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Thermal difference reflectivity of tilted two-dimensional Dirac materials
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Deviation from perfect conical dispersion in Dirac materials, such as the presence of mass or tilting, enhances
the control and directionality of electronic transport. To identify these signatures, we analyze the thermal
derivative spectra of optical reflectivity in doped massive tilted Dirac systems. The density of states and chemical
potential are determined as preliminary steps to calculate the optical conductivity tensor at finite temperature
using thermal convolution. Changes in reflection caused by temperature variations enable the clear identification
of critical frequencies in the optical response. By measuring these spectral features in the thermoderivative
spectrum, energy gaps and band structure tilting can be determined. A comparison is presented between the
spectra of various low-energy Dirac Hamiltonians. Our findings suggest that thermal difference spectroscopy
holds promise as a valuable technique for probing interband transitions of two-dimensional Dirac fermions.
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Optical spectroscopies allow the investigation of surfaces
and interfaces, offering nondestructive, in situ, and real-time
probing capabilities, with various techniques available such as
spectroscopic ellipsometry, differential reflectance, electrore-
flectance, reflection anisotropy spectroscopy, magneto-optics,
and nonlinear spectroscopies [1,2]. Recent methods resolve
single nano-objects and subwavelength structures [3], plas-
mon dynamics [4], organic and biological interfaces [5],
graphenelike materials [6], and metasurfaces [7,8].

In the field of two-dimensional (2D) systems, the in-plane
optical anisotropy of low-symmetry 2D materials is emerg-
ing as a unique characteristic with potential applications in
optics, optoelectronics, and photonics [9–11]. Orthorhom-
bic systems such as black phosphorus (BP) [12,13] and
group-IV monochalcogenides, monoclinic systems such as
1T′-WTe2 [14], and triclinic materials such as ReS2 [15]
present an optical anisotropy due to their anisotropic band
structure, which can be modified by band engineering
methods. This is an essential difference with anisotropic
nanostructures made of symmetric 2D materials, where the
anisotropy of the dielectric constant is designed by nanofabri-
cation [16].

The in-plane anisotropy of these materials, along with crit-
ical frequencies and optical transitions involving the Fermi
level, have been probed through a number of differential and
modulation spectroscopy techniques, such as differential re-
flectance and transmittance spectroscopy [17], anisotropic op-
tical absorption and photoluminescence [16], Raman scatter-
ing [16,18], time-domain thermoreflectance [19], azimuthal-
dependent reflectance difference spectroscopy [15], or reflec-
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tion difference microscopy combined with electron transport
measurements and atomic force microscopy [20].

Two-dimensional materials with tilted Dirac cones in their
energy spectrum are an interesting and currently attractive
variant of anisotropic systems. The tilting of the bands
introduces an additional source of anisotropy which can sig-
nificantly modify the optical response [21–29] and provides
a rich solid-state space-time platform due to the associated
non-Minkowski metric [30–33]. The quasi-2D organic con-
ductor α-(BEDT-TTF)2I3 [34–38] is a well-known example
of an anisotropic material which presents a pair of tilted
Dirac cones when external pressure is applied [39,40], and
even massive Dirac fermions below a critical pressure [41].
Another well-studied tilted system is the 8-Pmmn borophene,
for which band gap opening [42] and tilt tuning [43] have been
predicted.

Herein, we theoretically explore the thermal difference
spectroscopy [44–46] to identify relevant features in the
optical response of massive tilted 2D Dirac systems at finite
temperature. To this end, we first calculate the temperature
dependence of the chemical potential and then the optical
conductivity through a thermal convolution. This extends our
previously reported calculations at zero temperature [22,23].
Then, we evaluate the optical reflectivity at two close
temperatures to obtain the derivative of its spectrum, which
provides a way to compensate for the reduced structure
produced by thermal broadening. The change in reflectivity
caused by temperature variation probes the anisotropy of the
system and highlights critical points in the optical absorption
or reflection spectrum. Thermal difference spectroscopy
measures the derivative of the optical spectrum, as in
temperature modulation spectroscopy, but without involving
modulation of the sample’s temperature at a given frequency.
In particular, we discuss the possibility of estimating
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parameters such as tilting or gaps through this thermal deriva-
tive
approach.

