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We consider macroscopically large 3-partitions (A, B,C) of connected subsystems A ∪ B ∪ C in infinite
quantum spin chains and study the Rényi-α tripartite information I (α)

3 (A, B,C). At equilibrium in clean 1D
systems with local Hamiltonians it generally vanishes. A notable exception is the ground state of conformal
critical systems, in which I (α)

3 (A, B,C) is known to be a universal function of the cross ratio x = |A||C|/[(|A| +
|B|)(|C| + |B|)], where |A| denotes A’s length. We identify different classes of states that, under time evolution
with translationally invariant Hamiltonians, locally relax to states with a nonzero (Rényi) tripartite information,
which furthermore exhibits a universal dependency on x. We report a numerical study of I (α)

3 in systems that are
dual to free fermions, propose a field-theory description, and work out their asymptotic behavior for α = 2 in
general and for generic α in a subclass of systems. This allows us to infer the value of I (α)

3 in the scaling limit
x → 1−, which we call “residual tripartite information”. If nonzero, our analysis points to a universal residual
value − log 2 independently of the Rényi index α, and hence applies also to the genuine (von Neumann) tripartite
information.

DOI: 10.1103/PhysRevB.108.L161116

Introduction. The concept of entanglement was introduced
to distinguish quantum systems from classical ones [1,2].
With the development of quantum information theory [3,4],
such a peculiarity of the quantum world was recognized as a
resource, and the quantification of the entanglement became
a key question [5]. Various measures of entanglement have
then been put forward. In addition to their original purpose,
the tools studied in quantum information attracted the at-
tention of the community working on quantum many-body
systems. It was indeed realized that the entanglement mea-
sures unveil universal properties. A famous example in one
dimension (1D) is the von Neumann entropy of an interval in
the ground state of a (conformal) critical system, which has
a typical logarithmic growth with the length, proportional to
the central charge of the underlying conformal field theory
(CFT) [6–8]. Another quantity that attracted some attention
(unfortunately under different names) is the tripartite informa-
tion, which contains more information about the underlying
CFT [9–11] but not only that. In two dimensions (2D), the
tripartite information was shown to be sensitive to topological
order and renamed for that reason topological entanglement
entropy [12]. Concerning higher dimensions, we mention that,
in Ref. [13], authors investigated the tripartite information in
generic quantum field theories (QFTs; see also Ref. [14]),
among which those with holographic duals hold a special
place [15]. More recently, a type of tripartite information was
proposed as a diagnostic of scrambling [16–18].

The tripartite information is defined as [4]

I3(A, B,C) = I2(A, B) + I2(A,C) − I2(A, B ∪ C), (1)
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where I2(A, B) = S(A) + S(B) − S(A ∪ B) denotes the mu-
tual information and S(A) ≡ S1[ρA] = −tr[ρA ln ρA] is the von
Neumann entropy of subsystem A with density matrix ρA. It
is defined to cancel the extensive and boundary contributions
to the entropies. Moreover, just as the mutual information
quantifies the extensiveness of the von Neumann entropy, so
I3(A, B,C) quantifies the (bi)extensiveness of the mutual in-
formation after fixing one of the subsystems. We focus on the
case in which A, B, and C are adjacent intervals in an infinite
spin chain and assume that their lengths are asymptotically
large:

In noncritical 1D systems at equilibrium (and with clustering
properties), I3(A, B,C) approaches 0 as the lengths approach
infinity (we are not aware of exceptions). A more interesting
behavior is observed in the ground state of a critical system
with a low-energy CFT description, where conformal sym-
metry forces I3(A, B,C) to be a function of the cross ratio
x = |A||C|

(|A|+|B|)(|B|+|C|) [11]. That is to say, the limit

I3(A, B,C)
|A|,|B|,|C|→∞−−−−−−−−−−−−−−−→

|A||C|/[(|A|+|B|)(|B|+|C|)]=x
G(x) (2)

exists, is universal, and can in principle be computed within
the underlying CFT. Some difficulties in calculation have not
yet been overcome. The most important intermediate results
concern the Rényi generalization of the tripartite information,
which we will refer to as Rényi-α tripartite information and
indicate by I (α)

3 (A, B,C). This has the same definition as
I3(A, B,C) with the von Neumann entropy replaced by the
Rényi-α entropy Sα[ρ] = 1

1−α
ln tr[ρα]. Ideally, the tripartite

information is recovered in the limit α → 1+. Provided that
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the intervals A, B,C are adjacent [19], in a CFT, also the
Rényi-α tripartite information depends only on the cross ratio
x, i.e., I (α)

3 (A, B,C) = Gα (x), and in some theories, it has been
computed exactly for generic integer α > 1 [10,22–24]. Just
as G(x) does for I3, so Gα (x) describes the scaling limit of I (α)

3
in any spin chain with the same underlying CFT [25–29].

