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Quasiparticles with Weyl dispersion can display an abundance of novel topological, thermodynamic, and
transport phenomena, which is why novel Weyl materials and platforms for Weyl physics are being intensively
looked for in electronic, magnetic, photonic, and acoustic systems. We demonstrate that conducting materials in
magnetic fields generically host Weyl excitations due to the hybridization of phonons with helicons, collective
neutral modes of electrons interacting with electromagnetic waves propagating in the material. Such Weyl
excitations are, in general, created by the interactions of helicons with longitudinal acoustic phonons. An
additional type of Weyl excitation in polar crystals comes from the interaction between helicons and longitudinal
optical phonons. Such excitations can be detected in x-ray and Raman scattering experiments. The existence
of the Weyl excitations involving optical phonons in the bulk of the materials also leads to the formation of
topologically protected surface arc states that can be detected via surface plasmon resonance.

DOI: 10.1103/PhysRevB.108.L161411

Introduction. The tremendous recent interest in Weyl mate-
rials [1–10] is owed, in large part, to a plethora of fundamental
and novel topological phenomena they can display: the chiral
anomaly [11,12], topological surface states [1,2], unconven-
tional regimes of transport [13–17], etc. Numerous predictions
and observations of Weyl-related topological phenomena have
motivated researchers to look for Weyl excitations not only
in electronic but also in magnetic, photonic, and acoustic
systems.

Excitations with Weyl dispersion may generically be
engineered via the hybridization of two other types of exci-
tations with similar energies if the interactions between them
vanishes along a certain direction of momentum. Such inter-
actions lead to a degeneracy between the two bands of the
hybridized excitations at the respective wave vectors and a
gap for other wave vectors. For example, the hybridization be-
tween different types of plasma waves [18,19] has been shown
to lead to Weyl excitations in photonic metamaterials [20–22]
and magnetized electron gases [23–26]. This mechanism of
the formation of Weyl excitations is similar to the emergence
of 2D topological excitations due to the hybridization between
phonons and spin waves [27–34], spin and plasma waves [35],
as well as excitons and cavity photons [36,37].

In this Letter, we demonstrate that conducting materials
in magnetic fields generically host Weyl excitation due to
the hybridization of phonons with helicons [18,19], collective
neutral modes of electrons interacting with electromagnetic
waves propagating in the material. Such Weyl excitations
emerge generically due to the hybridization of helicons with
longitudinal acoustic phonons. In polar crystals, Weyl exci-
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tations are also created by the interactions of helicons with
longitudinal optical phonons.

The predicted Weyl excitations can be detected in, e.g.,
Raman spectroscopy experiments. Weyl excitations involving
optical phonons in the bulk of the material also lead to the
formation of topologically protected arc states on its surfaces,
which can be observed via the surface plasmon resonance.

Heuristic argument for the emergence of Weyl nodes. A
conductor in a magnetic field hosts excitations called heli-
cons [18] that exhibit the anisotropic dispersion ∝ |q|(B · q)
at small wave vectors q. If helicon-phonon interactions are
neglected, the helicon dispersion intersects along a line with
the phonon dispersion. Such an intersection always exists for
acoustic phonons [see Fig. 1(c)], which are linearly disper-
sive for small q. It also exists for optical phonons, which
are gapped, if the magnetic field (cyclotron frequency ωc) is
sufficiently large [see Fig. 1(d)].

Unless wave vector q is aligned with the direction of the
magnetic field B, helicons involve both transverse and lon-
gitudinal oscillations of electric current and electromagnetic
fields. As a result, they interact with both longitudinal and
transverse phonon modes and the mixed helicon-phonon ex-
citations are separated by a gap [as shown in Figs. 1(b) and
1(f)]. In contrast, helicons propagating along the magnetic
field B are purely transverse circularly polarized waves (these
corkscrew-shaped oscillations motivated the term “helicon”)
and their coupling with the longitudinal phonon mode van-
ishes [cf. Figs. 1(a) and 1(e)]. As a result, dispersion relations
for the mixed helicon-phonon excitations intersect at two se-
lected points in reciprocal space and are of the Weyl nature in
their vicinity.

