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Scale-free localization and PT symmetry breaking from local non-Hermiticity
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We show that a local non-Hermitian perturbation in a Hermitian lattice system generically induces scale-free
localization for the continuous-spectrum eigenstates. When the perturbation lies at a finite distance to the bound-
ary, the scale-free eigenstates are promoted to exponentially localized modes, whose number is proportional
to the distance. Furthermore, when the local non-Hermitian perturbation respects parity-time (PT ) symmetry,
the PT symmetry breaking is always accompanied by the emergence of scale-free or exponential localization.
Intriguingly, we find a concise band-structure condition which tells not only when the continuous-spectrum PT
breaking of scale-free modes can occur but also the precise PT -breaking energy window. Our results uncover a
series of unexpected generic phenomena induced by a local non-Hermitian perturbation, which has interesting
interplay with PT symmetry.
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Introduction. Non-Hermiticity of a Hamiltonian often
arises in open or nonequilibrium systems [1,2]. It induces re-
markable phenomena such as unidirectional invisibility [3,4],
single-mode lasing [5,6], and enhanced sensitivity [7–10].
Many of them are related to the parity-time (PT ) symmetric
Hamiltonians, which generally have two phases when their
parameters are varied, namely, the PT -exact and PT -broken
phases, for which the eigenenergies are real and complex,
respectively [11–15]. They are bridged by the PT -breaking
transition at the exceptional points (EPs).

Recently, progress in non-Hermitian topological phases
has revealed the non-Hermitian skin effect (NHSE) [16–26],
the aggregation of eigenstates near boundaries, which under-
lines a striking modification of bulk-boundary correspondence
in non-Hermitian systems. Whereas NHSE stems from the
non-Hermiticity of the entire system, another common sce-
nario in non-Hermitian physics is that the system is subject
to local non-Hermiticity. For example, it is often the case
that the gain or loss occurs only at the boundaries, preserv-
ing the Hermiticity of the bulk system [27–34]. The system
can be modeled by a Hermitian Hamiltonian with local non-
Hermitian terms.

In this letter, we show that, in one-dimensional Hermitian
lattice systems, local non-Hermiticity at boundaries generally
gives rise to a scale-free localization, for which the spatial
decay length of eigenstates is proportional to the system size,
such that the eigenstates retain the same profiles if the system
size is taken as the measure of length. The phenomenon is
robust and generic. As such, it fundamentally differs from
the scale-free NHSE under global non-Hermiticity, which
requires fine tuning certain parameters [35–37]. More surpris-
ingly, when the local non-Hermiticity is located at a finite
distance to boundary, it also brings about a collection of
bound states that exponentially localize to the impurity. The
localization length and population of bound modes rely on the
distance but are independent of the system size. Furthermore,
when the local non-Hermiticity respects PT symmetry, we
find that the emergence of scale-free or bound states always

coincides with PT breaking. Unexpectedly, the PT breaking
associated with scale-free modes under open boundary con-
ditions (OBC) is dictated by a simple band-structure-based
criterion, which also tells the energy window of PT breaking.

Scale-free localization from local non-Hermitian perturba-
tion. To be concrete, we start with a simple model:

H =
L−1∑
j=1

t (| j〉〈 j + 1| + | j + 1〉〈 j|) + ig|1〉〈1|, (1)

where the first two terms describe nearest hopping with a
real parameter t , the last term represents a boundary gain
controlled by g. OBC has been built in the Hamiltonian. Let
an eigenstate be |ψ〉 = ∑

j ψ j | j〉, then the eigenequation in
the bulk reads t (ψ j−1 + ψ j+1) = Eψ j , whose characteristic
equation is given by t (β + β−1) = E . This allows the eigen-
state ansatz:

ψ j (β ) = c1β
j + c2β

− j, (2)

where c1, c2 are coefficients determined by boundary
conditions. Applying the ansatz to the real-space eigen-
equation H |ψ (β )〉 = E |ψ (β )〉, OBC results in a zero deter-
minant condition:

det

[
igβ − t igβ−1 − t
tβL+1 tβ−(L+1)

