig. 1 and the SM [66]. Although we cannot completely
rule out the Iz state for �=0.4, it must be extremely narrow
if it exists.

Minimally-augmented spin-wave theory. The standard
SWT is successful at accounting for quantum effects in the
ordered states [74], but cannot describe either the ordered
phases that are not classically stable, or the shifts of the phase
boundaries by quantum fluctuations. An analytical approach
to address this problem, originally proposed for the classically
unstable field-induced states in the transverse-field Ising and
frustrated Heisenberg models [75–77], can be successfully
applied here.

The method consists of introducing a local field in the
direction of the ordered moment ni for the proposed (unstable)
classical spin configurations, leading to a shift of the chemical
potential in the bosonic SWT language

δH = μ
∑

i

(S − Si · ni ) = μ
∑

i

a†
i ai, (2)

while leaving the classical energy of the state unchanged.
The minimal value of μ is chosen to ensure stability of the
spectrum, i.e., that the squares of all eigenvalues of the SWT
matrix are positive definite. Then, the energy of the pro-
posed spin state, E=Ecl + δE , with the 1/S correction to the
ground-state energy δE , is well defined and can be compared
with the energies of the competing states calculated to the
same O(S) order.

The power of the method, coined as the minimally aug-
mented SWT (MAGSWT), is not only in its simplicity, but in
the form of Eq. (2), which guarantees that its contribution to
the Hamiltonian is positive for μ>0. In turn, this implies
that the so-obtained ground-state energy E is an upper bound
for the energy of the suggested spin state to the order O(S).
This method allows one to consider the phase beyond its clas-
sical range of stability and inspect states that are classically
not competitive, but can lower their energy due to quantum
fluctuations. The new phase boundaries are determined from
the crossings of the energies E for the competing phases as a
function of the varied parameter(s).
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FIG. 4. Long-cylinder � scans of the J�
1 –J3 model (1) for (a) J3 =0.25 and (b) J3 =0.4. Notations are as in Fig. 2.

We note that MAGSWT may not be applied to an arbitrary
classically unstable state [77], with the absence of the linear-
bosonic terms in the 1/S expansion for a given state being a
sufficient criterion of its applicability.

MAGSWT results. In case of the XXZ J�
1 –J3 model (1),

all four competing phases of interest are collinear, which
guarantees the absence of the linear-bosonic terms, while the
noncollinear Sp state is not the subject of MAGSWT, as it
corresponds to a minimum of the classical energy in its entire
possible range of existence.

The technical procedure of extracting minimal μ vs J3 and
� for each phase is discussed in the SM [66]. We note that
the limiting XY and Heisenberg cases and select momenta
are useful for obtaining analytical expressions for μ(J3,�),
eliminating the need of a numerical scan of the momentum
space for spectrum instabilities. With that, the energy sur-
faces E (J3,�) are readily obtained for each phase and the
MAGSWT phase boundaries are drawn from the intersections
of such surfaces.

The resulting phase boundaries are shown in Fig. 1(b)
by the dashed lines. Most, if not all, of the features already
discussed above are present. The noncollinear Sp phase is not
effective at benefiting from quantum fluctuations, in agree-
ment with the order-by-disorder arguments [20], and is wiped
out. The classically unstable dZZ and Iz phases are extensive
and both FM and ZZ expand beyond their classical bor-
ders. A close quantitative agreement with the DMRG phase
boundaries can also be observed, with most discrepancies con-
cerning the borders of the less-fluctuating FM phase (see the
SM [66]). Otherwise, the entire picture for the J�

1 –J3 model in
Fig. 1(b) is in rather astonishing agreement with the numerical
data.

The J�
1 –J�

3 model. The phase diagram of the full XXZ
model (1) with equal anisotropies in both terms, obtained
using the same methods as described above, is presented in

Fig. 5. It repeats most of the trends of the partial XXZ model
in Fig. 1(b), such as the absence of the Sp phase, expansion of
the FM and ZZ, and the presence of the two unconventional
phases, Iz and dZZ.

In contrast to the recent studies [64,65], our results do not
support the proposed spin-liquid states in the Heisenberg [65],
or strongly anisotropic (�=0.25) nearly XY [64] limits. The
J3 width of the quantum Iz phase in the same XY limit (�=0)
is also an order of magnitude narrower in our case than the one
suggested in Ref. [65].

While the first of the quantum phases, dZZ, missed by the
previous studies due to small cluster sizes or an approximate
nature of their approaches [65], is nearly the same in the par-
tial and full XXZ models in Fig. 1(b) and Fig. 5, respectively,

FIG. 5. The quantum S = 1
2 phase diagrams of the full XXZ

J�
1 –J�

3 model (1), c.f. Fig. 1(b). See text.
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the Iz phase is substantially more tenuous. In fact, the initial
DMRG scans have shown a direct FM-ZZ transition, with
some possible narrow intermediate state. Dedicated nonscans
in that region did uncover short-range correlations in both
XC and YC clusters [66], not unlike the ones reported in
Ref. [64]. However, these spin-liquid suspects either order on
the cylinder width increase (XC), or indicate a sufficiently
robust Iz order in the range of J3 = 0.315–0.325 for �=0.25
and J3 = 0.34–0.36 for �=0, see [66].

It is worth noting that MAGSWT in the XY limit of the
full XXZ model shows a close, but insufficient, competition
of the strongly fluctuating Iz phase, rendering it absent from
its version of the phase diagram in Fig. 5.

Summary. In this Letter, we have studied the emergence
of the quantum phases that are not stable classically within
a simple model of great current interest. We have combined
state-of-the-art DMRG and analytical approaches to obtain
conclusive phase diagrams of this model. It is established
beyond any reasonable doubt that the two unconventional
quantum phases occupy a significant portion of this diagram,
with the known phases also extending well beyond their

classical regions and completely replacing the less-fluctuating
noncollinear phase. The results of the analytical MAGSWT
approach are shown to be in a close accord with the numerical
DMRG data, providing additional insights into the energet-
ics of the quantum stabilization of the nonclassical phases
and offering a systematic path for the explorations of similar
models.

The proposed phase diagrams have direct relevance to a
group of novel materials and provide important guidance to
the ongoing theoretical and experimental searches of the un-
conventional quantum states.
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