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Discrete time crystals with absolute stability
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We show that interacting bosons on a ring which are driven periodically by a rotating potential can support
discrete time crystals whose absolute stability can be proven. The absolute stability is demonstrated by an
exact mapping of discrete-time-crystal states to low-lying eigenstates of a time-independent model that reveals
spontaneous breaking of space translation symmetry. The mapping ensures that there are no residual time-
dependent terms that could lead to heating of the system and destruction of discrete time crystals. We also
analyze periodically kicked bosons where the mapping is approximate only and cannot guarantee the absolute
stability of discrete time crystals. Besides illustrating potential sources of instability, the kicked bosons model
demonstrates a rich field for investigating the interplay between different time and space symmetry breaking, as
well as the stability of time crystal behavior in contact with a thermal reservoir.
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Ordinary space crystals correspond to periodic distribu-
tions of particles in space which form despite the fact that the
Hamiltonian is invariant under a translation of all the particles
by an arbitrary vector. This is the phenomenon of spontaneous
breaking of the continuous space translation symmetry into
a discrete space translation symmetry in a time-independent
many-body system. In 2012, research on time crystals was
initiated where spontaneous breaking of time translation sym-
metry is responsible for the formation of a crystalline structure
[1]. Periodically driven many-body closed systems can form
discrete time crystals as a nonequilibrium quantum state in
which the stable system response occurs at integer multi-
ples of the drive period [2–5]. The discrete time translation
symmetry of a time-periodic Hamiltonian is spontaneously
broken and new periodic motion emerges—a novel crystalline
structure appears in time [2].

The stability of discrete time crystals is much less obvious
than for space crystals because the quasienergy spectrum of
the Floquet Hamiltonian has no lower bound [6]. The key
question arises as to whether discrete time crystals are re-
ally stable or they gradually absorb energy from the drive
and eventually heat up to a structureless infinite temperature
state, as expected for a generic periodically driven many-body
system [7–9].

Systems which do not thermalize are typically integrable
systems, but integrability is fragile and usually requires
fine-tuning of system parameters [10–15]. Time-independent
many-body systems in the presence of disorder are believed to
reveal many-body localization (MBL) and emergent integra-
bility [16–19]. Therefore, periodically driven MBL systems
are potential candidates for realization of discrete time crys-
tals [3,4,20]. However, the stability of discrete time crystals
in driven MBL systems [21–24] is far from being obvious
[25–32]—even in the time-independent case, the MBL is
still debated [33,34]. Also, the stability of the first proposed
discrete time crystal in ultracold bosonic atoms bouncing

resonantly on an oscillating atom mirror [2] has not been
proven. While previous studies have demonstrated the stabil-
ity of discrete time crystals for evolution times longer than
those of realistic experiments [35–37], their validity in the
context of an infinite number of bosons and infinite evolution
time remains unproven.

Here, we show that resonantly driven bosons by a rotat-
ing potential on a ring in the Lieb-Liniger (LL) model can
reveal discrete time crystals whose stability can be proven.
Eigenstates of the Floquet Hamiltonian that break the dis-
crete time translation symmetry can be mapped to low-energy
eigenstates of a time-independent Hamiltonian in the rotating
frame. The latter eigenstates are stable and reveal spontaneous
breaking of space translation symmetry in the rotating frame,
which corresponds to spontaneous breaking of the discrete
time translation symmetry of the original model. This model
concretely provides an example of the absence of quantum
thermalization and the existence of stable time crystals in
a closed quantum many-body system without the need for
either disorder or integrability. Furthermore, an experimental
realization of this model should be possible, since ultracold
atoms on a ring have been created and applying a periodic
drive potential should be straightforward [38–42].

Let us consider N bosons with contact interactions on a
ring with circumference 2π which are periodically driven by
a rotating potential

H = HLL +
N∑

i=1

V (2xi − ωt ), (1)

HLL =
N∑

i=1

p2
i

2
+ g0

N∑
i< j

δ(xi − x j ), (2)

where we use R and h̄2/mR2 for the length and energy units,
respectively, where R is the ring radius and m the mass of
the bosons, and g0 stands for the strength of the contact
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interactions [43]. We assume that the potential in (1) has
a double-well structure which remains unchanged if xi →
xi + π . Apart from such a discrete space translation symme-
try, the Hamiltonian possesses also a discrete time translation
symmetry, i.e., t → t + T (where T = 2π/ω). We will see
that for sufficiently strong interactions, these symmetries can
spontaneously be broken and the system starts evolving with
a period of 2T forming a discrete time crystal.