]
= 0. (3)

The spectrum of the Hamiltonian Eq. (1) is complex
[Fig. 1(a)], which demands nonunitary solutions, i.e., |β| �= 1,
since |β| = 1 always gives real eigenvalues. If |β|L � 1 for a
large system (L � 1), Eq. (3) reduces to tβL+1(igβ−1 − t )=0,
which could be satisfied by a bound state solution β � ig/t
when |g| > t ; the case for |β|L � 1 is similar. However, the
Hamiltonian has L eigenvalues; thus, the rest of the solutions
should scale as |β|L ∼ O(1) even for L � 1. Therefore, to the
leading order of L−1, the solution approximately satisfies

|β| � ec/L, (4)

2469-9950/2023/108(16)/L161409(6) L161409-1 ©2023 American Physical Society

https://orcid.org/0000-0002-5713-1592
https://orcid.org/0000-0002-5468-4191
https://orcid.org/0000-0002-1248-8475
https://orcid.org/0000-0001-6254-6138
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.108.L161409&domain=pdf&date_stamp=2023-10-18
https://doi.org/10.1103/PhysRevB.108.L161409


LI, WANG, SONG, AND WANG PHYSICAL REVIEW B 108, L161409 (2023)

FIG. 1. Scale-free localization for model Eq. (1). (a) Eigenvalues
in the complex plane with g = 1. The inset shows the averaged imagi-
nary part of energy 〈Im(E )〉 for varying 1/L. (b) Eigenvalue-resolved
mean positions. The eigenstate index is arranged in the ascending
order of the eigenvalue imaginary part. The inset gives a typical wave
function profile exhibiting scale-free localization. For (a) and (b),
t = 1.

where c is size independent (it is generally eigenstate de-
pendent), so that |β|L = ec ∼ O(1). This displays a scale-free
localization, i.e., the decay length is proportional to the system
size. The (right) eigenstate profile respects a scale invariance
|ψL(x)| � ecx/L � |ψsL(sx)|, with s being a scaling factor.
This feature can be further demonstrated by a eigenvalue-
resolved mean position 〈x〉n = ∑L

j=1 |ψn, j |2 j/
∑L

j=1 |ψn, j |2.
As plotted in Fig. 1(b), 〈x〉n for the non-Hermitian case
(g = 1) deviates from the uniform distribution (g = 0), and
the curve shows a perfect self-similarity upon varying system
size (with appropriately scaling the coordinates and eigen-
value index). In addition, it is evident that the imaginary
part of eigenvalues are proportional inversely to the system
size L because ImE ∝ |β| − |β−1| ≈ 2c/L, which agrees with
Fig. 1(a). From our analysis, it is clear that the scale-free
localization is a generic consequence of a local non-Hermitian
perturbation to a Hermitian lattice Hamiltonian [38,39].

Accumulation of bound states. Moving the position of the
non-Hermitian impurity away from the boundary, we un-
veil another interesting consequence: Aside from scale-free
modes, a local (even single-site) non-Hermitian impurity can
induce an arbitrary number of exponentially localized modes.
The localization length (ξloc) and population of these modes
depend on the distance between the impurity and the bound-
ary but not on the system size. For concreteness, we replace
the non-Hermitian term in the model in Eq. (1) by ig|d〉〈d|,
meaning that the distance between impurity and boundary
is d . The insets in Fig. 2(a) show that there are a bunch
of eigenmodes aggregating to the impurity, and they have a
size-independent imaginary part of the eigenvalues (isolated
from the continuous spectrum) and localization length. Like
the case of Eq. (1), the eigenvalues here follow E = t (β +
β−1), while the eigenstate wave function takes the general
form: |ψ〉 = ∑