From the electromagnetic scattering problem of optical
reflection and refraction at a flat interface made of a 2D sys-
tem, with conductivities σxx(ω, T ) and σyy(ω, T ), separating
two homogeneous media with dielectric constants ε1 and ε2,
the optical reflectivity is obtained as R(ω, T ) = |rp|2 cos2 φ +
|rs|2 sin2 φ [22], where φ is the angle of polarization of the
incident field, ω the frequency, and T the temperature. The
Fresnel amplitudes are

rp(ω, T ) = ε2ki
z − ε1kt

z + 4π
(
ki

zk
t
z/k0

)
[σxx(ω, T )/c]

ε2ki
z + ε1kt

z + 4π
(
ki

zk
t
z/k0

)
[σxx(ω, T )/c]

, (1)

rs(ω, T ) = ki
z − kt

z − 4πk0[σyy(ω, T )/c]

ki
z + kt

z + 4πk0[σyy(ω, T )/c]
, (2)

for p (φ = 0) and s (φ = π/2) polarizations; k0 = ω/c, and
ki

z = k0
√

ε1 cos θi, kt
z = k0

√
ε2 − ε1 sin2 θi are the normal to

the surface components of the incident and refracted wave
vectors, respectively, where θi is the incidence angle. The
frequency and temperature dependence of Rp (Rs) is solely
determined by σxx (σyy).

In the following, we take the thermal derivative of the
reflectivity spectra. To this end, we calculate the normalized
difference between R(T ) taken at two temperatures [44,46],

Rν (ω, T + 
T ) − Rν (ω, T − 
T )

[Rν (ω, T + 
T ) + Rν (ω, T − 
T )]/2
.

Assuming a small enough 
T , the quantity 
Rν/Rν =
(1/Rν )(∂Rν/∂T )2
T measures the change in reflectivity
caused by temperature variation. The thermoderivative is ob-
tained from

∂Rν

∂T
= ∂Rν

∂σ ′
ii

∂σ ′
ii

∂T
+ ∂Rν

∂σ ′′
ii

∂σ ′′
ii

∂T
, (3)

where i = x (y) if ν = p (s), σ ′
ii ≡ Re(σii ), and σ ′′

ii ≡ Im(σii ).
We will show results for p polarization only (R = Rp), with
ε2 = 2ε1 = 2; the corresponding spectra for ν = s are quali-
tatively similar.

The conductivity tensor at finite temperature can be
calculated from a convolution integral between the zero-
temperature counterpart, σi j (ω; 0, μ′), and the peaked func-
tion, ∂ f (μ,μ′)/∂μ′, with f [μ(T ), μ′] = (exp{β[μ(T ) −
μ′]} + 1)−1, which takes the form [47]

σi j[ω; T, μ(T )] = β

4

∫ ∞

−∞

σi j (ω; 0, μ′) dμ′

cosh2{β[μ(T ) − μ′]/2} , (4)

where μ′ is the Fermi energy εF = μ(T = 0) and β = 1/kBT .
In this work, the zero-temperature response σi j (ω; 0, μ′) is
evaluated within the Kubo formalism for a massive tilted
Dirac system modeled by the time-reversal symmetric Hamil-
tonian [22],

Hξ (k) = ξ (h̄vt kyσ̂0 + h̄vxkxσ̂x + ξ h̄vykyσ̂y) + 
σ̂z, (5)

with energy spectrum ε
ξ
λ(kx, ky) = ξ h̄vt ky +

λ
√

(h̄vx )2k2
x + (h̄vy)2k2

y + 
2, where the Pauli matrices

σ̂i act on a pseudospin space, k = (kx, ky) is the electron
wave vector in the vicinity of the K (K ′) point in the valley

ξ = + (−), while λ = ± specifies the helicity of states in the
conduction (+) and valence (−) bands; for the mass term, we
take 
 > 0. A thorough study of the optical properties of this
model (5) was presented in Refs. [22,23]. This Dirac model
describes several anisotropic 2D Dirac fermions in systems
such as the organic conductor α-(BEDT-TTF)2I3 [39,40],
the 8-Pmmn borophene (with vx = 0.86 × 106 m/s,
vy = 0.69 × 106 m/s, vt = 0.32 × 106 m/s) [21], monolayer
WTe2 with (vx = 0.644 × 106 m/s, vy = 0.365 × 106 m/s,
vt = 0.464 × 106 m/s) [48], or 2D ladder polyborane (vx =
0.735×106 m/s, vy = 0.397×106 m/s, vt = 0.191×106m/s)
[28]. It has also been used in studies of the nonlinear optical
response such as the nonlinear Hall effect [49–51], the
second-order conductivity induced by the quantum metric
dipole [52,53], and nonlinear thermal Hall effects [54].

