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We develop a microscopic transport theory in a randomly driven fermionic model with and without a linear
potential. The operator dynamics arise from the competition between noisy and static couplings, leading to
diffusion regardless of ballistic transport or Stark localization in the clean limit. The universal diffusive behavior
is attributed to a noise-induced bound state arising in the operator equations of motion at small momentum. By
mapping the noise-averaged operator equation of motion to a one-dimensional non-Hermitian hopping model,
we analytically solve for the diffusion constant, which scales nonmonotonically with noise strength, revealing
regions of enhanced and suppressed diffusion from the interplay between on-site and bond dephasing noise,
and a linear potential. For large on-site dephasing, the diffusion constant vanishes, indicating an emergent
localization. On the other hand, the operator equation becomes the diffusion equation for strong bond dephasing
and is unaffected by additional arbitrarily strong static terms that commute with the local charge, including
density-density interactions. The bound state enters a continuum of scattering states at finite noise and vanishes.
However, the bound state reemerges at an exceptional-like point in the spectrum after the bound-to-scattering
state transition. We then characterize the fate of Stark localization in the presence of noise.
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Introduction. An outstanding challenge of many-body
physics is a complete explanation of how phenomenological
laws governing irreversible macroscopic transport behavior
emerge from reversible microscopic dynamics, a process
encapsulated by the eigenstate thermalization hypothesis
[1–3]. This challenge only magnifies in interacting quantum
many-body systems in both equilibrium and nonequilibrium
processes [4,5]. Along these lines, one-dimensional systems
[6,7] are attractive because quantum fluctuations have a
pronounced effect, leading to a wide array of quantum phe-
nomena ranging from ballistic transport to localization, in
particular, the observation of superdiffusive transport [8–14]
beyond the expected ballistic behavior in integrable systems.
However, a complete characterization of quantum transport in
solvable models remains challenging despite having access to
the eigenenergies and excitations [15].

Randomly driven models, in which couplings are random
variables uncorrelated in time, help understand the spreading
of a local operator under Heisenberg evolution, known as the
operator dynamics. Systems with added stochasticity ought
to lose their microscopic properties, such as conservation
laws, permitting the emergence of universal behavior. These
systems have recently been revitalized with discrete time
evolution involving dual unitary circuits [16,17] and replica
disorder-averaged random unitary circuits [18–20]. On the
other hand, stochastic dynamics of continuous-time models
in random Hamiltonians [21–26], noisy spin chains [27–32],
and (a)symmetric simple exclusion processes [33–36] have
provided deep insights. Random unitary dynamics have also
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attracted experimental interest in cold atoms [37–39], trapped
ions [40–42], and paraxial optics [43].

Despite tremendous progress, a complete characterization
of the ingredients necessary for unorthodox transport to arise
in interacting many-body systems remains open. One ap-
proach is introducing a static term as a perturbation [29,44]
to access more generic information about late-time transport.
A recent study [45] of a spin-1/2 chain with exchange cou-
plings that fluctuate in space-time around a nonzero mean
revealed, through perturbation theory, late-time spin diffusion,
albeit with a superdiffusive enhancement suggesting normal
diffusion [46].

In this Letter, we extend these results to nonperturbative
static terms. We develop a microscopic transport theory in
a fermionic chain without and in the presence of a linear
potential. In both cases, the operator dynamics arise from
the competition between randomly driven and arbitrarily
strong static couplings. We analytically solve for the diffu-
sion constant by exactly mapping the noise-averaged operator
equation of motion to a one-dimensional non-Hermitian hop-
ping model—the diffusion constant scales nonmonotonically
with noise strength, revealing enhanced and suppressed diffu-
sion regions.

We uncover for all noise models that a diffusive mode
governs the late-time hydrodynamics at small k, attributed
to an emergent bound state in the operator equations of mo-
tion. As k increases, the bound state enters a scattering state
continuum and vanishes. From the non-Hermitian structure
of the operator equations, the bound state reemerges at an
exceptional-like point where a pair of complex energies form.
However, for strong bond dephasing noise, the operator equa-
tion becomes the diffusion equation and is unaffected by
additional arbitrarily strong static terms that commute with
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the local charge, including density-density interactions. More-
over, we then characterize the fate of Stark localization in
the presence of noise. Ultimately, noise destabilizes the Stark
ladder, allowing transport to occur albeit nonmonotonically.

