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The temperature dependence of the zero-field splitting (ZFS) between the |ms = 0〉 and |ms = ±1〉 levels
of the nitrogen-vacancy (NV) center’s electronic ground-state spin triplet can be used as a robust nanoscale
thermometer in a broad range of environments. However, despite numerous measurements of this dependence
in different temperature ranges, to our knowledge no analytical expression has been put forward that captures
the scaling of the ZFS of the NV center across all relevant temperatures. Here we present a simple, analytical,
and physically motivated expression for the temperature dependence of the NV center’s ZFS that matches all
experimental observations, in which the ZFS shifts in proportion to the occupation numbers of two representative
phonon modes. In contrast to prior models our expression does not diverge outside the regions of fitting. We
show that our model quantitatively matches experimental measurements of the ZFS from 15 to 500 K in single
NV centers in ultrapure bulk diamond, and we compare our model and measurements to prior models and
experimental data.
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Introduction. The zero-field splitting (ZFS) quantifies the
energy difference between a spin system’s ms levels in the
absence of externally applied fields. This value plays a critical
role in determining the properties of spin defects in crystals,
which have emerged as leading platforms for quantum sensing
[1–4] and quantum networking [5,6]. Besides characterizing a
spin defect’s level structure, the ZFS can also be temperature
dependent and thereby provides a mechanism for nanoscale
thermometry. This effect has already been exploited with the
nitrogen-vacancy (NV) center in diamond for in vivo ther-
mometry [7–9] and thermal conductivity measurements [10].
In the context of the NV center, the ZFS refers to the splitting
between the ms = 0 and ms = ±1 levels of the negatively
charged NV center’s electronic ground-state spin triplet.

The centrality of the ZFS to NV physics and its applica-
tions to thermometry has motivated a number of prior works
examining its temperature dependence [11–18]. While vari-
ous analytical expressions have been fitted to the measured
NV ZFS temperature dependence over specific temperature
ranges, to our knowledge all prior models make use of power
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series expansions or other approximate polynomial expres-
sions. The utility of these models is somewhat limited by
the facts that they diverge outside the range of experimental
data used to fit the models and tend to provide little physical
insight [12–16]. Recent ab initio efforts have demonstrated
near quantitative agreement between numerical calculations
and experiment, but lack useful analytical expressions [18].
These factors motivate the development of a model of the
NV ZFS temperature dependence that is both analytical and
physically motivated, such that the model is predictive and
practically useful over a wide temperature range, and also
provides insight into the spin-lattice interactions that give rise
to the temperature dependence.

In this work, we measure the ZFS as a function of
temperature in multiple, as-grown, single NV centers in
high-purity bulk diamond over a wide range of experimentally
relevant temperatures, from 15 to 500 K. We present a novel,
simple analytical model of the ZFS temperature dependence
in which the ZFS shifts in proportion to the occupation
numbers of two representative phonon modes. We provide
physical justification for the model by demonstrating that it
describes the effects of both first- and second-order atomic
displacements. Finally, we discuss the advantages of the
proposed model over other currently available models and
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FIG. 1. Temperature-dependent energy levels of the nitrogen-
vacancy (NV) center. (a) Electronic ground-state level structure of
the negatively charged NV center. In the absence of external fields,
the |ms = ±1〉 spin sublevels are degenerate with energy D(T ) above
|ms = 0〉, where D(T ) is the temperature-dependent zero-field split-
ting (ZFS). The |±1〉 levels are commonly split by a magnetic field
Bz applied along the NV axis. (b) Illustration of the origin of the
ZFS temperature dependence. In this 2D diagram, the NV center is
projected onto the plane perpendicular to the NV axis, showing only
the nitrogen (red) and carbon atoms (gray) nearest the vacancy. The
cartoon is not to scale, with the effect of temperature highly exag-
gerated and only a single vibrational mode depicted for clarity. The
ground-state electronic spin density is localized to dangling bonds
(blue) between the carbon atoms and the vacancy [19]. Thermal
expansion and increases in vibrational amplitudes both reduce the
spin-spin interaction that leads to the ZFS [19]. We find that each
of these effects can be described by a weighted sum of phonon oc-
cupation numbers. (c) Temperature dependence of optically detected
magnetic resonance. Data points show fluorescence from a single NV
center under zero applied field after optical spin polarization and a
microwave pulse at the frequency indicated by the x axis. Solid lines
are fits to double-Voigt profiles [20]. Each data set is offset such that
the minimum of the fit aligns with the appropriate temperature on
the right-hand y axis. The blue line shows the ZFS as a function of
temperature according to a fit of the proposed model, Eq. (3), to the
full set of experimental data.

we highlight the applicability of the proposed model to other
spin-lattice effects in spin defects.