Let us investigate the system in the moving frame of the
rotating potential, where we first perform a time-dependent
unitary transformation Ut = exp(i

∑
j p jωt/2), leading to a

shift in the positions, xi → xi + ωt/2, and next a second time-
independent unitary transformation Up = exp(−i

∑
j x jω/2),

leading to a shift in the momenta, pi → pi + ω/2 [44]. Under
these transformations, we end up with the following exact
time-independent Hamiltonian:

H̃ =
N∑

i=1

[
p2

i

2
+ V (2xi )

]
+ g0

N∑
i< j

δ(xi − x j ), (3)

where a constant term has been omitted. The state vector in
the moving frame is related to that in the laboratory frame via
ψ̃ = UpUtψ [38].

Suppose that the discrete space translation symmetry of the
Hamiltonian (3), i.e., the invariance under the shift xi → xi +
π , is spontaneously broken in the ground state and low-energy
eigenstates, and only the symmetry related to the periodic
boundary conditions on a ring remains. The corresponding
time-independent single-particle probability densities in the
moving frame, P̃(x) = ∫

dx2 . . . dxN |ψ̃ (x, x2, . . . , .xN )|2, ful-
fill the periodic boundary conditions, P̃(x + 2π ) = P̃(x), but
P̃(x + π ) �= P̃(x). When we return to the original laboratory
frame by means of the inverse Up and Ut transformations, the
laboratory probability densities read P(x, t ) = P̃(x − ωt/2)
[38], and thus, due to the spontaneous breaking of the space
translation symmetry of the Hamiltonian (3), they now also
reveal spontaneous breaking of the discrete time translation
symmetry of the Hamiltonian (1), since P(x, t ) is periodic
with the period 2T but not with the period T . Hence, the
system spontaneously starts evolving with a period which is
an integer multiple of the period dictated by the drive and
forms a discrete time crystal.

Spontaneous breaking of the space translation symmetry of
the Hamiltonian (3) occurs in the thermodynamic limit (i.e.,
for N → ∞, g0 → 0 but g0N = const, and the circumference
of the ring is always equal to 2π ). In this limit the ground
state of (3) is a Bose-Einstein condensate (BEC) where all
bosons occupy the same single-particle wave function φ0(x),
which is the solution of the mean-field Gross-Pitaevskii equa-
tion [45]. If V is a symmetric double-well potential, then for
sufficiently strong attractive interactions (i.e., for sufficiently
negative g0N) there are two degenerate ground-state solutions
φ0(x) where one is localized around one potential minimum
and the other around the second minimum, i.e., the self-
trapping phenomenon is observed. This has been rigorously
proven for the double-well potential in the form of Dirac-delta
wells, V ∝ −δ(x) − δ(x + π ) [46], and also demonstrated ex-
perimentally and theoretically in many different double-well
potentials, e.g., see analytical solutions in [47]. The proof of
the self-trapping phenomenon implies proof of the absolute

stability of the corresponding discrete time crystals, as the
mapping is mathematically exact. In the following, instead
of illustrating the formation of the discrete time crystals in
the rotating Dirac-delta wells, we consider an example that
can readily be realized in the laboratory [38], i.e., when
V = λ cos(2x). For sufficiently negative g0N , the ground state
reveals the self-trapping phenomenon, where we illustrate the
spontaneous symmetry breaking in detail.