Model. We explore the dynamics of one-dimensional
noninteracting fermions with time-dependent noise [47,48],
through the Hamiltonian

Ht =
∑
x,y

[Jx,y + �x,y(t )]c†
xcy, (1)

where c†
x (cx) creates (annihilates) an electron at site index

x. The off-diagonal elements of Jx,y and �x,y(t ) represent
either static or driven hopping, while the diagonal elements
represent a static or driven potential. The amplitudes {�x,y}
are drawn independently for each pair of sites (x, y) from a
Gaussian distribution with zero mean and variance,

E[�x,y(t )�l,m(t ′)] = �xyδx,lδy,mδ(t − t ′), (2)

where E[·] denotes the average over disorder, �x,y sets the
energy scale of the noise, and δ(t − t ′) implies the couplings
are correlated at a single instance in time.

We study analytically and numerically time-dependent
correlation functions to reveal the long-distance late-time
hydrodynamic transport in the presence of noise. In the
Heisenberg picture, the infinitesimal operator evolves stochas-
tically, Ot+dt = eiHt dtOt e−iHt dt . The evolution equation for a
generic noise-averaged operator follows from expanding the
flow of Ot up to second order in dt and averaging the noise
[49–51],

dŌt =
∑
x,y

[iJx,y[c†
xcy, Ōt ] + �x,yLx,y[Ōt ]]dt . (3)

Here, the average dynamics are governed by an effective Lind-
blad description [34,52–54] where Lx,y[∗] = L†

x,y ∗ Lx,y −
1
2 {L†

x,yLx,y, ∗} with Lx,y = c†
xcy + H.c., and {, } standing for

the anticommutator [55]. The jump operators are derived ex-
plicitly in the Supplemental Material (SM) [56]. Competition
between coherent and incoherent dynamics drive the time-
evolved noise-averaged operator in the late-time limit to the
steady state limt→∞ Ōt = ∑

x nx from charge conservation.
Characterizing transport. Universal behavior of the ran-

dom unitary dynamics is ascertained through the infinite-
temperature fermion density-density correlation function,

Cx,y(t ) = 1

2N
tr

[(
nx(t ) − 1

2

)(
ny − 1

2

)]
, (4)

where nx(t ) denotes the time-evolved density operator at site
index x in the Heisenberg picture. The density-density cor-
relation function Eq. (4) decays with an algebraic tail at late
times,

lim
t→∞ lim

N→∞
CN/2,N/2(t ) ∼ t−1/z. (5)

The dynamical exponent z classifies the universal hydrody-
namic transport behavior, for example, z = 1 for ballistic,
1 < z < 2 for superdiffusive, z = 2 for diffusive, z > 2 is
subdiffusive, and z = ∞ for localized.

Operator dynamics. The Heisenberg operator nx(t ) remains
a two-body operator under evolution due to the absence of

FIG. 1. Noise-induced non-Hermitian hopping model. (a) Ran-
domly driven noninteracting fermions in a spatially dependent
potential Vx . Classical noise �x,y(t ) models the random drive by
coupling locally to the hopping or density. (b) Noise-averaged op-
erator equations of motion map onto a set of one-dimensional
non-Hermitian hopping models with a repulsive delta function. The
x axis is the operator length, and k is the center-of-mass momentum.

interactions, permitting the expansion,

nx(t ) =
N∑

m,n=1

Am,n(t )c†
mcn. (6)

With the initial condition, Am,n(0) = δm,xδn,x. We transform
into the coordinates � = n − m [57] and R = n + m repre-
senting the operator length and center of mass. Because the
noise-averaged operator equation is translation invariant in R
in our models, a Fourier transformation maps Eq. (3) to equa-
tions for A�,k describing a one-dimensional hopping model on
a fictitious lattice of operator length � with the center-of-mass
momentum k (see Fig. 1). The correlation function, in terms
of the coefficients, is given by 1

8π

∫
dkA0,k (t )eik(x−y), where

A�,k (t ) is the time-evolved wave function of the effective hop-
ping model and A�,k (0) = δ�,0. At finite noise, the effective
model is non-Hermitian, where the nonpositive real parts of
the eigenvalues drive the system to the steady state in the late-
time limit, corresponding to the eigenvalue with the maximal
real part, namely, the eigenstate decays slowest during time
evolution.