1� j<d ψ
(1)
j | j〉 + ∑

d� j�L ψ
(2)
j | j〉, with ψ

(ν)
j =

aνβ
j + bνβ

− j (ν = 1, 2). By adapting the bulk equation to
the boundary and the impurity in the thermodynamic limit
(L → ∞, but 1 � d � L), we obtain the equation for local-
ized modes:

igβ2d+1 − tβ2 − igβ + t = 0, (5)

FIG. 2. (a) Localization length extracted from exactly diagonal-
ized wave function and theory, where only ξloc � 500 is shown; the
insets show exemplified eigenvalues and eigenstate profile for differ-
ent system size. t = 1, d = 50, and g = 2 are used. (b) Localization
length (ξloc � 500) and the number of bound states (the inset) as a
function of impurity strength g, t = 1, d = 50.

in which |β| < 1 is imposed to ensure the states being piled
up to the impurity. Numerically solving this equation (taking
d = 50), we obtain d localized modes, whose localization
lengths agree well with that (ξloc = 1/| ln |β||) extracted from
eigenstate wave functions for L = 500 and 1000, as shown
in Fig. 2. Moreover, Fig. 2(b) shows that, while varying the
strength of impurity can substantially affect the localization
length, the exponential localization is obtained for a wide
range of g.

Notably, exponentially localized modes from Eq. (5) can
be viewed as scale-free modes with respect to the subsystem
between the boundary and impurity, given that the localization
length is comparable with the length of the subsystem: |β| ∼
ec/d . Meanwhile, they are exponentially localized modes for
the whole system since d � L. Moreover, the localized modes
arising from local non-Hermiticity here differ sharply from
the Hermitian counterpart [by removing i in Eq. (5)], where
only a few localized modes are obtained (not proportional to
d).

PT breaking and localization. We now show that, if
a system with local non-Hermitian perturbation respects
PT symmetry, an intriguing interplay arises between PT
breaking and scale-free (or exponential) localization. Let us
consider a PT -symmetric Hamiltonian H = H0 + V , where
V is a local non-Hermitian perturbation lying at or near the
boundaries, and H0 is a one-dimensional (1D) Hermitian chain
with L sites. Specifically, H0 contains nth nearest-neighbor
hopping with parameter tn(∈ C) and can be well adapted
to periodic boundary conditions (PBC) or OBC. To solve
the eigenstates and eigenvalues, one takes the wave func-
tion ansatz ψ j = ∑2M

μ=1 cμβ
j
μ (cμ takes different values for

intervals partitioned by in-bulk impurities), where βμ satisfies
the characteristic equation E = ∑M

n=1 tnβn + t∗
n β−n, with the

same energy E . Legitimate E is determined by the boundary
condition and/or eigenequations near impurities. In the PT -
exact phase, we know a priori that E must be real, so that at
least two of the corresponding βμ’s are on the unit circle, i.e.,
β = eik with real momentum k, and their contributions dom-
inate the wave function in the bulk [40]. The real-valuedness
of E dictates that V cannot drag β away from the unit circle,
and therefore, the eigenstates remain extended (see Ref. [41]
for more details). In the PT -broken phase, however, com-
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FIG. 3. (a) Phase diagram for an open chain driven by bound-
ary gain and loss. The color map shows Pcom. The system size is
L = 100. (b) The eigenvalue-resolved mean position 〈x〉n (upper, left
ticks, black) and the imaginary part of eigenvalue (lower, right ticks,
orange), where band index is arranged in the ascending order of
eigenvalue real part. (c) Band structure of H0. When t2 > t1/4, the
curve has two local minima and the shadow region covers the energy
range that allows PT breaking. (d) Eigenvaues in complex plane
(with L = 100). The real parts of complex eigenvalues fall into the
shadowed energy range in (c). In all plots, t1 = 1.

plex energies enforce |β| �= 1, which corresponds to either
a scale-free or bound state. Therefore, we conclude that the
PT symmetry breaking arising from local non-Hermiticity is
always accompanied by the emergence of scale-free or (and)
exponential localization.