Experimental methods. The NV center electronic ground-
state level structure is depicted in Fig. 1(a). The ZFS
temperature dependence arises due to thermal changes in
the positions of the atoms in the crystal lattice [Fig. 1(b)].
An external magnetic field Bz is commonly applied along
the NV axis to lift the |±1〉 degeneracy by 2γ Bz, where
γ = 2.8 MHz/G is the NV gyromagnetic ratio. However,
measurements in this work are conducted under no externally
applied field. Spectra are recorded using a pulsed optically
detected magnetic resonance (ODMR) sequence [Fig. 1(c)],
and the ZFS is recorded as the center frequency of the fit
to each spectrum [20]. The experimental apparatus is similar
to that described in Ref. [21]. The apparatus features dual
low- and high-temperature operation modes where the sample
temperature is monitored by a resistance temperature detector

FIG. 2. Zero-field splitting as a function of temperature. Top:
Data points show the average zero-field ODMR center frequency of
several individual NV centers at each temperature. Square (circle)
data points indicate measurements conducted in low- (high-) tem-
perature operation mode using the same 5 NV centers belonging to
set A (B). The two sets are mutually exclusive. Standard error bars
are smaller than the data points. Solid line shows fit of the proposed
model [Eq. (3); reproduced in top right corner] to the experimental
data, with fit parameters presented in Table I. Bottom: Residuals.

(RTD) mounted immediately adjacent to the diamond sample.
Experiments were conducted using two sets of NV centers
within the same high-purity bulk diamond sample ([NV]
∼10−3 ppb). Low-temperature measurements were conducted
with 5 single NV centers comprising set A at temperatures
between 15 and 295 K. Unfortunately, after switching from
low-temperature to high-temperature operation we were un-
able to relocate the region with the NV centers in set A.
High-temperature measurements were therefore conducted
with 5 single NV centers in a different region comprising set
B at temperatures between 296 and 500 K. NVs belonging to
the same set are within approximately 100 microns of each
other, and are over 10 microns below the diamond surface.
The two sets are mutually exclusive and from different regions
of the diamond. Further experimental details are available in
the Supplemental Material [20].

Results. Figure 2 shows the average ZFS recorded for the
NV centers belonging to each set (set A, squares; set B,
circles) as a function of temperature. For reasons that we detail
below, a model of the form

D(T ) = D0 +
M∑

i=1

cini (1)

provides an excellent fit to the experimental data. Here,
D(T ) is the ZFS at temperature T and D0 is the ZFS
at 0 K. The model includes M discrete phonon modes
indexed by i. Intuitively, each ci describes how the corre-
sponding phonon mode shifts the ZFS by modulating the
mean positions and vibrational amplitudes of the atoms
in the lattice. The mean occupation number of the ith
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TABLE I. Fit parameters for the ZFS temperature dependence according to the model described by Eq. (3). Values are reported to at least
4 significant figures. Uncertainties are 1σ .

D0 (MHz) c1 (MHz) �1 (meV) c2 (MHz) �2 (meV)

2877.38 ± 0.03 −54.91 ± 7.35 58.73 ± 2.32 −249.6 ± 19.4 145.5 ± 8.4

mode is

ni = 1

e�i/kBT − 1
, (2)

where �i is the mode energy and kB is the Boltzmann con-
stant. The sum over i in Eq. (1) may be restricted to a small
number of representative phonon modes with coefficients that
absorb the effects of other modes with similar energies. We
find that including just M = 2 representative phonon modes
is sufficient to fully capture the behavior of the ZFS over the
entire temperature range measured in this and prior works
[20], resulting in the simple analytical expression

D(T ) = D0 + c1n1 + c2n2. (3)

We fit Eq. (3) to the data with the quantities D0, c1,2, and
�1,2 as free parameters. The values extracted from the fit are
presented in Table I. The energies of the two phonon modes
as determined by the fit are �1 = 58.73 ± 2.32 meV and
�2 = 145.5 ± 8.4 meV, roughly consistent with the highest
energies of specific acoustic and optical phonon branches
in diamond, at approximately 70 and 165 meV, respectively
[22]. The representative mode energies also coincide with
those found to dominate spin-phonon relaxation [21] and the
NV optical phonon sideband [23–26]. Further comparison of
the phonon energies identified here and in other contexts is
available in Sec. VI of the Supplemental Material [20].