Bond and on-site dephasing noise. We now focus our
model in Eq. (1) on nearest-neighbor hopping with dephasing
noise on both bonds and sites. Specifically, we define the
parameters,

Jx,x+1 = J, �x,x = V, �x,x+1 = �. (7)

Here, J is the nearest-neighbor coherent hopping, and V and
� are the on-site and bond dephasing strengths, which are
respectively real scalar values. The eigenvalue equations of
Eq. (3) take the form

EqA0 = tk[A1 − A−1] − 4� sin2(k)A0,

EqA±1 = ±tk[A±2 − A0] + �A∓1 − [V + 2�]A±1,

EqA� = tk[A�+1 − A�−1] − [V + 2�]A�. (8)

We dropped the index k in A�,k for simplicity, and q la-
bels different levels of the eigenvalue equation. The first two
equations are the boundary conditions near the origin of the
fictitious operator length lattice, and the third describes the
bulk for |�| > 1 with the effective hopping, tk = 2J sin(k).
There are two well-known limits of Eq. (8): no noise,
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FIG. 2. Bond and on-site dephasing noise. (a) Real part of eigen-
value spectrum with both on-site and bond dephasing noise. The
yellow curve is the diffusive mode corresponding to Eq. (13). The red
line indicates the continuum of scattering states, and the blue curve
is a degenerate set of complex energies. (b) Diffusion constant from
Eq. (13). When � = 0 the diffusion constant decreases from a ballis-
tic (V → 0) to an emergent localization regime when V → ∞. As �

reaches the minimum,
√

6J − V then increases monotonically into
a noise-assisted transport regime. Parameters: (a) N = 400, γ = 0,
�/J = 2, V/J = 2.

� = V = 0, and pure dephasing, J = 0. In the former case, the
model is purely coherent, leading to the correlation function,

Cx,y(t ) = 1
4J

2
x−y(2Jt ). (9)

Here, Jx−y(2Jt ) is the Bessel function of the first kind of order
x − y. The asymptotic behavior of the correlation function,
limt→∞ CN/2,N/2(t ) = 1/πt , indicates ballistic transport with
an exponent z = 1.0. In the latter case (J = 0 or equivalently
tk = 0), the operator length � = 0 decouples from all other
operator lengths, mapping to the diffusion equation, with the
solution

Cx,y(t ) = 1
4 e−2�tIx−y(2�t ). (10)

Here, Ix−y(2�t ) is the modified Bessel function of the first
kind of order x − y. The asymptotic scaling of Eq. (10) is
limt→∞ CN/2,N/2(t ) = 1/2

√
tπ corresponding to the exponent

z = 2. Including a static potential that couples to the density
does not affect the diffusive mode because it commutes with
the local charge nx and bond dephasing leaves nx unchanged.
Generically, including any static term that commutes with the
local charge, even the density-density interaction, nxny, will
not affect the diffusive hydrodynamic mode.

