
PHYSICAL REVIEW B 108, L180404 (2023)
Letter

Symmetry constraints on orbital transport in solids
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We show that electron interaction with the crystal lattice imposes stringent symmetry constraints on the
atomic orbital moment propagation. We present examples that elucidate the underlying mechanisms and reveal
an additional effect of ultrafast orbital moment oscillations not captured by the semiclassical models. The
constraints revealed by our analysis warrant reinterpretation of prior observations and suggest routes for efficient
orbitronic device implementation.
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Spin-electronic phenomena such as spin transfer torque
(STT) [1], the Rashba-Edelstein effect, and the spin Hall
effect (SHE) [2,3] have attracted intense interest as important
manifestations of the interplay between an electron’s spin and
orbital degrees of freedom, with applications in sensing and
information technology. The SHE, one of the most promis-
ing mechanisms for spin current generation, is facilitated
by spin-orbit coupling (SOC), which couples spin to chiral
orbital transport [4]. Bypassing the requirement for a large
SOC and directly using orbital moments may enable efficient
low-cost orbitronic devices based on light elements instead
of the heavy metals in SOC-based devices [5]. This possi-
bility has motivated a flurry of research into orbital moment
generation and transport effects analogous to those involving
spin, including the orbital Hall effect (OHE) as a counterpart
to the SHE enabling efficient generation of orbital moment
in light transition metals [6–10], illustrated in Fig. 1; orbital
torque that similarly to STT may enable control of magnetic
moments [11–13]; and long-range orbital moment transport
[14–16]. However, the differences between spin and orbital
counterparts remain largely unexplored.

Spin carried by the Bloch waves is only weakly perturbed
by the lattice via SOC. In contrast, we show below that
atomic orbital moment dynamics can be dominated by inter-
action with the lattice potential even in the absence of SOC.
The resulting effects are dependent on the orientation of the
orbital moments and the propagation direction, imposing hith-
erto largely unrecognized symmetry constraints on orbitronic
device geometries and structure qualitatively distinct from
spintronics.

The concept of transport of physical quantities emerges
from the relations connecting their local variations to flux. For
the density operator l̂α (r, t ) of the αth component of orbital
angular momentum L̂ = r × p̂ of an electron moving in the
potential U (r), this relation is [7,11]

∂ l̂α (r, t )

∂t
= −∇ · q̂Lα

+ T̂α. (1)

Here, q̂Lα
is the density of the orbital angular momentum

current

Q̂Lα
= {L̂α, v̂}/2, (2)

where v̂ is the electron velocity operator and T̂α is the density
of the αth component of orbital torque

�̂ = i

h̄
[U, L̂] = r × F(r) (3)

exerted by U (r), where F = −∇U is the force.
According to Eq. (1), the rate of variation of angular mo-

mentum in a unit volume is determined by its flux through
the boundary plus the torque exerted by U . In the absence of
torque, it reduces to the continuity relation

∂ l̂α (r, t )

∂t
= −∇ · q̂Lα

, (4)

which signifies the conservation of orbital angular momen-
tum, enabling control of the local orbital moment in a certain
volume by its injection into this volume, for example, via
the OHE. However, if the torque dominates the dynamics
described by Eq. (1), orbital current produced by the OHE
cannot be used to control orbital moments. In particular, ac-
cumulation of orbital moment generated by the OHE can be
prevented by its precession due to the crystal-field torque anal-
ogous to spin precession due to the Larmor torque produced
by the magnetic field.

To elucidate the effects of orbital torque, consider the z
component of orbital angular momentum L̂z = x p̂y − yp̂x =
−ih̄∂/∂φ, where φ is the polar angle in cylindrical coordi-
nates. The corresponding component of torque is

�̂z = y
∂U

∂x
− x

∂U

∂y
= −∂U

∂φ
. (5)

As expected from the Noether’s theorem, the continuity rela-
tion (4) is satisfied if the potential is symmetric with respect
to rotation around the z axis.