The intersections of the dispersion relations for the mixed
modes involving acoustic phonons and helicons have been
known previously [18]. In this Letter, we demonstrate that
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FIG. 1. The dispersion of hybrid modes emerging due to the hybridization of plasma waves with acoustic [(a)–(c)] and optical [(d)–(f)]
phonons in a conductor in a magnetic field. The 3D plots (c) and (d) show the dispersion for as a function of the wave vectors qz and q⊥ along
and perpendicular to the magnetic field. The side panels are 2D plots of the dispersion as a function of qz for different values of q⊥. As a result
of the hybridization of helicon and longitudinal-phonon branches, Weyl points emerge at q⊥ = 0, as shown in panels (a) and (c) for the case
of acoustic phonons and in panels (d) and (e) for the case of optical phonons. The numbers on the axes are given for a potassium crystal in the
magnetic field B = 20 T [(a)–(c)] and for heavily doped [39] CdSe with the electron density n = 4×1019 cm−3 in the magnetic field B = 45 T
[(d)–(f)].

they are of the Weyl nature and that such excitations also
emerge for optical phonons. Furthermore, we show that Weyl
excitations created by optical-phonon-Weyl hybridization can
be readily observed in experiments and favor the emergence
of arc surface modes.

Helicon waves. In the absence of phonons, the propagation
of the Helicon waves is described by the linearized hydrody-
namics equation

∂t j(r, t ) = ne2

m
E(r, t ) − e

mc
[j(r, t ) × B], (1a)

complemented by the Maxwell equations

curl H(r, t ) = 4π j(r, t )

c
+ 1

c
∂t D(r, t ), (1b)

curl E(r, t ) = −1

c
∂t H(r, t ), (1c)

where e is the absolute value of the electron charge, n is
the electron density, m is the effective mass, and c is the
speed of light in vacuum. The magnetic field includes both the
large external magnetic field B = Bez and a small oscillating
component H(r, t ) created by propagating current density
oscillations. For simplicity, we assume that the medium is
nonmagnetic, i.e., has the magnetic permeability μ = 1.

The helicon dispersion can be obtained from Eqs. (1a)
and (1b) as a solution of the eigenvalue problem
ωψpl = Ĥpl(q)ψpl [23–26] with the nine-component
vector ψpl = {√ε∞E(q), H(q), 4π j(q)/ωp

√
ε∞}T , where

ωp =
√

4πne2/mε∞ is the plasma frequency and ε∞ is
the contribution of the electronic shells of the atoms to
the dielectric constants [at GHz and higher frequencies,
D(r, t ) = ε∞E(r, t )]. The matrix Ĥpl is given by

Ĥpl(q) =
⎛
⎝ 0 −c̄K̂q −iωp1̂

c̄K̂q 0 0
iωp1̂ 0 −iωcL̂

⎞
⎠, (2a)

where we have introduced the speed c̄ = c/
√

ε∞ of elec-
tromagnetic waves in the material and the antisymmetric
matrices K̂q and L̂ are given by

K̂q =
⎛
⎝ 0 −qz qy

qz 0 −qx

−qy qx 0

⎞
⎠, L̂ =

⎛
⎝ 0 1 0

−1 0 0
0 0 0

⎞
⎠, (2b)

where ωc = eB/mc is the cyclotron frequency.
The dispersion of the magnetoplasma modes is given by

the positive (ω > 0) eigenvalues of the “Hamiltonian” (2a).
They include three gapped dispersion branches (longitudinal
Langmuir waves and transverse circularly polarized L and R
waves) with the gap of the order of the plasma frequency
ωp and a gapless branch, helicons (sometimes referred to as
whistlers [38], cf. Fig. 2), on which we focus in the rest of the
paper.

For small ratios ωc/ωp of the cyclotron to plasma frequen-
cies, corresponding to realistic materials, the high-frequency
modes can be excluded (see Supplemental Material, SM [39]

FIG. 2. The dispersion of plasma waves in an electron gas in a
magnetic field for ωc/ωp = 0.3. They include three high-frequency
modes (Langmuir, R, and L waves with frequencies around the
plasma frequency ωp) and the low-frequency helicon mode, whose
dispersion is anisotropic and bounded by the cyclotron frequency ωc.