PT -breaking criterion under OBC. Furthermore, we find
that PT breaking associated with the scale-free modes,
referred to as continuous-spectrum PT breaking, has an un-
expected interplay with boundary conditions. It turns out that
the continuous-spectrum PT breaking due to boundary non-
Hermiticity occurs under PBC if the perturbation is strong
enough [41]. In sharp contrast, we find that, under OBC, the
(unperturbed) band structure dictates the PT breaking.

We state the conclusion first: For an open chain with band
structure given by {En(k)} (single or multiple band) in mo-
mentum space, the PT symmetry breaking (of a continuous
spectrum) arising from boundary non-Hermiticity can only
take place at energies with more than one pair of equal-energy
points. For instance, PT breaking can occur for the system
with the red band curve in Fig. 3(c) in the shadowed energy
window, where four equal-energy points exist, while it is
prohibited for the blue band curve, as only two equal-energy
points exist.

We demonstrate the mechanism in the following by as-
suming the single band, though extension to multiband
cases is straightforward. The physics can be understood by
investigating the formation of EPs during PT breaking, which
requires the coalescence of at least two eigenenergies, see

FIG. 4. Spectrum for model described by Eqs. (6) and (7).
(a) The Hermitian case. (b) The real part of non-Hermitian spectrum
(black) with g = 0.8, overlapped with Hermitian spectrum (blue).
The PT breaking occurring between bound states is marked. t1 = 1
and L = 100 are fixed.

Fig. 4. The eigenvalue is still real-valued at EP, so that it can
be captured by the band structure E (k), where the value of k is
determined by the local perturbation and boundary condition.
Due to the energy degeneracy at EP, the band structure at
E (k) = εEP should be able to hold at least two eigenmodes,
such that they develop a Jordan block at EP. The eigenstates
under OBC are standing waves composed of forward and
backward plane wave, i.e., for a given energy ε, ψOBC(x) ∼
c1eik1x + c2e−ik2x with E (k1) = E (−k2) = ε. Thus, only one
OBC eigenmode can be constructed from two real solutions
of the equation E (k) = ε, which manifests as the absence of
eigenvalue degeneracy (e.g., see the spectrum for t2 < t1/4 in
Fig. 4). Therefore, EP can never exist at an energy with only
one pair of equal-energy points, where only one eigenmode
is allowed. In contrast, in the presence of more than one pair
of equal-energy points, at least two eigenstates of the same
energy exist, which enables EP formation.

As a comparison, the PBC case [41] is different in the sense
that each equal-energy point represents an independent plane-
wave eigenmode ψPBC(x) ∼ eikx, which allows EP formation
from two equal-energy points. Note that our statement does
not apply to isolated bound states, which are not captured by
band structure E (k) with real k.

According to our criterion, a single-band system with only
nearest-neighbor hopping, whose band structure looks like
the blue one in Fig. 3(c), cannot have continuous-spectrum
PT breaking under OBC, in stark contrast with the PBC
behavior [41]. This motivates us to consider a model with
second-nearest-neighbor hopping:

H0 =
L−1∑
j=1

t1| j〉〈 j + 1| +
L−2∑
j=1

t2| j〉〈 j + 2| + H.c., (6)

where t1, t2 are real and positive, and the non-Hermitian
boundary potential V is given by

V = ig(|1〉〈1| − |L〉〈L|). (7)

The phase diagram is plotted in Fig. 3(a), where the PT
breaking is quantified by the proportion of complex eigenval-
ues Pcom = ncom/L, with ncom being the number of complex
eigenvalues. The PT breaking of the continuous spectrum
is prohibited until t2 > t1/4 because the band structure has
one local minimum for t2 < t1/4, thus only allows one pair
of equal-energy points. Figure 3(c) gives two representative
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cases, where the red curve fulfills the requirement and the
shadow region marks the allowed energy window for PT
breaking. As shown in (d), the energy real part of PT -
broken modes precisely falls into this range. In addition,
we confirmed the correspondence between PT breaking and
scale-free localization in Fig. 3(b), where the eigenvalue-
resolved mean position only shows deviation from middle
position for PT -broken modes. It is also worth noting that
there are two PT -broken modes (even for t2 < t1/4) stem-
ming from isolated bound states near boundaries if the
non-Hermitian term is large enough, irrespective of the cri-
terion for continuous spectrum.