An interesting feature of the model is that the band gap
in each valley is indirect, with a minimum (maximum) of the
conduction (valence) band ε

ξ
+ (εξ

−) at kξ = −ξQŷ (+ξQŷ),
where h̄vyQ = γ
/

√
1 − γ 2, with γ = vt/vy (0 � γ < 1)

being the tilting parameter. As a consequence, a new re-
gion appears for the Fermi level, 
̃ � εF � 
 (the “indirect
zone”), with 
̃ = 


√
1 − γ 2, which has a striking effect on

the spectrum of interband transitions [22]. We note that the
optical response to a long-wavelength external field excludes
interband transitions with finite momentum, in particular
those with a wave vector close to ±ξ2Qŷ, in the vicinity of
the gap 2
̃. However, the indirect gap manifests itself through
the appearance of the indirect zone, which is absent for the
untilted or ungapped system (γ
 = 0).

The evaluation of integral (4) requires prior knowledge of
the chemical potential μ as a function of temperature. Here,
we obtain μ(T ) by solving the transcendental equation that
arises from expressing the doping electron density n as a
proper integral of the density of states (DOS), and equating n
to that at zero temperature for a given Fermi energy [55]. This
approach was used in Ref. [56], where the function μ(T ) for
several doped and gapped Dirac materials (graphene, silicene,
germanene, and MoS2) with a linear density of states was
derived. In our work, tilting of the bands in Eq. (5) is an
additional component in the calculations.

Thus, to proceed, we first calculate the DOS of our system,

D(ε) = gs

∑
ξ,λ=±

∫
d2k

(2π )2
δ[ε − ε

ξ

λ(k)], (6)

with gs = 2 being the spin degeneracy and δ(ε) the Dirac
delta function. We find that the corresponding DOS of the
system (5) is electron-hole symmetric and therefore has the
following structure:

D(ε) = F (ε)�(|ε| − 
) + G(ε)�[1 − |η(ε)|], (7)

where η(ε) = [|ε| − (
 + 
̃)/2]/[(
 − 
̃)/2]. The function
G contributes when the energy is within the indirect zone
|η(ε)| < 1, while the function F when |ε| > 
.

For |ε| > 
, the contribution F (ε) reduces to the
expression

F (ε) = gsgv

2π

|ε|
(h̄vF )2

d (γ IF )

dγ
, (8)
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where gv = 2 is the valley degeneracy and IF is the dimen-
sionless integral,

IF = 1

2π

∫ 2π

0

dθ

g2(θ ) − h2(θ )
.

We define the function h(θ ) = (vt/vF ) sin θ to describe
the anisotropy resulting from the tilt of the bands,
while g(θ ) = [(vx/vF )2 cos2 θ + (vy/vF )2 sin2 θ ]1/2 accounts
for the anisotropy of the velocity, where vx �= vy. Complex
integration gives IF = (v2

F /vxvy)(1 − γ 2)−1/2, which implies

F (ε) = gsgv

2π

|ε|
(h̄vx )(h̄vy)

1

(1 − γ 2)3/2
. (9)

When 
̃ < |ε| < 
 [|η(ε)| < 1], G(ε) can be written as

G(ε) = gsgv

2π

1

(h̄vF )2

∂IG(ε)

∂ε
, (10)

where

IG(ε) = ε

π

∫ π
2 +θ∗

π
2 −θ∗

dθ
h(θ )

√
ε2g2(θ ) − 
2[g2(θ ) − h2(θ )]

[g2(θ ) − h2(θ )]2
,

with tan θ∗(ε) = (vy/vx )
√

[ε2 − 
̃2]/[
2 − ε2]. The
restricted sector of integration reflects the drastic reduction of
the momentum space available for vertical transitions when
the energy lies within the narrow stripe between 
̃ and 
,
arising from the indirect nature of the gap [22] (γ
 �= 0).
We obtain IG(ε) = sign(ε)(ε2 − 
̃2)/[2(vx/vF )(vy/vF )(1 −
γ 2)3/2], which leads to the result G(ε) = F (ε). Therefore,
from (7), we find, for the DOS of a tilted and gapped Dirac
system,