L161411-2



WEYL EXCITATIONS VIA HELICON-PHONON MIXING IN … PHYSICAL REVIEW B 108, L161411 (2023)

for details) and the dynamics of helicons can be conveniently
described using the three-component vector ψhel = {(Bx −
iBy)/

√
2,−Bz, (−Bx − iBy)/

√
2}. The dispersion ω(q) of the

low-energy excitations is given by the eigenvalue problem
ω(q)ψhel = Ĥhel(q)ψhel with the matrix Ĥhel(q) given by

Ĥhel(q) = αqz

⎛
⎜⎜⎝

qz
qx+iqy√

2
0

qx−iqy√
2

0 qx+iqy√
2

0 qx−iqy√
2

−qz

⎞
⎟⎟⎠, (3)

where α = ωcc̄2/ω2
p = Bc/4πne.

By introducing the effective spin-1 operator ŝ in the space
of vectors ψH, the operator (3) can be rewritten in the form
Ĥhel(q) = αqz(ŝ · q) similar to the dispersion ĤWeyl = v(ŝ · q)
of a spin-1 Weyl semimetal [40]. The topological properties
of the low-energy helicons are similar to those of spin-1 Weyl
fermions. The operator (3) describes the helicon dispersion for
small wave vectors |q| � ωp/c. At larger wave vectors, the
dispersion ω(q) with nonvanishing transverse wave vectors
saturates to ωc.

We note that helicons propagating (anti)parallel to the
magnetic field B have circular polarization in the plane
perpendicular to B. As we discuss below, the transverse
polarization of helicons leads to the vanishing of the
helicon-phonon interaction for both longitudinal acoustic and
longitudinal optical phonons.

Interactions between helicons and acoustic phonons. In
the absence of electrons, the dynamics of long-wave acoustic
phonons is universally described in terms of the lattice dis-
placement u(r, t ) by the equation of motion [41]

∂2
t u(r, t ) = s2

t 	u(r, t ) + (
s2

l − s2
t

)∇[∇ · u(r, t )] (4a)

or the equivalent Hamilton’s equations

∂t u(q, t ) = p(q, t ), ∂t p(q, t ) = −(
Ŵ ac

q

)2
u(q, t ), (4b)

where Ŵ ac
q , u(q, t ) and p(q, t ) are the Fourier transforms

of, respectively, Ŵ ac
r−r′ , u(r, t ) and p(r, t ). The momentum p

is the momentum canonically conjugate to the displacement
u; sl and st are the velocities of, respectively, longitudinal
and transverse phonons; the matrix Ŵ ac

q (dynamical matrix)
describes the energy

Edef = ρ

2

∫
drdr′u(r, t )(Ŵ ac)2

r−r′u(r′, t ) (5)

of elastic deformations of the crystal where ρ is the its mass
density (see SM [39] for an explicit derivation of the dy-
namical matrix). The equations (4a) and (4b) can also be
written as the eigenvalue problem ωψac = Ĥac(q)ψac with the
six-component vector ψac = {p,Ŵ ac

q u} and the matrix Ĥac(q)
given by

Ĥac(q) =
(

0 −iŴ ac
q

iŴ ac
q 0

)
. (6)

The interactions between helicons and acoustic phonons come
from relativistic effects (“inductive coupling” [18]). On the
one hand, the dynamics of the crystalline lattice lead to the
modification

E(r, t ) → E(r, t ) + 1

c
[∂t u(r, t ) × B] (7)

of the electric field E in the reference frame of the displaced
atoms, where, in the long-wave limit under consideration,
the displacement u(r, t ) varies smoothly compared to atomic
length scales. The currents j(r, t ) in the helicon waves also
lead the forces

f (r, t ) = 1

c
[j(r, t ) × B] (8)

(per unit volume) acting on the lattice of the crystal and thus
contributing to the displacements u(r, t ). Equations (7) and
(8) describe the interactions between the electromagnetic field
and the deformations of the lattice and thus account for the
interactions between helicons and phonons.

The dynamics of coupled helicons and phonons is con-
veniently described by the 15-component vector ψpl−ac =
{√ε∞E, H, 4π j/ωp

√
ε∞,

√
4πρp,

√
4πρŴ ac

q u}T, where the
first three vectors describe helicons [cf. Eqs. (1a)–(1c)] and
the last two vectors describe the phonon degrees of freedom.
The collective dispersion of coupled helicons and phonons is
given by the solution of the eigenvalue problem ωψpl−ac(q) =
Ĥpl−ac(q)ψpl−ac(q) with the “Hamiltonian” Ĥpl−ac given by

Ĥpl−ac =

⎛
⎜⎜⎜⎜⎜⎝

0 −c̄K̂q −iωp1̂ 0 0
c̄K̂q 0 0 0 0

iωp1̂ 0 −iωcL̂ iγacL̂ 0
0 0 iγacL̂ 0 −iŴ ac

q
0 0 0 iŴ ac

q 0

⎞
⎟⎟⎟⎟⎟⎠, (9)

where the frequency γac = ωc
√

nm/ρ describes the strength
of the coupling between helicons and acoustic phonons.