In the presence of the external potential (λ �= 0) and when
the attractive interaction is very small, and in the thermo-
dynamic limit, the ground state of the system (3) is a BEC
where all bosons occupy the single-particle ground state
φ0(x), which is a balanced superposition of two wave packets
localized in each well of the external potential in (3) [45].
The width of the wave packets can be estimated by employ-
ing the harmonic oscillator approximation for the potential
wells and it reads σ ≈ 1/

√
	, where the frequency of the

harmonic oscillator 	 = 2
√

λ. In the presence of the attrac-
tive interactions (g0 < 0) and increasing their strength, we
enter a self-trapping regime for bosons where the mean-field
lowest-energy solutions are degenerate and each of them can
be approximated by all bosons occupying a single wave packet
localized in one well of the external potential [45,46]. The
space translation symmetry of the Hamiltonian (3) is spon-
taneously broken, and the self-trapped states live forever in
the thermodynamic limit. Increasing further the strength of
the attractive interactions, we enter the bright soliton regime
[45], i.e., the wave packets localized in the potential wells
start shrinking due to strong attractive interactions and resem-
bling the bright soliton solutions. Thus we can observe three
regimes: (i) a weakly interacting regime with no spontaneous
symmetry breaking, (ii) a moderate-interaction regime and
spontaneous breaking of the space translation symmetry of
(3), and (iii) a strong-interaction regime, where the sponta-
neous breaking of the symmetry corresponds to the formation
of bright soliton wave packets of width ξ = 2/|g0(N − 1)| <

σ , the width of the single-particle ground state in the potential
well [45].

In order to diagonalize the Hamiltonian (3), we employ
the eigenbasis of the undriven Lieb-Liniger model, which can
be obtained with the help of the Bethe ansatz [38,48,49].
Diagonalization of the Hamiltonian matrix yields the energy
spectrum of (3), depicted in Fig. 1 as a function of g0(N − 1)
for N = 9 and λ = 1.5. Let us first focus on the strongest
interactions presented in Fig. 1(a), which are in the regime
(iii), where the width ξ of the bright soliton becomes
smaller than the width σ of the single-particle ground state
in the potential well, i.e., when |g0(N − 1)| � 2

√
2λ1/4 =

3.13 for λ = 1.5. Without the external potential (λ = 0),
the lowest-energy solution within the mean-field approach
would represent a bright soliton, φ0(x − q) = cosh−1[(x −
q)/ξ ]/

√
2ξ , which is occupied by all bosons and can be lo-

calized at any point q on the ring [50]. In the presence of the
double-well potential (λ �= 0) and for ξ < σ , there are two
possible ground-state locations of the soliton at the bottoms
of the potential wells, i.e., q = π/2 or 3π/2. Low-energy
excitations of the bright soliton correspond to excitations of
its center of mass, depicted by the green lines in Fig. 1(a)
[38]. When we decrease the strength of the attractive interac-
tions, we lose such a single-body character of the low-energy
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(a)

(c)(b)

FIG. 1. (a) Solid black lines show the excitation spectrum of
(3), i.e., eigenenergies minus the ground-state energy, for N = 9 and
λ = 1.5. Vertical dashed line indicates the critical value of g0(N − 1)
for the quantum phase transition to the discrete-time-crystal regime
obtained for N → ∞ from the results presented in (c). Green lines
are related to the ground-state level and excited levels of the center
of mass of the system [38], which are doubly degenerate because
the bosons can be located in one of the wells of the double-well
potential. Red circles are exact quasienergies of the kicked LL model
(cf. (4) with T = π/31 [44]) that are relevant to time crystal states
and which are perfectly reproduced by the spectrum of (3). (b) An
enlargement of (a) in the vicinity of the critical point. (c) Log-log
plots of the difference, �E , between the lowest eigenenergies of (3)
vs N for different fixed values of g0(N − 1), as indicated in the figure.
The critical value of g0(N − 1) ≈ −0.18 corresponds to an algebraic
decrease of �E with N , and this agrees with the two-mode prediction
for N → ∞ [38]. For weaker interactions �E approaches a constant
value, while for stronger interactions, �E decreases exponentially
with N .

spectrum which takes place for ξ � σ . Then low-energy ex-
citations lead to quantum depletion of a BEC localized in
one of the potential wells and transfer of bosons to the other
well [51–53]. This moderate-interaction regime corresponds
to the self-trapping of a BEC where bosons prefer to localize
in one of the potential wells but do not form a bound state
like in the bright soliton case. The self-trapping properties
are observed in the ground and excited eigenstates up to the
so-called symmetry-breaking edge, i.e., the corresponding ex-
citation energy is proportional to N , and the number of states
that break the symmetry is extensive, which is crucial in order
to call discrete time crystals a new phase [38].