In crystals, continuous rotational symmetry is broken by
the lattice. Nevertheless, if the Fermi surface is well described
by the free-electron approximation, the effects of the lattice
potential are small, and so the continuity equation (4) is ex-
pected to provide a good approximation for orbital dynamics.
This can be seen from Eq. (5). If the wave function does not
significantly vary over the lattice constant, one can replace
∂U
∂φ

with its integral over a sphere centered at r = 0, which
identically vanishes.
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FIG. 1. Analogy between the SHE (a) and the OHE (b).

In orbitronic devices based on transition metals [7–9,13],
most of the angular momentum is expected to be carried by
the atomic moments of d electrons, for which such an aver-
aging procedure is unjustified since the wave-function phase
varies over at least 2π within a single atomic site. Our main
result is the prediction of a large nonclassical orbital crystal
torque which can suppress certain components of propagating
orbital moment over essentially a single lattice constant. The
identified mechanism does not contradict the possibility of
local orbital moment generation via the OHE or its importance
as the mechanism underlying the SHE [17]. Nevertheless, it
places stringent constraints on the possibility of atomic orbital
moment diffusion and accumulation over distances exceeding
a few lattice constants [11,17].

First, we consider the conduction band of complex transi-
tion metal oxides exemplified by SrTiO3, which is dominated
by the t2g orbitals of the transition metal atoms on a cubic
lattice [18,19]. Each of the t2g orbitals hybridizes via oxygen
atoms located on the lines between transition metal atoms with
only four of the six nearest neighbors, e.g., the dxy orbital
hybridizes with four dxy orbitals of the nearest neighbors in
the xy plane [19,20]. The corresponding tight-binding Hamil-
tonian is

Ĥ = −V
∑

n,l,m,s

(1 − δl,m)ĉ+
n+l,m,sĉn,m,s, (6)

where dm = (dyz, dxz, dxy), the operator ĉ+
n,m,s creates an elec-

tron on site n with spin s in the orbital state m, l is a unit vector
in one of the six principal directions, and V is the hopping
matrix element describing orbital-selective hybridization. In
the reciprocal space,

Ĥ =
∑

k,m,s

εm(k)ĉ+
k,m,sĉk,m,s, (7)

where ĉ+
k,m,s = 1√

N

∑
n eiaknĉ+

n,m,s, N is the number of lattice
sites, and a is the lattice constant, with dispersion

εm(k) = −2V
∑

m′ �=m

cos(km′a). (8)

This spectrum is orbitally degenerate along the planes ki = k j ,
which allows Bloch states to carry angular momentum [21].
Consider, for example, a superposition of the Bloch states
formed by orbitals dxz and dyz,

ψk,σ,s = 1√
2

(ĉ+
k,xz,s + iσ ĉ+

k,yz,s)|0〉, (9)

where σ = ±1. They are stationary states (Bloch waves) in
the two planes kx = ±ky at the intersection between the dyz

and dxz subbands.
The contribution to orbital moment from the crystalline

momentum identically vanishes for the plane wave by symme-

try. On the other hand, the z component of the atomic orbital
momentum carried by this wave is

〈L̂z〉 = 〈ψσ,k,s|
∑

n

l̂z(�n)|ψσ,k,s〉 = σ h̄,

where l̂z(�n) is the z component of atomic angular momentum
on site n and we used l̂zdxz = idyz, l̂zdyz = −idxz.

Because of the anisotropy of the subbands εxz(k), εyz(k),
the component dxz of the wave cannot propagate in the y
direction, while the component dyz cannot propagate in the
x direction. Thus the dispersion of the wave packets formed
by the states in Eq. (9) is minimized for wave vectors along
the z axis. We conclude that orbital momentum along one of
the principal axes is conserved by electrons propagating along
this axis. The conservation of orbital angular momentum is
ensured by the orbital selectivity of hopping, making complex
oxides attractive for orbitronic applications. The requirement
L ‖ k for orbital moment conservation has been identified for
other materials [21] and will be shown in another example
below, suggesting its general importance.