The structure of the matrix (9) can be understood as fol-
lows. The top left 3×3 block (whose each element is a 3×3
matrix) matches the matrix (2a) that describes the helicon
degrees of freedom in the absence of phonons. The bottom
right 2×2 block describes the dynamics of phonons and has
eigenvectors that correspond to the harmonic modes of the
crystal. The other terms describe the helicon-phonon coupling
and are obtained from Eqs. (7) and (8) taking into account that
∂t u(q, t ) = p(q, t ).

The dispersions of the hybridized helicon-phonon excita-
tions, given by the eigenvalues of the matrix (9), are plotted in
Figs. 1(a)–1(c) for a crystal of potassium in the magnetic field
B = 20 T. The character of helicon-phonon hybridization is
qualitatively different for different branches of the dispersion
of acoustic phonons. Helicons do not interact with the anti-
symmetric combination of two transverse phonon modes. The
interaction between helicons and the symmetric combination
of the transverse phonon modes leads to a gap in the disper-
sion of the resulting excitations at all wave vectors.

By contrast, the interaction of longitudinal phonons with
helicons vanishes for q ‖ B and is finite for other wave
vectors. Their hybridization leads to the formation of two
dispersion bands that intersect at the wave vectors q±

Weyl =
±ezsl/α, at which the frequencies of phonons and helicons
match (sl |q| = |αqzq|) and which are parallel to the magnetic
field B. The interactions lead to the splitting between the
bands at all other wave vectors. Therefore, the interaction
between helicons and the longitudinal phonons leads to the
formation of Weyl excitations near the wave vectors q±

Weyl.
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Near the Weyl points, the Hamiltonian of the Weyl excita-
tions as a function of the wave vector k = q − q±

Weyl measured
from the Weyl points is given by

Ĥ±
w (k) = sl

α
+ 3

2
slkz ±

(
1
2 slkz isac

⊥ k−
−isac

⊥ k+ − 1
2 slkz

)
, (10)

where k± = kx ± iky and the matrix acts in the space of the
phonon and helicon bands that are being hybridized. The
transverse velocity of the Weyl excitations sac

⊥ = γacc̄/2ωp

is determined by the strength of the helicon-phonons in-
teractions. The Weyl nodes near the wave vectors q±

Weyl

have topological Chern numbers [12] C± = 1
2π

∫
S ∇k ×

〈ψ+(k)|i∇k|ψ+(k)〉 dS = ∓1, where ψ+(k) is the eigenvec-
tor of the Hamiltonian (10) that describes the quasiparticle
state with the wave vector k and S is an arbitrary closed
surface in reciprocal space surrounding the Weyl node.

Interaction between helicons and optical phonons. In cer-
tain materials, such as polar crystals or ionic semimetals, the
elementary cell consists of positively and negatively charged
ions, and electric polarization may be caused by a relative
displacement of the atoms within the cell. This leads to strong
interactions of helicons with optical phonons, which, unlike
the case of acoustic phonons, are nonrelativistic in nature.
Such interactions lead to the emergence of additional pairs of
Weyl excitations, distinct from those generated by the interac-
tions of helicons with acoustic phonons.

In what follows, we consider a crystal with two ions in
the elementary cell and introduce the relative displacement
w(r, t ) between the ions. Our results can be generalized to the
case of an arbitrary number of atoms in the elementary cell.
Due to a change in the electric polarization, the displacement
w affects the electric induction

D(r, t ) = ε∞E(r, t ) + 4πχw(r, t ) (11)

in the crystal, where ε∞ is determined by the polarization of
the electron shells of the atoms in an electric field, and the
quantity χ describes the response of the polarization to w
[42]. In the absence of helicons, the long-wave dynamics of
displacement w(r, t ) are governed by the equation of motion
[43]

∂2
t w(q, t ) = −(

Ŵ op
q

)2
w(q, t ) + χE(q, t ), (12)

where the dynamical matrix Ŵ op
q determines the dispersion of

optical phonons (see SM [39] for a specific form of Ŵ op
q ) in

the absence of phonon interaction with the electromagnetic
fields.