One can ask how weak the attractive interactions should be
in order to recover the space translation symmetry of (3). The
critical interaction strength for the phase transition between
the symmetry-broken and symmetry-preserving phases can be
estimated by means of the two-mode approach, because the
interactions in this regime are weak and not able to modify
the shape of the single-particle wave packets localized in the
potential wells which are used in the two-mode approximation
[2,38,51]. Indeed, the two-mode prediction agrees with the
numerical results shown in Fig. 1(c), where at the critical
value of g0(N − 1) ≈ −0.18, the energy gap between the
lowest-energy eigenstates decreases algebraically with N . For
stronger interactions the gap decreases exponentially, while

FIG. 2. Single-particle probability densities corresponding to su-
perpositions of the two lowest-energy eigenstates of (3) plotted in
the laboratory frame for different moments of time as indicated in
the panels for N = 9. In each panel, collections of the densities for
different interaction strengths g0(N − 1) are presented. Solid white
lines indicate the critical interaction strength g0(N − 1) ≈ −0.18
for the transition to the discrete-time-crystal regime when N → ∞.
Densities above these lines reveal a decay of the 2T -periodic evolu-
tion due to tunneling—for noninteracting bosons, complete tunneling
takes place at t ≈ 302T . Densities below the solid white lines show
discrete-time-crystal evolution for N → ∞. The other parameters
are the same as in Fig. 1, i.e., λ = 1.5 and T = π/31 [44].

for weaker interactions it approaches a constant value [2].
Thus if the interactions are sufficiently strong and N → ∞,
the symmetry-preserving eigenstates are degenerate and their
superpositions form symmetry-broken eigenstates which live
forever.

When we return to the laboratory frame, the symmetry-
broken eigenstates of (3) will evolve with a period of 2T ,
demonstrating discrete time crystals with absolute stability. In
Fig. 2 we present the time evolution of superpositions of the
lowest symmetry-preserving eigenstates of (3) for different
interaction strengths. At g0(N − 1) ≈ −0.18 and for N →
∞, the quantum phase transition to the discrete-time-crystal
regime occurs where the superpositions evolve with the period
2T —for N = 9 the ground-state level becomes practically
degenerate for stronger interactions, i.e., g0(N − 1) ≈ −0.3.
At slightly stronger interactions, excited levels also become
practically doubly degenerate, indicating that with increasing
N there is an extensive number of states that reveal time
crystal behavior. At g0(N − 1) around −3, there is a crossover
to the bright soliton regime where low-energy excitations have
single-body character, because bosons form a bound bright
soliton state [54–56].

It is important to emphasize that the spontaneous emer-
gence of the time crystal and its evolution with the period
2T is not a trivial observation of a time-independent prob-
lem in a rotating frame. If the interactions were too weak
to induce spontaneous symmetry breaking, when returning
from the rotating frame to the laboratory frame we would
observe periodic evolution with the period T because such a
period corresponds to the time translational symmetry of the
Hamiltonian (1). Only when the interactions lead to symmetry
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breaking do we observe the emergence of the time crystal and
its evolution with the period 2T .

Having analyzed the system (1), we will now switch to a
system with a periodically kicked potential, which can also be
experimentally implemented and has recently garnered signif-
icant interest [57,58]. Although the stability of discrete time
crystals in the kicked LL model remains an open question, this
model exhibits a range of different time and space symmetry
breaking. Additionally, it provides intriguing opportunities to
investigate the impact of a reservoir of a rotating thermal cloud
on the stability of phases with broken symmetries. Let us
exchange the time-periodic perturbation in the Hamiltonian
(1) with

H1 = λT
N∑

i=1

cos(2xi )
+∞∑

m=−∞
δ(t − mT ), (4)

which describes periodic kicking of the particles with the
period T = 2π/ω. When we perform the same unitary trans-
formation to the moving frame as previously, i.e., Ut , and a
similar shift of the momenta Up, then using the rotating-wave
approximation or the Magnus expansion we can obtain an
effective Hamiltonian identical to (3), see [38,59].