The real part of the spectrum in Fig. 4(d) shows that the
PT breaking takes place by deforming nearest real energy
levels into complex ones through an EP, which stimulates
an intuitive understanding by projecting the Hamiltonian into
two-level subspaces. The model in Eq. (6) is inversion sym-
metric, so that its eigenstates can be categorized with even or
odd parity. Under OBC, accidental degeneracy in the spec-
trum [Fig. 4(a)] can exist for modes with opposite parity
[41]. In a subspace effective theory, the perturbation V can
only couple modes belonging to opposite parities, as it is
inversion antisymmetric, i.e., PVP = −V , with P being the
inversion operator; hence, the perturbative terms in the ef-
fective Hamiltonian are off-diagonal and anti-Hermitian. The
effective Hamiltonian for two eigenmodes involved in a PT
breaking takes the form:

Heff = �12σz + ig(dxσx + dyσy), (8)

where �12 represents the energy gap, and dx, dy are functions
of the involved modes and the perturbation. At the degenerate
point �12 = 0, the eigenvalue of the effective Hamiltonian

is ±ig
√

d2
x + d2

y , namely, the PT symmetry is broken if

g �= 0, agreeing with the vanishing threshold in Fig. 3(a)
(in the t2 > t1/4 regime). Here, one should notice that the

vanishing PT -breaking threshold is attributed to the inversion
antisymmetry of perturbation, which can couple equal-energy
modes of opposite parity. When an inversion symmetric non-
Hermitian perturbation is considered, it would mix gapped
modes belonging to the same parity. The perturbation needs
to be strong enough to overcome the gap, which corresponds
to a finite threshold [41].

Conclusions. We show that a local non-Hermitian pertur-
bation in Hermitian lattices can generically induce scale-free
localization for continuous-spectrum eigenstates. Further-
more, the same mechanism can generate a collection of
exponentially localized modes when the local non-Hermitian
perturbation sits at a finite distance to the boundary, and
the number of these modes is proportional to the dis-
tance. When PT symmetry is present, we show that the
scale-free localization emerges simultaneously with the PT
breaking. The continuous-spectrum PT breaking (associated
with scale-free modes) arising from local boundary per-
turbation is dictated by a concise criterion based on band
structure.

One of the most promising platforms for verifying our
results is optics systems, where gain and loss can be con-
veniently controlled, based on which tremendous progress
on PT symmetric non-Hermitian physics has been achieved
[42–48]. Another promising setup is an array of cavities,
which plays important roles in studying driven-dissipative
quantum systems [49–53]. Its inherent non-Hermiticity can be
engineered according to our proposals. Our results are also
relevant to other boundary-driven/dissipated systems. As a
final remark, it will be interesting to generalize our results to
many-body systems; for example, the XXZ spin chain subject
to a PT -symmetric imaginary magnetic field on boundaries
for which integrable techniques based on the Bethe ansatz are
available [54,55].
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[9] Z.-P. Liu, J. Zhang, Ş. K. Özdemir, B. Peng, H. Jing,
X.-Y. Lü, C.-W. Li, L. Yang, F. Nori, and Y.-X. Liu,
Metrology with PT -symmetric cavities: Enhanced sensitivity
near the PT -phase transition, Phys. Rev. Lett. 117, 110802
(2016).