For kx �= ±ky, ψσ,k,s is not a stationary state, resulting in
the evolution of the relative phase between its dxz and dyz

components according to

ψσ,k,s(t ) = 1√
2

(ĉ+
k,2,s + ieit (ε2(k)−ε1(k))/h̄σ ĉ+

k,1,s)|0〉. (10)

This state is characterized by the oscillating angular momen-
tum

〈L̂z〉 = σ h̄ cos[t (ε2(k) − ε1(k))/h̄].

The flux divergence vanishes; so this oscillation cannot be
described by the continuity relation (4). It results entirely
from the torque exerted by the crystal potential described
by the orbitally selective Hamiltonian. The expectation val-
ues of both L̂x and L̂y remain zero, and so the oscillation
cannot be interpreted as the precession of a semiclassical
angular momentum vector. Using V = 0.2 eV, we esti-
mate that the frequency of oscillation ranges from zero at
the center of the Brillouin zone (BZ) to 1014 Hz at the BZ
boundary along the kx or ky axis.

The underlying mechanism is similar to STT in ferromag-
nets [1,22]. In STT, an electron is injected into a ferromagnet
with its spin polarization noncollinear with the magnetization.
Since the band structure is split into spin-dependent subbands,
this state is not an eigenstate of the Hamiltonian, resulting
in oscillation of the relative phase between the spin-up and
spin-down components of the wave function manifested as
spin precession. This dynamics involves angular momentum
exchange between the magnetization and the injected spin
producing STT. In the considered example of orbital dynam-
ics, the role of exchange torque is played by the orbital torque
produced by the crystal potential, and the reciprocal effect of
this torque is a periodic rotation of the lattice. Semiclassical
precession of orbital moment is not possible in this case,
because the angular momentum operator does not have matrix
elements between ψ+,k,s and ψ−,k,s.

Since the orbital dynamics depends on the wave vec-
tor, oscillation of the orbital moment carried by a wave
packet decays due to dephasing between different momentum

L180404-2



SYMMETRY CONSTRAINTS ON ORBITAL TRANSPORT … PHYSICAL REVIEW B 108, L180404 (2023)

FIG. 2. (a) Orbitally selective hopping of an electron initially
localized on site 1 in a cubic complex oxide. (b) Mechanism of
orbital selectivity of hopping in the direction transverse to the orbital
moment.

components, similar to spin dephasing in STT [1,22]. Con-
sider a Gaussian wave packet centered around k0 ‖ x̂ and
wave-vector spread �k. The orbital moment dephases over
the time interval

�t = h̄

�k ∂ε2
∂kx

∣∣
k=k0

= 1

�kvg
,

where vg is the group velocity. Since the wave-packet width
is �x = �k−1 = vg�t , the components of orbital moment
orthogonal to the direction of propagation decay over the
packet width.

To elucidate the underlying microscopic mechanism, we
consider an electron with orbital moment Lz = h̄ initially
localized on site 1 [Fig. 2(a)]. Based on the above analysis,
the orbital moment is expected to decay as the wave function
spreads over the wave-packet width, in this case a single
lattice spacing. Indeed, because of the orbital selectivity of
hopping, orbital component dxz flows to sites 2 and 4 along
the x axis, while orbital component dyz flows to sites 3 and
5 along the y axis. The same orbital selectivity prevents re-
construction of the finite-Lz orbital state by mixing between
dxz and dyz along the diagonal, as shown in Fig. 2(a) for
site 6. Thus a single electron hop along one of the principal
axes quenches the orbital moment normal to this axis, on the
time scale �t ∼ h̄/V ∼ 10−15 s. The possibility of Lz being
transported in the xy plane by a wave packet with kx = ±ky is
illusory, since the components dxz and dyz of the wave packet
propagate in orthogonal directions along the x and y axes,
respectively.