We have already analyzed the system (3); thus, in the
present case of the time-periodic kicking (4), we have to
demonstrate only that the low-energy eigenstates of (3)
reproduce well the relevant exact eigenstates of the Flo-
quet Hamiltonian, which are also eigenstates of the Floquet
evolution operator. The Floquet evolution operator is the
evolution operator of the system over a single driving pe-
riod, which in the case of the time-periodic kicking (4)
reads

U (T ) = e−iHLLT e−iλT
∑N

i=1 cos(2xi ). (5)

This unitary operator can be diagonalized in the eigenbasis of
the LL Hamiltonian, and knowing its eigenphases φn, we can
calculate the quasienergies of the system, En = −φn/T . The
obtained exact quasienergies, which are relevant to discrete-
time-crystal states, are also shown in Fig. 1, and they are
perfectly reproduced by the low-lying spectrum of (3). We
have chosen the same λ as previously, and consequently,
we expect exactly the same spectrum as in the case of the
Hamiltonian (1); indeed, the obtained quasienergies are indis-
tinguishable in the plot.

Both the system (1) and the kicked LL model (4) can be
described using the Floquet formalism, where all physically
relevant quasienergies lie in a single Floquet zone. For small
values of N , Floquet states can be obtained numerically. How-
ever, very-high-order terms, which are neglected in numerical
calculations, may introduce tiny couplings between Floquet
states with similar quasienergies that can lead to the decay of
discrete time crystals as t → ∞, especially when we first take
the N → ∞ limit. In the case of the system (1), we know that
quasienergies corresponding to the discrete time crystal can be
unfolded and they correspond to the low-energy spectrum of
the time-independent Hamiltonian (3). Furthermore, we have
a guarantee that they are not coupled to any other Floquet
states in any order. In the case of the kicked LL model, such
absolute stability of the discrete time crystals cannot be guar-
anteed. The discrete time crystal in (1) has been designed so
that the perturbation contains only one harmonic responsible

for the formation of the crystal. In the case of the kicked LL
model, there are many other harmonics whose influence can
be reduced but cannot be fully eliminated.

So far we have analyzed the Floquet states that break both
discrete space and time translational symmetry in the periodi-
cally kicked LL model by switching to the frame moving with
the frequency ω/2 by means of the unitary transformation
Ut . Let us show that the periodically kicked LL model (4)
can also support states that spontaneously break the discrete
space translation symmetry without breaking the discrete time
translation symmetry, which does not exist in the correspond-
ing LL model driven by the rotating potential. To investigate
these states, we can also switch to the moving frame but
with the frequency ω, and we still obtain the same effective
Hamiltonian (3) [38]. Then, however, eigenstates of (3) that
reveal spontaneous breaking of the discrete space translation
symmetry do not break the discrete time translation symmetry.
Indeed, when we return to the laboratory frame, all eigenstates
of (3) evolve with the driving period T .

The periodically kicked LL model is also attractive in
studying the time crystal behavior in contact with a ther-
mal bath. In the case of a rotating potential (1), the discrete
time crystals should be accessible as a thermal equilibrium
state in contact with a reservoir of rotating thermal atoms.
In the case of (4), the situation becomes more intriguing, as
in the rotating frame, the time-independent Hamiltonian (3)
is only an approximation. Cooling of atoms in the presence
of a rotating thermal cloud has been realized in experiments
demonstrating vortices in a BEC [45]. So new opportunities
for theoretical and experimental investigations of the stability
of discrete time crystals in contact with a thermal reservoir are
opening up.

To summarize, we have analyzed interacting bosons on
a ring with various periodic perturbations, which turns out
to be a suitable system for realization of discrete time
crystals. Most importantly, for the case of a rotating poten-
tial [see (1)], this system can reveal discrete time crystals
whose stability can be proven by an exact mapping of the
discrete-time-crystal states to low-lying eigenstates of a time-
independent Hamiltonian. The periodically driven bosons on
a ring can also reveal big discrete time crystals and con-
densed matter in time [60–65]. For example, if we choose
cos(sxi − ωt ) as the potential in (1), then spontaneously
emerging discrete time crystals can evolve with a period s
times longer than the driving period, where s � 1.
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