[10] P.-Y. Chen, M. Sakhdari, M. Hajizadegan, Q. Cui, M. M.-C.
Cheng, R. El-Ganainy, and A. Alù, Generalized parity–
time symmetry condition for enhanced sensor telemetry, Nat.
Electron. 1, 297 (2018).

[11] C. M. Bender and S. Boettcher, Real spectra in non-Hermitian
Hamiltonians having PT symmetry, Phys. Rev. Lett. 80, 5243
(1998).

L161409-4

https://doi.org/10.1080/00018732.2021.1876991
https://doi.org/10.1103/PhysRevC.6.114
https://doi.org/10.1103/PhysRevLett.106.213901
https://doi.org/10.1038/nmat3495
https://doi.org/10.1126/science.1258480
https://doi.org/10.1126/science.1258479
https://doi.org/10.1038/nature23280
https://doi.org/10.1103/PhysRevApplied.5.064018
https://doi.org/10.1103/PhysRevLett.117.110802
https://doi.org/10.1038/s41928-018-0072-6
https://doi.org/10.1103/PhysRevLett.80.5243


SCALE-FREE LOCALIZATION AND PT … PHYSICAL REVIEW B 108, L161409 (2023)

[12] C. M. Bender, Making sense of non-Hermitian Hamiltonians,
Rep. Prog. Phys. 70, 947 (2007).
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and A. Imamoǧlu, Fermionized photons in an array of driven
dissipative nonlinear cavities, Phys. Rev. Lett. 103, 033601
(2009).

L161409-5

https://doi.org/10.1088/0034-4885/70/6/R03
https://doi.org/10.1038/s41563-019-0304-9
https://doi.org/10.1038/nphys4323
https://doi.org/10.1126/science.aar7709
https://doi.org/10.1103/PhysRevLett.121.086803
https://doi.org/10.1103/PhysRevLett.121.136802
https://doi.org/10.1103/PhysRevLett.121.026808
https://doi.org/10.1103/PhysRevB.99.201103
https://doi.org/10.1103/PhysRevResearch.1.023013
https://doi.org/10.1038/s41567-020-0922-9
https://doi.org/10.1038/s41567-020-0836-6
https://doi.org/10.1103/PhysRevB.97.121401
https://doi.org/10.1073/pnas.2010580117
https://doi.org/10.1038/s41586-022-04929-1
https://doi.org/10.1103/RevModPhys.93.015005
https://doi.org/10.1103/RevModPhys.94.045006
https://doi.org/10.1142/S1230161222500044
https://doi.org/10.1103/PhysRevA.98.052105
https://doi.org/10.1103/PhysRevB.101.144301
https://doi.org/10.1103/PhysRevB.105.054303
https://doi.org/10.1103/PhysRevA.102.012212
https://doi.org/10.1103/PhysRevB.104.125113
https://doi.org/10.1038/s41467-020-18917-4
https://doi.org/10.1038/s42005-021-00547-x
https://doi.org/10.1103/PhysRevB.104.165117
https://doi.org/10.1103/PhysRevB.107.134121
https://doi.org/10.1103/PhysRevLett.123.066404
http://link.aps.org/supplemental/10.1103/PhysRevB.108.L161409
https://doi.org/10.1103/PhysRevLett.100.103904
https://doi.org/10.1364/OL.32.002632
https://doi.org/10.1038/nphys1515
https://doi.org/10.1103/PhysRevLett.103.093902
https://doi.org/10.1038/nature14889
https://doi.org/10.1103/PhysRevB.92.235310
https://doi.org/10.1103/PhysRevLett.116.203902
https://doi.org/10.1103/PhysRevLett.103.033601


LI, WANG, SONG, AND WANG PHYSICAL REVIEW B 108, L161409 (2023)

[50] R. O. Umucalılar and I. Carusotto, Fractional quantum
hall states of photons in an array of dissipative
coupled cavities, Phys. Rev. Lett. 108, 206809
(2012).
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