The fit residuals are consistent with statistical uncertain-
ties over most of the measured temperature range (Fig. 2,
bottom). Larger residuals arise near room temperature where
the measured ZFS values from sets A and B were found to
be offset from each other by approximately 300 kHz. The
low-temperature measurements made in this work are simi-
larly approximately 300 kHz below those reported by Chen
et al. and Li et al. in Refs. [12,15]. This offset with respect
to prior data sets is constant across the full temperature range
probed for set A NV centers in this work (15 to 295 K). The
weak temperature dependence of the ZFS at low temperatures
suggests that the offset may be the result of a small but real
physical effect, and is likely not the result of a systematic
error in measurement. A survey of room-temperature ODMR
spectra in different regions of the diamond sample used in this
work evidences small environmental variations over length
scales of hundreds of microns. We tentatively suggest that
the set A NV centers are in a region of relatively high strain,
leading to the 300 kHz offset in the average ZFS. The results
of the survey and further analysis are available in Sec. III of
the Supplemental Material [20].

Discussion. We now turn to a discussion of the physical ori-
gins of Eq. (1). For a generic solid-state spin system, changes
in temperature affect the positions of atoms in the solid which
in turn modulate the system’s electronic wave function, lead-
ing the ZFS to acquire a temperature dependence. Recent
ab initio work has achieved near-quantitative agreement with

experimental measurements of the NV ZFS temperature de-
pendence by accounting for the second-order effects of atomic
displacements in addition to the effect of thermal expansion in
a 64-atom supercell [18]. Here we adopt a similar premise as a
starting point, writing the ZFS as a series expansion about the
atomic displacements relative to their equilibrium positions at
0 K and evaluating the time average of the series at a given
temperature. With D� indicating the contribution to the ZFS
at the �th order in the atomic displacements,

D(T ) = D0 + D1 + D2 + · · · . (4)

As in Eq. (1), D0 is the ZFS at zero temperature. The linear
term is given by

D1 =
∑

jμ

∂D

∂u(0)
jμ

〈
u(0)

jμ

〉
, (5)

where 〈·〉 indicates the time average at temperature T and u(0)
jμ

is the displacement of the jth atom in the lattice relative to its
equilibrium position at 0 K along the μ axis. The quadratic
term is given by

D2 = 1

2

∑
j j′μμ′

∂2D

∂u(0)
jμ∂u(0)

j′μ′

〈
u(0)

jμu(0)
j′μ′

〉
. (6)

Higher-order terms are anticipated to be negligible on gen-
eral grounds. As we explain below, both the first-order and
second-order contributions can be written as a weighted sum
over a small number of mean phonon occupation numbers,
ultimately yielding the proposed model given by Eq. (1).

Beginning with the first-order contributions, the time-
averaged atomic displacements may be related to the deviation
of the lattice constant from its zero-temperature limit using a
set of geometric proportionality constants. That is,〈

u(0)
jμ

〉 = β jμ[a(T ) − a0], (7)

where a(T ) and a0 denote the lattice constant at temperature
T and 0 K, respectively, and the β jμ are the geometric
proportionality constants. The lattice constant changes with
temperature according to

a(T ) = a0 exp

[∫ T

0
α(T ) dT

]
, (8)

where α(T ) is the coefficient of thermal expansion. To obtain
an expression for this quantity, we adopt the quasiharmonic
approximation, in which the crystal’s phonon modes are
assumed to have volume-dependent frequencies but are oth-
erwise treated harmonically [18,28]. The quasiharmonic ap-
proximation is widely used to account for thermal expansion
in crystals, where the coefficient of thermal expansion is [28]

α(T ) = − h̄

3B

∑
kν

∂ωkν

∂V

∂nkν

∂T
. (9)
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Here, the kth phonon mode with polarization ν has energy
h̄ωkν and mean occupation number nkν . The bulk modulus
and volume are denoted B and V , respectively. The frequency
derivatives ∂ωkν/∂V are closely related to the Grüneisen
parameters that appear in the quasiharmonic model of thermal
expansion [29,30]. Integrating Eq. (8) and neglecting the
weak temperature dependence of the bulk modulus, the
argument of the exponential becomes a weighted sum over
mean occupation numbers. After expanding the exponential
and dropping higher-order terms we obtain

a(T ) ≈ a0

(
1 +

∑
kν

ρkνnkν

)
, (10)

where ρkν = −(h̄/3B)(∂ωkν/∂V ). As with Eq. (1), we find
a sum over just two representative phonon modes displays
excellent agreement with measurements of the lattice constant
as a function of temperature. Reduced to two modes, Eq. (10)
becomes

a(T ) ≈ a0 + b1n1 + b2n2. (11)