Now we solve Eq. (8) for general J , V , and �. It is similar
to the standard Schrödinger equation with a δ potential; both
scattering and bound states exist in the spectrum, whereby the
bulk equation fixes the real part of the scattering states energy
to be −[V + 2�] [see the red line in Fig. 2(a)]. Translation
invariance of Eq. (8) permits the ansatz,

A� =
{

A−1eq(1+�) if � � −1,

−A1eq(1−�)+iπ� if � � 1.
(11)

Inserting the above solution into the bulk equation gives the
energy Eq = 4 sin(k) sinh(q) − V − 2�. The boundary condi-
tions for |�| � 1 constraint the values of q through (see SM
[56])

[Eq + 4� sin2(k)][tkeq + �] = −2t2
k . (12)

The above equation is an exactly solvable cubic equation,
which at small k admits two physical solutions, one that
begins at Eq = 0 [see the yellow curve in Fig. 2(a)] and the

other at Eq = −[3� + V] [the lowest branch in Fig. 2(a)]. The
branch in Fig. 2(a) beginning at Eq = −[� + V] is determined
by solving Eq. (8) assuming A0 = 0. Moreover, the gapless
bound-state energy is given by

Eq = −4

[
� + 2J2

V + 3�

]
k2. (13)

A diffusive mode always exists at small momentum regardless
of whether the sites or the hopping have finite dephasing [see
the yellow curve in Fig. 2(a)]. When both V, � → 0, the
diffusion constant diverges, which is reminiscent of ballistic
transport in the coherent limit. Previously obtained was the re-
sult with either only on-site or bond dephasing noise [36,58].
In general, the diffusion constant decreases monotonically
with increasing on-site dephasing V because an energy barrier
from site to site impedes coherent hopping. In particular,
in the absence of bond dephasing, the diffusion constant is
zero in the large V limit, indicating an emergent localization.
As illustrated in Fig. 2(b), the diffusion constant displays
nonmonotonic behavior as a function of bond dephasing �.
Specifically, as � increases, the diffusion constant reaches
a minimum at � = (

√
6J − V )/3 (assuming V <

√
6J), and

then increases monotonically, entering a regime of noise-
assisted transport [42,59,60].

As momentum increases, two interesting characteristics
become apparent. First, the diffusive mode undergoes a
bound-to-scattering state phase transition upon entering a
scattering state continuum at Eq = −2� − V . Then, from
the non-Hermitian characteristic of Eq. (8), there is an
exceptional-like point [61,62] where the two physical solu-
tions of Eq. (12) collide and coalesce, becoming a complex
conjugate pair of energies visualized by the doubly degenerate
points in Fig. 2(a) indicated with a blue curve.

Linear potential with bond and on-site dephasing. In the
clean limit of the previous examples, the system exhibited
ballistic transport [see Eq. (9)]. However, no matter how weak
or the location, finite noise causes diffusive transport. We now
turn our attention to the opposite limit, where in the clean
limit (� = V = 0), the system is localized, and the diffusion
constant vanishes. We will study Wannier-Stark localization
in the presence of noise [63–66]. Specifically, we consider
the linear potential Jx,x = −γ x where γ is the slope with
the noise coupled to the hopping and density. We now study
the competition between these two noise models through the
equation

EqA�,k = tk[A�+1,k − A�−1,k] + [iγ � − 2� − V]A�,k . (14)

The bulk operator equation is no longer translation invariant
in �, which permitted the plane wave ansatz Eq. (11). Solving
the recursion relation, A� instead takes the form

A�,k =
{

AIν− (−2itk/γ ) if � < −1,

BIν+ (−2itk/γ ) if � > 1,
(15)

where ν± = i(Eq + 2� + V )/γ ± �. For V = � = 0 the oper-
ator equations are anti-Hermitian leading to an equally spaced
tower of purely imaginary eigenvalues, Eq = iγ q for q ∈
{−�max, �max} independent of momentum k. The correspond-
ing unnormalized eigenstates are A�,k = I�−q[−4iJ sin(k)/γ ]
which are Wannier-Stark localized [67–70]. Finite noise
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FIG. 3. Diffusion constant phase diagram. (a) Diffusion constant
from Eq. (16) with the linear potential strength γ = 0.15. Inset:
Illustration of the nonmonotonicity along both axes. (b) Same as
in (a) with γ = 0.50 where the nonmonotonic behavior arises only
along � = 0. Inset: Illustration of nonmonotonicity along the on-site
dephasing axis only. (c) Diffusion constant with V = 0. Provided
γ < 0.5, there is an initial noise-assisted regime to a maximum
value, where then bond dephasing introduces an energy barrier, sup-
pressing diffusion. Once � > γ , diffusion enhances as if the linear
potential was absent [see the black curve for γ = 0 or Fig. 2(b)].
As γ → 0.5, the nonmonotonic behavior is lost, and diffusion im-
mediately enters a noise-assisted transport regime, (d) while when
� = 0, noise compensates for the energy barrier from the linear
potential, enhancing transport to a maximum. As V increases further,
the on-site dephasing dominates the linear potential, introducing an
energy barrier and decreasing the diffusion constant. Parameters: The
dotted black curves in (a) and (b) indicate a maximum or minimum.