We now demonstrate similar symmetry constraints on
orbital moment dynamics for a system with a completely
different symmetry, a triangular two-dimensional (2D) lattice
which approximates a single {111} fcc plane or (0001) hcp
plane in transition metals studied in the context of the OHE
[8,9,12,13,15,16]. The hexagonal symmetry of the crystal
field of the triangular lattice does not quench the normal
component of angular momentum of d electrons, providing a
close approximation for the axial rotational symmetry which
according to Eq. (5) allows its conservation.

To the best of our knowledge, the d-orbital composition
of the Bloch states on the triangular lattice does not have a
simple form amenable to the analysis of orbital dynamics, due
to the mismatch between d-orbital symmetries and the lattice
geometry [23]. We avoid this issue by considering an electron
initially localized on a single site with the projection Lz of

orbital moment on the z axis normal to the plane. We choose
Lz = 2h̄ for concreteness, but the results are similar for other
values of Lz �= 0. Orbital moment evolution is determined by
hopping to the six nearest neighbors. By symmetry, hopping
amplitudes onto the same orbitals of different neighbors are
the same aside from the phase; so it is sufficient to consider
a single neighbor on the x axis [Fig. 2(b)]. In the Slater-
Koster method, hopping between neighboring d orbitals is
described by the parameters Vddσ , Vddπ = −2Vddσ /3, and
Vddδ = Vddσ /6 [24]. Their specific values, which can be calcu-
lated in the muffin-tin approximation, are not important. The
matrix elements VLzL′

z
(with indices scaled by h̄) describing

hopping from Lz = 2h̄ onto the orbitals L′
z are V22 = 0.06Vddσ ,

V21 = V2−1 = 0, V20 = −0.36Vddσ , and V2−2 = 0.73Vddσ . The
probability that orbital moment is conserved on hopping is
about 30 times smaller than the probability that it is lost
(L′

z = 0), and about 150 times smaller than the probability that
it is reversed.

This somewhat counterintuitive orbital selectivity favoring
orbital moment reversal results from the constructive inter-
ference between opposite-moment orbitals which remain in
phase over the region of their overlap illustrated by curved
arrows in Fig. 2(b), as opposed to partially destructive inter-
ference of same-moment orbitals. Qualitatively, an electron
initially moving counterclockwise (Lz > 0) around site 1 in
the region between the sites is moving clockwise with respect
to site 2. As a consequence, there is a finite probability that it
continues its motion as clockwise rotation around site 2, i.e.,
hopping tends to flip orbital moment normal to the hopping
direction. The vanishing amplitudes V2±1 ensure that orbital
moment remains normal to the plane, i.e., the evolution is
nonclassical as in the previous example.

To put this dynamics in the framework of the continuity
relation (1), consider a volume surrounding site 1 and its
nearest neighbors, such that at sufficiently short times the
flux through its surface is negligible. The relaxation of orbital
moment is caused by the crystal orbital torque exerted on the
electron as it hops from site 1 to its nearest neighbors and
is thus directly related to the hopping mechanism itself, as
illustrated in Fig. 2(b).

We conclude that hopping in the direction normal to the
orbital moment results in its relaxation over a single lattice
constant. On the other hand, a similar analysis for the orbital
moment initially aligned with the x axis shows that orbital
moment along the hopping direction is conserved, as in the
previous example. Thus, despite substantial differences be-
tween the two considered systems, both exhibit the same
symmetry constraints on the atomic orbital moment dynam-
ics in relation to the hopping direction. In contrast to cubic
complex oxides, for the hexagonal 2D lattice, crystal-torque-
mediated orbital relaxation occurs for any in-plane moment
direction, because hopping to at least some of the six nearest
neighbors is always noncollinear with the orbital moment. By
the same argument, relaxation within distances comparable to
the lattice constant is expected for any orbital moment direc-
tion on the 3D fcc or hcp lattice. This conclusion is consistent
with numerical calculations, which show that orbital moment
accumulation due to the OHE in transition metals is limited
to a few atomic constants from their surfaces or interfaces
[11,17,25].