Similarly to the case of acoustic phonons, the collec-
tive modes of helicons interacting with optical phonons
can be obtained as a solution of the eigenvalues prob-
lem Ĥpl−opψpl−op = ωψpl−op, where ψpl−op = {√ε∞E, H,

4π j/ωp
√

ε∞,
√

4πp,
√

4πŴ op
q u}T. The resulting effective

Hamiltonian Hpl−op is given by

Ĥpl−op =

⎛
⎜⎜⎜⎝

0 −cK̂q −iωp1̂ −iγop1̂ 0
cK̂q 0 0 0 0

iωp1̂ 0 iωcL̂ 0 0
iγop1̂ 0 0 0 −iŴ op

q

0 0 0 iŴ op
q 0

⎞
⎟⎟⎟⎠, (13)

where γop = χ
√

4π/ε∞ describes the strength of the cou-
pling between helicons and optical phonons. The off-diagonal
blocks in the matrix Ĥpl−ac and Ĥpl−op, given by Eqs. (9) and
(13), have different structure that reflects the distinct physical
mechanisms of helicon interactions with acoustic and optical
phonons.

In what follows, we neglect the dispersion of longitudi-
nal and transverse optical phonons, i.e., assume that their
frequencies ωl and ωt are momentum independent, which
provides a good approximation for realistic crystals. Also,
we assume that the frequencies ωl and ωt are of the same
order of magnitude but differ. These assumptions are satisfied
for semiconductors with the anisotropic wurtzite crystalline
structure (e.g., CdSe, AlN, InN, etc.) [44] or in semiconduc-
tors with the zincblend structure (e.g., InAs, InSb, etc.) in
the presence of a uniaxial strain. We also assume that the
semiconductor crystal is heavily doped ωl, ωc � ωp that im-
plies dispersion curves for both helicons and optical phonons
are well separated from the ones for high-frequency plasma
Langmuir, R, and L waves [45].

The dispersion relations of excitations obtained as the
eigenvalues of the matrix Ĥpl−op are shown in Figs. 1(d)–1(f),
with the numerical values of frequencies and wave vectors
given for heavily doped CdSe for the magnetic field B = 45 T
and electron concentration n = 4×1019 cm−3 (see SM [39]
for the details of the estimates).

Similarly to the case of acoustic phonons, the dispersions
of noninteracting helicons and longitudinal optical phonons
intersect along 2D lines, which for optical phonons are given
by ωl/α = |qzq|. Interactions split these intersecting branches
at all wave vectors other than q±

Weyl = ±ez
√

ωl/α parallel
to the magnetic field. Indeed, for this direction of wave
vector, the electric field of helicon waves is orthogonal to
the polarization and displacement of longitudinal phonons,
and the helicon-phonon interaction vanishes. As a result, the
hybridized helicon-phonon excitations have two bands that
touch at the Weyl points at the wave vectors q±

Weyl. As a func-
tion of small deviations k = q − q±

Weyl of momentum from
Weyl points, the Hamiltonian of the Weyl excitations is given
by

Ĥ±
w (k) = ωl + √

αωlkz ±
(√

αωlkz isop
⊥ k−

−isop
⊥ k+ −√

αωlkz

)
, (14)

where sop
⊥ = γopωcc/2ω2

p is the transverse velocity of Weyl
excitations. The Weyl nodes near wave vectors q±

Weyl have
topological Chern numbers C± = ∓1.

Discussion. A prominent manifestation of the Weyl spec-
trum topology is a possible presence of protected surface arc
states [1,2,10,12]. The existence of such arcs on the surface of
a crystal requires that the excitations have a global gap in the
reciprocal-space plane perpendicular to the surface. Provided
that the global gap is present, the presence of the arc states is
dictated by the bulk-edge correspondence [2].