renders the operator equations non-Hermitian, causing an
eigenvalue to become purely real, which is the long-
wavelength mode. In the SM [56], we determine the scaling
of the hydrodynamic mode,

Eq = −8

[
�

2
+ J2(V + �)

γ 2 + (V + �)(V + 3�)

]
k2, (16)

which is diffusive for finite noise, similar to Anderson local-
ized models with global noise [29,47,71], but different from
local noise models [72,73]. In the limit γ = 0, we recover
the bound-state energy Eq. (13), while in the limit either V
or � is large, the bound-state energy is finite, specifically 4�,
indicating Stark localization instability to noise.

In Figs. 2(a) and 2(b), we plot the heat map of the diffu-
sion constant with γ < 0.5 and γ = 0.5. In both cases, the
model is Stark localized when V = � = 0. When γ < 0.5,
initially, there is a regime where increasing � or V leads to
noise-assisted transport to a maximum value [see Fig. 2(c)
or 2(d)]. Increasing noise further in either direction intro-
duces an energy barrier that overcomes the linear potential,
suppressing diffusion; however, when � > γ , diffusion en-
hances once more as if the linear potential was nonexistent
[see the black curve for γ = 0 in Fig. 3(c) or Fig. 2(b)]. As

FIG. 4. Noisy linear potential operator dynamics. (a) The auto-
correlation function CN/2,N/2(t ) with on-site dephasing. The oscillat-
ing behavior is a signature of the underlying Stark localization, which
pushes the onset of diffusion to late times. (b) Same as (a) but bond
dephasing noise. Parameters: (a) and (b) N = 400, dt = 0.05, γ = 4,
J = 1.

γ → 0.5, the nonmonotonic behavior decreases and is lost
when γ > 0.5, whereby diffusion immediately enters a noise-
assisted transport regime. On the other hand, the on-site
dephasing dominates the linear potential as V increases [see
Fig. 3(d)], introducing an energy barrier and decreasing the
diffusion constant.

We first study the operator dynamics of Eq. (14) with only
on-site dephasing present, i.e., � = 0. When V 	 γ the diffu-
sion constant is small, and Bloch oscillations push diffusion to
later times [see Fig. 4(a)], rather than when V is the dominant
energy scale. In contrast, diffusion almost immediately occurs
when the noise is on the bonds [see Fig. 4(b)], i.e., V = 0,
a consequence of the diffusion constant always being finite
regardless of the linear potential strength.

Conclusion. Through a combination of analytics and large-
scale numerics, this work developed a transport model where
the operator dynamics arise from the competition between
randomly driven and static couplings. We exactly solve for the
diffusion constant by determining the emergent bound state of
an effective one-dimensional non-Hermitian hopping model.
In contrast to standard hydrodynamic theories [74,75], the dif-
fusion constant scales nonmonotonically with noise strength.
For pure dephasing, the noise-averaged equation satisfies the
diffusion equation, which is robust to arbitrarily strong static
terms that commute with the local charge, including inter-
actions. As momentum increases, the bound state enters a
continuum of scattering states and vanishes. Surprisingly, be-
yond the bound-to-scattering state phase transition, the bound
state reemerges at an exceptional-like point. We further find
Stark localization is unstable to on-site and bond dephasing
noise, but illustrates a rich phase diagram where diffusion
enters regimes of enhancement and suppression. Future work
could be understanding transport when the model has long-
range hopping or correlated noise [76].
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