Here, as in Eq. (3), the subscripts 1 and 2 index two
representative modes. To demonstrate the accuracy of this
model, we fit Eq. (11) to a set of lattice constant data generated
from the results of Ref. [27], which matches experimental
measurements of the diamond lattice constant [20]. We fix
the representative mode energies to those extracted from
the ZFS temperature dependence fit, �1 = 58.73 meV and
�2 = 145.5 meV. We treat the zero-temperature lattice
constant a0 and the coefficients b1,2 as fit parameters.
As shown in Fig. 3(a), Eq. (11) provides an excellent
description of the diamond lattice constant with only three
free parameters. Over the fit range of 0 to 1000 K, the
maximal difference between the two curves is just 9 µÅ,
or 0.11% of the change in the lattice constant between 0
and 1000 K. The first-order contribution to the NV ZFS
temperature dependence is therefore well approximated as

D1 ≈ c′
1n1 + c′

2n2, (12)

where the c′
1,2 are here simply interpreted as unknown

weights.
We next show that the second-order contribution to the ZFS

can similarly be expressed as a weighted sum over occupation
numbers in the quasiharmonic model. First, we define new
displacement coordinates that are relative to the equilibrium
atomic positions at a given temperature. The new coordinates
are

u jμ = u(0)
jμ − 〈

u(0)
jμ

〉
. (13)

Writing Eq. (6) in terms of the u jμ yields

D2 = 1

2

∑
j j′μμ′

∂2D

∂u jμ∂u j′μ′

(〈u jμu j′μ′ 〉 + 〈
u(0)

jμ

〉〈
u(0)

j′μ′
〉)
, (14)

where we have used 〈u jμ〉 = 0. We drop the latter product
of thermal expansion terms, 〈u(0)

jμ〉〈u(0)
j′μ′ 〉, which are expected

to provide negligible contributions to the ZFS for a system
with a highly localized wave function in a weakly anharmonic
lattice. Transforming to the basis of normal coordinates qkν

FIG. 3. Physical motivation for proposed model of the zero-field
splitting temperature dependence. (a) Diamond lattice constant as a
function of temperature. Dashed black line indicates the diamond lat-
tice constant calculated from the results of Ref. [27]. Fitting Eq. (11)
(reproduced in upper left corner) to this curve yields an excellent
approximation of the lattice constant with just three free parameters
(cyan line). The form of Eq. (11) matches that of Eq. (3). Bottom:
Residuals. (b) Second-order spin-phonon spectral density (orange)
and phonon density of states (DOS; green) calculated from the results
of Ref. [21]. The spectral density describes the shift of the ZFS
induced by the second-order effects of phonons at a given energy.
The spectral density closely matches the DOS, suggesting that both
first- and second-order contributions to ZFS shifts can be modeled
by a weighted sum of occupation numbers of phonon modes with
representative energies. The energies extracted from the fit of Eq. (3)
to the experimental ZFS data (gray lines and ±1σ intervals) roughly
match the locations of prominent features in the spectral density and
DOS. Note that the spectral density is negative everywhere. The plot
shows its magnitude.

for a harmonic lattice [28],

D2 = 1

2

∑
kk′νν ′

∂2D

∂qkν∂qk′ν ′
〈qkνqk′ν ′ 〉. (15)

Because phonon modes in the quasiharmonic approximation
are noninteracting at a given temperature, the time average of
the cross terms is zero. Each of the remaining terms 〈q2

kν〉 is
proportional to the mode occupation number nkν plus a zero-
point contribution that may be absorbed by the constant term
D0 [18]. Thus we can write

D2 =
∑
kν

λkνnkν, (16)

where the λkν are second-order spin-phonon coupling coeffi-
cients proportional to the second derivatives in Eq. (15). In
the continuum limit, the coupling coefficients are replaced by
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FIG. 4. Comparison to prior models of the ZFS temperature de-
pendence. Prior models are reproduced from Refs. [12–16] according
to the fit parameters published in those works. The line for each
model turns from solid to dashed outside the temperature range
covered by the experimental data on which the model was fit. See
Sec. IV of the Supplemental Material for details regarding prior
results [20]. Inset: Low-temperature behavior of models.