D(ε) = gsgv

2π

|ε|
(h̄vx )(h̄vy)

�(|ε| − 
̃)

(1 − γ 2)3/2
. (11)

Given that the DOS is an even function of energy, the doping
electron density, obtained from the difference between the
densities of electrons and holes [56,57], can be calculated
from

n(T, μ) = sinh(βμ)
∫ ∞

0
dε

D(ε)

cosh(βε) + cosh(βμ)
. (12)

As a result, we find

n = 2

π (h̄vx )(h̄vy)

1

(1 − γ 2)3/2

1

β2
�[T, μ(T ), 
̃], (13)

where

�[T, μ(T ), 
̃] = β
̃ ln

(
1 + eβ(μ−
̃)

1 + e−β(μ+
̃)

)

+ Li2(−e−β(μ+
̃) ) − Li2(−eβ(μ−
̃) ),

where Li2(x) is the dilogarithm function [55,58].
For fixed n and T , the function μ(T ) can be obtained from

this expression or in terms of the Fermi energy εF = μ(0),

ε2
F − 
̃2 = 2(kBT )2�[T, μ(T ), 
̃]. (14)

This equation generalizes the results reported in [56] to in-
clude the tilting, such that for vx = vy = vF , γ = 0, the results
reported for gapped (
 �= 0) or ungapped (
 = 0) graphene
can be recovered. For 
 = 0, the results (9) and (13) give

TABLE I. Density of states, D(ε), and doping electron density
n in terms of the Fermi energy εF = μ(0), for gapped and/or tilted
Dirac systems.

System D(ε) n


 = 0, γ = 0 2|ε|
π (h̄vF )2

ε2
F

π (h̄vF )2


 �= 0, γ = 0 2|ε|�(|ε|−
)
π (h̄vF )2

ε2
F −
2

π (h̄vF )2


 = 0, γ �= 0 2|ε|
π (h̄vx )(h̄vy )(1−γ 2 )3/2

ε2
F

π (h̄vx )(h̄vy )(1−γ 2 )3/2


 �= 0, γ �= 0 2|ε|�(|ε|−
̃)
π (h̄vx )(h̄vy )(1−γ 2 )3/2

ε2
F −
̃2

π (h̄vx )(h̄vy )(1−γ 2 )3/2

the DOS and the doping density of the tilted system. Table I
summarizes the expressions D(ε) and n when γ
 = 0 and
γ
 �= 0.

In Fig. 1(a), we show the DOS for several Dirac ma-
terials. The gapless cases exhibit the usual linear behavior
with energy (green solid and dashed lines). The differ-
ence in slope arises from two factors: (i) the factor (1 −
γ 2)−3/2 due to the tilting, and (ii) the anisotropy of the
velocity. This can be interpreted geometrically by noting
that D(ε) ∝ dA/dε, where A = πab is the area of the el-
lipse with semiaxis a =

√
ε2 − 
̃2/[(h̄vx )

√
1 − γ 2] and b =√

ε2 − 
̃2/[(h̄vy)(1 − γ 2)], which is generated by the cut
ε

ξ
λ(k) = ε of any of the tilted bands. The anisotropy intro-

duces a further rise in the DOS as the velocity vF of isotropic
bands is replaced by the geometric mean,

√
vxvy. Finally, the

DOS displays a step in the massive cases (purple and green
dashed lines).

In Fig. 1(b), we present the corresponding chemical poten-
tials μ(T ) calculated from Eq. (14) at a fixed positive value
of εF . The function μ(T ) remains positive in all cases. In the
absence of tilting, the presence of a gap leads to a more rapid
decrease of μ(T ) as a function of temperature compared to
the simplest case of graphene, due to the vanishing density of
states in the region, |ε| < 
. However, in the case of massive
tilting (γ
 �= 0), the rate of decrease of μ(T ) decelerates
compared to gapped graphene, as the window of the vanishing
density of states is reduced to |ε| < 
̃. This behavior should
be contrasted with certain direct-band-gap transition-metal
dichalcogenides with broken electron-hole symmetry, such
as MoS2, where the chemical potential for electron doping
switches from positive to negative at sufficiently high temper-