In the case of acoustic phonos, the derived above Weyl
excitations do not have such a gap and, therefore, lack
arc surface states. By contrast, the dispersion of the mixed
modes involving optical phonons has the global gap for any
reciprocal-space section between the Weyl nodes. As for
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the other sections, the global gap naturally appears if the
optical phonons are dispersive (that is not captured by the
hydrodynamic scheme we employ in this Letter). We can get
insights into the behavior of the arc states if we consider the
evolution of the mixed modes spectra with the longitudinal
optical phonons frequency ωl treated as a free parameter.
If ωl exceeds ωc, longitudinal phonons and helicons do not
intersect, and the Weyl nodes do not emerge. If ωl crosses ωc

and further decreases, the pair of Weyl nodes emerges at the
infinity (qz → ±∞) and then moves towards qz = 0. Thus,
the surface arc states connect the projections of Weyl nodes
in different Brillouin zones to the surface. The exact shape of
the arcs away from their ends is nonuniversal and depends on
the details of the phonon and helicon dispersion in the entire
Brillouin zone.

The characteristic wave vectors and frequencies of Weyl
excitations are very different in the cases of acoustic and
optical phonons. For acoustic phonons, their mixing with he-
lions has been reported in potassium [46–48], aluminium [49],
indium [50], lead telluride [51], and cadmium arsenide [52],
is prominent within the MHz∼GHz range and can be tuned by
an external magnetic field. In the case of optical phonons, the
frequencies of the Weyl excitations are determined by the fre-
quencies of optical phonons that typically lie in the THz range.
Good material candidates would have (i) low frequencies of
optical phonons and at least a moderate splitting between their
longitudinal and transverse modes and (ii) high mobilities of
charge carriers. Among semiconductors extensively studied
in the context of optoelectronics and plasmonics [53], these
conditions are well satisfied for CdSe and strained InSb.

The discussed phonon-helicon excitations is a rather
favourable playground for Weyl physics and observing associ-
ated fundamental phenomena. The predicted Weyl excitations
are highly tunable, with the dispersion curves that can be
tuned by the external magnetic field, strain, electric currents,
etc. The relatively small momenta of these excitations allow
for them to be readily excited by electromagnetic pulses in
the THz and GHz ranges. The discussed systems present time-
reversal-symmetry-breaking Weyl semimetals [2] (effectively,
Weyl semimetal with only two symmetric Weyl cones, as

opposed to the so-called inversion-symmetry-breaking Weyl
semimetals, in which the Weyl nodes lie, in general, at dif-
ferent energies). Such Weyl semimetals are extremely rare in
solid-state materials and have not been observed until recently
[54,55].

The predicted Weyl excitations and the surface arc states
can be probed by phononic techniques (Raman and inelastic
x-ray scattering experiments), as well as various techniques
designed for plasmon-polaritons, including angle-resolved
reflection experiment [23,56]. The unidirectional nature of
the topological-surface-arc excitations is promising for ap-
plications in the context of topological and nonreciprocal
plasmonics [57].

Conclusions and outlook. We have shown that a generic
conductor in a magnetic field hosts Weyl excitations, which
emerge as a result of the hybridization of helicon waves
and phonons. Such Weyl excitations exist generically due to
the interactions of helicons with acoustic phonons. In polar
crystals, additional Weyl excitations may emerge due to the
interactions of helicons with optical phonons.

In this paper, we considered the emergence of Weyl exci-
tations in topologically trivial materials. Our approach can be
extended to doped topological insulators and Weyl semimet-
als, in which helicons are impacted by anomalous electronic
responses as well as axion electrodynamic effects [58,59].

In this paper, we neglected the effects of dissipation on
the considered excitations, assuming quasiparticle and phonon
scattering rates to be sufficiently smaller than the characteris-
tic frequencies, which corresponds to realistic experimental
conditions [39]. In principle, dissipation effects may not only
result in the broadening of Weyl nodes but lead to new intrigu-
ing phenomena. It has been predicted, for example, that in
plasmonic and photonic crystals, non-Hermitian perturbations
of the effective Hamiltonian can make Weyl nodes evolve into
nodal discs [60] and nodal rings [61]. We leave the studies of
such effects and the conditions necessary for realizing them
for future studies.

Acknowledgment. We acknowledge support from the Aus-
tralian Research Council Centre of Excellence in Future
Low-Energy Electronics Technologies (CE170100039).

[1] X. Wan, A. M. Turner, A. Vishwanath, and S. Y. Savrasov,
Topological semimetal and Fermi-arc surface states in the elec-
tronic structure of pyrochlore irridates, Phys. Rev. B 83, 205101
(2011).

[2] N. P. Armitage, E. J. Mele, and A. Vishwanath, Weyl and Dirac
semimetals in three-dimensional solids, Rev. Mod. Phys. 90,
015001 (2018).