the second-order spin-phonon spectral density S2(h̄ω) defined
such that

D2 =
∫

S2(h̄ω) n(h̄ω) d (h̄ω), (17)

where n(h̄ω) is the mean occupation number at energy h̄ω.
The spectral density and phonon density of states according to
the NV center supercell calculations described in Ref. [21] are
reproduced in Fig. 3(b) as the orange and green lines, respec-
tively. In Ref. [21], it was shown that NV center spin-phonon
relaxation can be reproduced by replacing this spectral density
with two representative phonon modes, and we take the same
approach here. The similarity between the spectral density and
the density of states indicates that this may be done most
effectively by retaining the modes associated with a large
density of states. Because such modes are also good represen-
tative modes for the diamond lattice constant, we expect that
the second-order contributions to the ZFS can be expressed
by considering the same two representative modes used to
describe the first-order contribution as given in Eq. (12).
Therefore we have

D2 ≈ c′′
1n1 + c′′

2n2, (18)

where the coefficients c′′
1,2 are again unknown weights. Finally

combining the contributions up to second order yields

D(T ) ≈ D0 + (c′
1 + c′′

1 )n1 + (c′
2 + c′′

2 )n2, (19)

and substituting c1,2 = c′
1,2 + c′′

1,2, we arrive at Eq. (3).
In Fig. 4 we compare our model of the ZFS temperature

dependence to models from prior literature that were fitted
to experimental data spanning a temperature range of at
least 100 K. For clarity, the experimental data from the prior
works is not shown in the main text plot, but is available
in the Supplemental Material [20]. The NV center has been

coherently manipulated at temperatures up to approximately
1000 K [31], so we treat 0–1000 K as the full experimentally
relevant temperature range. Each model provides a good
description of the data on which it was fitted (solid regions of
lines in Fig. 4), but diverges at either high or low temperatures
beyond the range covered by the data, which is characteristic
of power series [12,13] and related expressions [14–16]. In
contrast, the model presented in this work provides reasonable
predictions of the ZFS even well beyond the experimental
temperature range of 15–500 K. We provide more detailed
direct comparisons between the different models in Sec. IV
of the Supplemental Material, including direct comparisons
between the various models when fitted to our new data
set [20].

The available experimental data sets somewhat disagree
with each other in several limits. As discussed above, the
low-temperature ZFS values measured for this work are ap-
proximately 300 kHz lower than those presented in Refs. [12]
and [15]. The results of Refs. [13] and [17] and our own
set B measurements are in good agreement under ambient
conditions, but exhibit slightly different temperature scalings
such that the three data sets disagree with each other by several
hundred kHz at 400 K [20]. This is most likely due to sys-
tematic temperature differentials between the diamond and the
temperature sensor in two or potentially all three experiments.
A detailed description of how temperature was determined
in this work is provided in Sec. I of the Supplemental Ma-
terial [20]. Despite these differences, we emphasize that the
ZFS temperature dependence model presented in this work
[Eq. (3)] can fully describe all of the available experimental
data sets even if the energies of the representative modes
are held fixed to the values reported in Table I, 58.73 and
145.5 meV [20].

While our measurements were performed on single NV
centers in bulk diamond, we expect that the functional form
of the model of the ZFS temperature dependence presented
here should be applicable to high-density ensembles of NV
centers, near-surface NV centers, and NV centers in nanodia-
monds, as the characteristic wavelengths of the representative
phonon modes are both below 1 nm. Besides providing a
more practical expression for the ZFS temperature depen-
dence, our model may also provide important insights into
other properties that derive from interactions between the NV
defect and the crystal lattice. Noting that the optical zero-
phonon line wavelength [12,14], hyperfine coupling strengths
[17,32], and excited state zero-field splitting [33,34] depend
on temperature in a way that is qualitatively similar to the
ZFS temperature dependence, we suggest that expressions
similar to Eq. (3) could be derived for these properties. Similar
models could also be developed for other defect systems, such
as divacancy centers in silicon carbide [35] or vacancies in 2D
materials [36].

Conclusion. In this work we have presented measurements
of the ground-state zero-field splitting (ZFS) in single NV
centers in high-purity bulk diamond sample from 15 to 500 K.
Our analytical model for the NV ZFS, which describes the
shift as proportional to the occupation numbers of two rep-
resentative phonon modes, is in excellent agreement with the
experimental data. We explained the physical origins of our
model, and suggested that it could replace the power series
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commonly employed in other works. Finally, we suggested
that this model may be readily adapted to several other im-
portant properties of the NV center and to other solid-state
defects.
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