FIG. 1. (a) Density of states and (b) chemical potential μ(T )
of several Dirac materials: graphene (vx = vy, γ = 
 = 0), gapped
graphene (vx = vy, γ = 0, 
 �= 0), tilted (8-Pmmn borophene, vx �=
vy, γ �= 0,
 = 0), and massive tilted (vx �= vy, γ �= 0, 
 �= 0), with
εF = 110 meV. For the gapped cases, we take 
 = 100 meV.
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TT

FIG. 2. Optical reflectivity R(ω) and its thermal derivative 
R/R
for several temperatures of the sample at normal incidence, corre-
sponding to (a),(b) graphene and (c),(d) a gapless tilted anisotropic
system (borophene 8-Pmmn). The insets illustrate the energy bands
in each case. We use εF = 120 meV and 
T = 1 K.

atures [56]. It is worth noting that the function � in Eq. (14)
becomes independent of tilting when 
 = 0. Thus, for a
fixed Fermi energy, the transcendental equation for μ(T ) is
exactly the same for the gapless cases with γ = 0 or γ �= 0,
as Fig. 1(b) illustrates. If we instead calculate μ(T ) from
Eq. (13) by fixing n, it would show different behavior for each
case.

In Fig. 2, the spectrum of reflectivity R and the corre-
sponding thermal difference, 
R/R, are shown for gapless
Dirac systems and several temperature values at fixed 
T .
Figure 2(a) shows the isotropic case of doped graphene with
a single optical threshold at frequency 2εF in the reflectivity
spectrum at zero temperature. As the temperature increases,
the spectral signature of the van Hove singularity is smoothed
due to thermal broadening. However, the modulated spectrum
shows a sharp feature around 2εF [Fig. 2(b)] that is still dis-
cernible for high temperatures. When the Dirac cone is tilted,

FIG. 3. (a) Optical reflectivity R(ω) and (b) its thermal deriva-
tive 
R/R for several temperatures of the sample, corresponding
to gapped graphene, with εF > 
. We take εF = 170 meV, 
 =
100 meV, and 
T = 1 K.

the optical threshold at twice the Fermi energy splits into a
couple of critical frequencies, h̄ω± = 2|εF |/(1 ∓ γ ) [21,22],
as shown in the spectrum of reflectivity at zero temperature
in Fig. 2(c). The sharp definition of such features is rapidly
lost with increasing temperature. Notwithstanding, the ther-
mal difference emphasizes h̄ω±, as expected [Fig. 2(d)].

The case of a gapped material with cones without tilting
is illustrated in Fig. 3 for gapped graphene. The spectra look
similar to those of the gapless graphene [Figs. 2(a) and 2(b)],
but now a feature appears at the energy gap 2
 due to the
onset for interband transitions. If εF lies within the gap, then
this onset is the only salient feature in the spectra.

Figure 4 shows the results for a massive tilted system
(γ
 �= 0), corresponding to the cases εF > 
 [Figs. 4(a)
and 4(b)] and 
̃ < εF < 
 [Figs. 4(c) and 4(d)]. In the former
case, the joint density of states (JDOS) at zero temperature
displays two van Hove singularities at the energies [22]

h̄ω± = 2

1 − γ 2

(
|εF | ± γ

√
ε2

F − 
̃2

)
, (15)

and the optical conductivity tensor looks qualitatively similar
to that of the case 
 = 0, γ �= 0 [Fig. 2(c)] [21,22]. As in the
case of gapped graphene (Fig. 3), the reflectivity spectrum and
its thermal difference show an optical feature at 2
 due to the
onset of interband transitions. In contrast, in the latter case, the
JDOS develops three critical points, i.e., at 2
, h̄ω−, and h̄ω+,
and a reduced overall size in comparison to the cases εF < 
̃

and εF > 
. Moreover, the number of interband transitions
is strongly diminished between h̄ω− and h̄ω+ because the k
space available for transitions is considerably reduced. This
behavior and the appearance of three critical points constitute
an optical signature of the indirect gap [22]. As can be seen in
Fig. 4(c), the feature at h̄ω− is lost even at small temperatures,
and the derivative spectra do not clearly resolve the criti-
cal frequencies [Fig. 4(d)]. Moreover, besides the expected
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FIG. 4. Optical reflectivity and thermal derivative of a massive
tilted Dirac system (
 = 100 meV) for several temperatures when
the Fermi energy lies (a),(b) above the gap εF > 
 (with εF =
170 meV) and (c),(d) in the indirect zone 
̃ < εF < 
 (with εF =
95 meV). The velocities vi are taken as in borophene, and 
T = 1 K.