L180404-3



SERGEI URAZHDIN PHYSICAL REVIEW B 108, L180404 (2023)

In summary, we analyzed two systems whose highly
symmetric crystal fields allow unquenched atomic orbital mo-
ments. Our analysis reveals a dramatic anisotropy of atomic
angular momentum dynamics dependent on its direction rela-
tive to electron transport and crystal axes, placing stringent
symmetry constraints on the possible structure and geome-
try of orbitronic devices. Orbitally selective electron hopping
along principal axes in cubic transition metal oxides such as
SrTiO3 preserves the component of atomic orbital moment
in the hopping direction, making such materials particularly
attractive for orbitronic applications. On the other hand, the
normal component of the atomic orbital moment is suppressed
over essentially a single lattice spacing, making it impossible
for this moment to propagate transversely to its direction or to
locally accumulate in a small volume away from interfaces.
We also demonstrate the possibility of orbital moment os-
cillations induced by the lattice potential, analogous to spin
precession induced by the exchange field of ferromagnets.
Thus, in contrast to spin, orbital moments can be controlled
by the electron wave vector, without the need for magnetic
fields, orbital moment injection, or SOC. One can expect
rapid relaxation of orbital moment injected into fcc or hcp
transition metals, since at least some of the electron hopping
is always noncollinear with the orbital moment. This does
not contradict the existence of the OHE or its importance
for orbital moment generation and the SHE. Nevertheless,
it places stringent constraints on the geometry and crystal
structure of devices where atomic orbital moment is generated
by the OHE in one material and is injected into another. On
the other hand, the interatomic contribution to orbital moment
is not constrained by the identified relaxation mechanism,
warranting more detailed analyses of different contributions
to orbital moment transport.

Recent observations of anomalous current-induced torques
in transition-metal-based magnetic heterostructures were at-
tributed to orbital moment generation via the OHE and its

long-range propagation through transition metals such as Pt
and Ni [15,16]. In the studied geometries, the OHE generated
orbital moments parallel to the thin-film interfaces, which
were assumed to become injected across the interfaces and
diffuse through a significant thickness of ferromagnetic lay-
ers. This is precisely the transverse geometry that according to
our analysis does not allow for atomic orbital moment trans-
port. It is possible that the observed effects resulted entirely
from the interatomic orbital moment contribution. We also
propose two alternative explanations for the anomalous obser-
vations. First, orbitally selective hopping in transition metals
can stabilize an orbital liquid—an orbitally correlated state
of electrons that cannot be described in single-particle terms
and can exist in both magnetic and nonmagnetic materials
[23]. Orbital correlations are ferromagnetic in the direction
normal to the orbital moment and may mediate long-range
orbital torques by analogy to the spin exchange stiffness in fer-
romagnets. This many-particle mechanism is consistent with
the interpretation in terms of orbital moments but cannot be
described by the single-particle picture.

One of the central experimental observations attributed to
the orbital moment injection is the variation of STT effects
at large ferromagnet thicknesses [15,16], which is inconsis-
tent with the usual STT, whose length scale of a few atomic
spacings is determined by the rapid dephasing of precession
of spin transverse to the magnetization [1,22]. In contrast, the
collinear-to-the-magnetization spin propagates over a much
larger longitudinal spin diffusion length. The observed long-
range effects may thus be associated with the longitudinal spin
transfer, whose role in current-induced phenomena remains
poorly understood [26,27]. These possibilities warrant more
detailed studies of the symmetries underlying spin and orbital
transport in solids.

This work was supported by NSF Award No. ECCS-
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