[3] S.-Y. Xu, I. Belopolski, N. Alidoust, M. Neupane, G. Bian,
C. Zhang, R. Sankar, G. Chang, Z. Yuan, C.-C. Lee et al.,
Discovery of a Weyl fermion semimetal and topological Fermi
arcs, Science 349, 613 (2015).

[4] B. Q. Lv, H. M. Weng, B. B. Fu, X. P. Wang, H. Miao, J. Ma,
P. Richard, X. C. Huang, L. X. Zhao, G. F. Chen, Z. Fang, X.
Dai, T. Qian, and H. Ding, Experimental discovery of Weyl
semimetal TaAs, Phys. Rev. X 5, 031013 (2015).

[5] B. Q. Lv, N. Xu, H. M. Weng, J. Z. Ma, P. Richard, X. C. Huang,
L. X. Zhao, G. F. Chen, C. E. Matt, F. Bisti et al., Observation
of Weyl nodes in TaAs, Nat. Phys. 11, 724 (2015).

[6] S.-Y. Xu, I. Belopolski, D. S. Sanchez, C. Zhang, G. Chang, C.
Guo, G. Bian, Z. Yuan, H. Lu, T.-R. Chang et al., Experimental
discovery of a topological Weyl semimetal state in TaP, Sci.
Adv. 1, e1501092 (2015).

[7] S.-Y. Xu, N. Alidoust, I. Belopolski, Z. Yuan, G. Bian, T.-R.
Chang, H. Zheng, V. N. Strocov, D. S. Sanchez, G. Chang et al.,
Discovery of a Weyl fermion state with Fermi arcs in niobium
arsenide, Nat. Phys. 11, 748 (2015).

[8] L. X. Yang, Z. K. Liu, Y. Sun, H. Peng, H. F. Yang, T. Zhang,
B. Zhou, Y. Zhang, Y. F. Guo, M. Rahn et al., Weyl semimetal
phase in the non-centrosymmetric compound TaAs, Nat. Phys.
11, 728 (2015).

L161411-5

https://doi.org/10.1103/PhysRevB.83.205101
https://doi.org/10.1103/RevModPhys.90.015001
https://doi.org/10.1126/science.aaa9297
https://doi.org/10.1103/PhysRevX.5.031013
https://doi.org/10.1038/nphys3426
https://doi.org/10.1126/sciadv.1501092
https://doi.org/10.1038/nphys3437
https://doi.org/10.1038/nphys3425


DMITRY K. EFIMKIN AND SERGEY SYZRANOV PHYSICAL REVIEW B 108, L161411 (2023)

[9] N. Xu, H. M. Weng, B. Q. Lv, C. E. Matt, J. Park, F. Bisti,
V. N. Strocov, D. Gawryluk, E. Pomjakushina, K. Conder
et al., Observation of Weyl nodes and Fermi arcs in tantalum
phosphide, Nat. Commun. 7, 11006 (2016).

[10] M. Z. Hasan, S.-Y. Xu, I. Belopolski, and S.-M. Huang,
Discovery of Weyl Fermion semimetals and topological
Fermi arc states, Annu. Rev. Condens. Matter Phys. 8, 289
(2017).

[11] A. A. Burkov, Chiral anomaly and transport in Weyl metals,
J. Phys.: Condens. Matter 27, 113201 (2015).

[12] A. Burkov, Weyl metals, Annu. Rev. Condens. Matter Phys. 9,
359 (2018).

[13] D. T. Son and B. Z. Spivak, Chiral anomaly and classical nega-
tive magnetoresistance of Weyl metals, Phys. Rev. B 88, 104412
(2013).

[14] S. V. Syzranov and L. Radzihovsky, High-Dimensional
disorder-driven phenomena in Weyl semimetals, semiconduc-
tors, and related systems, Annu. Rev. Condens. Matter Phys. 9,
35 (2018).

[15] P. J. W. Moll, N. L. Nair, T. Helm, A. C. Potter, I. Kimchi, A.
Vishwanath, and J. G. Analytis, Transport evidence for Fermi-
arc-mediated chirality transfer in the Dirac semimetal Cd3As2,
Nature (London) 535, 266 (2016).

[16] A. C. Potter, I. Kimchi, and A. Vishwanath, Quantum oscilla-
tions from surface Fermi arcs in Weyl and Dirac semimetals,
Nat. Commun. 5, 5161 (2014).