broadening, the reflectivity R(ω, T ) increases slightly with
temperature. This is because as the temperature increases,
the peaked function ∂ f /∂μ′ = {4kBT cosh2[μ(T ) − μ′]}−1 is
sampling the zero-temperature response σxx(ω, 0, μ′) in a μ′
region where it appreciably increases because of the signifi-
cant increase of the overall size of the JDOS when μ′ moves
out of the indirect zone, 
̃ < μ′ < 
, in the integral (4) [22].
Such a gradient is a consequence of the simultaneous presence
of tilting and gap, which introduces a new and narrow k-space
region for allowed transitions, between the more extended
regions corresponding to μ′ < 
̃ and μ′ > 
. Quantitatively,
the integral (4) increases and causes a mild increase in re-
flectivity, as is shown in Fig. 4(c). This is in contrast to the
situation observed in Fig. 4(a), where the convolution process
involves a μ′ region where the JDOS and the zero-temperature
σxx do not present significant variation of its magnitude,
leading just to a broadening. Note, however, that at finite
temperature, the indirect nature of the gap is still traceable

from the spectra in the case εF > 
 [Figs. 4(a) and 4(b)]
because the presence of the two features at h̄ω± suggests tilted
cones, while the discontinuity at 2
 reflects a gapped system.

For a doped system at finite temperature, the knowledge
of the critical frequencies ω± from the thermal difference
spectrum suggests an efficient way to find the tilting parameter
γ and the energy gap εg = 2
̃. Using the definition of the kth
power mean, Mk = {[(h̄ω+)k + (h̄ω−)k]/2}1/k , we find, from
Eq. (15),

γ 2 = 1 − 2|εF |/M1, (16)

εg = 2|εF |
(

M−1 − 2|εF |
M1 − 2|εF |

)1/2

, (17)

where M1 = (h̄ω+ + h̄ω−)/2 and M−1 =
2(h̄ω+)(h̄ω−)/(h̄ω+ + h̄ω−) are the arithmetic and harmonic
means of the numbers h̄ω±, respectively.

We remark that Eqs. (16) and (17) are not restricted to
the thermal differential technique that we propose; any op-
tical method capable of critical frequencies determination
could be useful to find the parameters γ and 
̃ through
these equations. Here, we investigate an optical spectroscopy
sensitive to temperature dependence and exemplify its use
with massive tilted Dirac systems, although it could be
applied in similar scenarios. This should be compared to
the common use of differential techniques in 2D materi-
als, oriented to mainly determine the degree of in-plane
anisotropy.

In summary, we explore the joint density of states of doped
massive tilted 2D Dirac systems through the temperature de-
pendence of the reflectivity spectrum R(ω, T ). The tilt of
the bands increases the density of states and decreases the
chemical potential function μ(T ). On the other hand, the
indirect gap of the energy dispersion notably modifies the op-
tical conductivity spectrum as a function of the Fermi energy.
Based on the difference of the reflectivity when the sample
is held at two close temperatures, we obtain the fractional
change 
R/R, which emphasizes the spectral structure asso-
ciated to interband transitions, and probe its change due to
variation of the Fermi level. The measurement of the critical
energies in the optical response would allow one to esti-
mate the magnitude of the tilting parameter and energy gap.
Our results suggest that thermal difference spectroscopy is
a plausible optical technique to identify such critical points
despite the broadening of the spectra at finite temperature.
The overall size of the derivative spectra shown here is of
the same order of magnitude of the measured signals attained
with current tools and they should be experimentally acces-
sible. It was reported in [33] that Fermi-liquid corrections
to the nonlocal optical conductivity could allow pure optical
determination of the tilt. In light of our findings, the differ-
ential technique that we propose appears as an alternative.
We hope that our work will stimulate further experiments and
theory.

M.A.M. acknowledges support from the U.S. Department
of Energy, Office of Basic Energy Sciences, Materials Science
and Engineering Division.
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