[17] B. Skinner, Coulomb disorder in three-dimensional Dirac sys-
tems, Phys. Rev. B 90, 060202(R) (2014).

[18] E. Kaner and V. Skobov, Electromagnetic waves in metals in a
magnetic field, Adv. Phys. 17, 605 (1968).

[19] D. P. Morgan, Helicon waves in solids, Phys. Status Solidi (b)
24, 9 (1967).

[20] B. Yang, Q. Guo, B. Tremain, L. E. Barr, W. Gao, H. Liu, B.
Béri, Y. Xiang, D. Fan, A. P. Hibbins, and S. Zhang, Direct
observation of topological surface-state arcs in photonic meta-
materials, Nat. Commun. 8, 97 (2017).

[21] Q. Guo, B. Yang, L. Xia, W. Gao, H. Liu, J. Chen, Y. Xiang, and
S. Zhang, Three dimensional photonic Dirac points in metama-
terials, Phys. Rev. Lett. 119, 213901 (2017).

[22] M. Li, J. Song, and Y. Jiang, Topological characteristic of
Weyl degeneracies in a reciprocal chiral metamaterials system,
New J. Phys. 23, 093036 (2021).

[23] W. Gao, B. Yang, M. Lawrence, F. Fang, B. Béri, and S.
Zhang, Photonic Weyl degeneracies in magnetized plasma,
Nat. Commun. 7, 12435 (2016).

[24] J. B. Parker, J. B. Marston, S. M. Tobias, and Z. Zhu, Topolog-
ical gaseous plasmon polariton in realistic plasma, Phys. Rev.
Lett. 124, 195001 (2020).

[25] Y. Fu and H. Qin, Topological phases and bulk-edge correspon-
dence of magnetized cold plasmas, Nat. Commun. 12, 3924
(2021).

[26] J. B. Parker, Topological phase in plasma physics, J. Plasma
Phys. 87, 835870202 (2021).

[27] A. Okamoto, S. Murakami, and K. Everschor-Sitte, Berry cur-
vature for magnetoelastic waves, Phys. Rev. B 101, 064424
(2020).

[28] S. Park and B.-J. Yang, Topological magnetoelastic excitations
in noncollinear antiferromagnets, Phys. Rev. B 99, 174435
(2019).

[29] P. Shen and S. K. Kim, Magnetic field control of topologi-
cal magnon-polaron bands in two-dimensional ferromagnets,
Phys. Rev. B 101, 125111 (2020).

[30] R. Takahashi and N. Nagaosa, Berry curvature in magnon-
phonon hybrid systems, Phys. Rev. Lett. 117, 217205 (2016).

[31] X. Zhang, Y. Zhang, S. Okamoto, and D. Xiao, Thermal Hall
effect induced by magnon-phonon interactions, Phys. Rev. Lett.
123, 167202 (2019).

[32] G. Go, S. K. Kim, and K.-J. Lee, Topological magnon-phonon
hybrid excitations in two-dimensional ferromagnets with tun-
able Chern numbers, Phys. Rev. Lett. 123, 237207 (2019).

[33] S. Zhang, G. Go, K.-J. Lee, and S. K. Kim, SU(3) topol-
ogy of magnon-phonon hybridization in 2D antiferromagnets,
Phys. Rev. Lett. 124, 147204 (2020).

[34] R. R. Neumann, A. Mook, J. Henk, and I. Mertig, Thermal
Hall effect of magnons in collinear antiferromagnetic insula-
tors: Signatures of magnetic and topological phase transitions,
Phys. Rev. Lett. 128, 117201 (2022).

[35] D. K. Efimkin and M. Kargarian, Topological spin-plasma
waves, Phys. Rev. B 104, 075413 (2021).

[36] T. Karzig, C.-E. Bardyn, N. H. Lindner, and G. Refael, Topo-
logical polaritons, Phys. Rev. X 5, 031001 (2015).

[37] A. V. Nalitov, D. D. Solnyshkov, and G. Malpuech, Polariton Z
topological insulator, Phys. Rev. Lett. 114, 116401 (2015).

[38] D. G. Swanson, Plasma Waves (CRC Press, Boca Raton, FL,
2003).

[39] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevB.108.L161411 for detailed derivations of the
long-wavelength theories for helicons, phonons, and mixed
helicon-phonon excitations; specific forms of the dynamical
matrices Ŵ ac(op)
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