In this letter, we investigate the limit of infinite time of I (α)
3

after global quenches with local Hamiltonians. The entropies
are known to become extensive [30–32], and often, the system
exhibits typical features of thermal states [33–35]. We discuss
when I (α)

3 should be expected not to vanish (in contrast to
thermal states) and argue that it captures universal properties.
We point out that the residual tripartite information with a
discrete value − ln 2 can emerge.

The model. We focus on two classes of noninteracting spin
chains. The first is the generalized XY model [36], which is
mapped into free fermions by a Jordan-Wigner transformation
a2�−1 = ∏

j<� σ
z
j σx

�, a2� = ∏
j<� σ

z
j σ

y
�, where a� are Ma-

jorana fermions satisfying {a�, an} = 2δ�nI, and σα
� are Pauli

operators. The most studied models of this class are described
by the quantum XY Hamiltonian [37] in a transverse field:

H =
∑

�
Jxσ

x
�σ

x
�+1 + Jyσ

y
�σ

y
�+1 + hσz

�. (3)

This includes the XX model (Jx = Jy) and the transverse-field
Ising model (Jy = 0).

The second class of systems is mapped into free fermions
by the Kramers-Wannier transformation τx

� = ∏
j�� σ

x
j , τ

y
� =

(
∏

j<� σ
x
j )σ

y
�σ

z
�+1 (for the sake of clarity, we have used a

different notation τα
� for the Pauli operators), followed by the

aforementioned Jordan-Wigner transformation. An example is
the dual XY model [38,39]:

H =
∑

�
τx

�−1

(
JxI − Jyτ

z
�

)
τx

�+1. (4)

Hamiltonians like Eq. (4) possess semilocal conserved opera-
tors [39], which enable symmetry-protected topological order
after global quenches [40]. Since the tripartite information
was recognized as an indicator of topological order in 2D [12],
how I3 behaves after a quench in this second class of models
is a compelling question.

Homogeneous quench from a critical ground state. The
first example we consider is the paradigm of global quench:
the ground state of a translationally invariant Hamiltonian is
allowed to evolve under a different translationally invariant
Hamiltonian [41]. We focus on generalized XY models. In
generic situations, I (α)

3 vanish (both at the initial time and) at
infinite time after the quench (cf. Refs [25,42]). We are about
to uncover exceptions when the initial state is the ground state
of a conformal critical system.

In noninteracting models, the corresponding central charge
c is a multiple of 1

2 . Our numerical analysis shows that gener-
ically I (α)

3 are nonzero also at late times, independently of
whether the postquench Hamiltonian is critical or not, just
provided that c � 1 in the initial state. This condition seems to
be related to how slow the slowest spatial connected correla-
tions decay. Specifically, after quenches from critical ground
states there are two-point correlation functions that decay with
the distance as a power law. In all the cases investigated with
the initial state in the Ising universality class (c = 1

2 ), we find
that the spin-connected correlations in the stationary state do

FIG. 1. Rényi-2 tripartite information for the quench in the
XY model (Jx, Jy, h) : (1, 1, 1) → (1, 0.5, 0.5) for |A| = |C| ∈
{45, 90, 180, 360} and variable |B|. The solid curve is a predic-
tion from Eq. (9). Inset: Relative error η

(2)
3 as a function of l =

min(|A|, |B|, |C|) for all configurations with length multiples of 5 in
the range [5, 120]; the color and the size of the points varies linearly
in x; the dashed line is a guide for the eye ∼1/l .

not decay more slowly than 1/r4, where r is the distance; this
is not enough to generate nonzero tripartite information. With
c � 1 in the initial state, we find instead that the slowest spin
correlations generally decay as 1/r2, and I (α)

3 become nonzero
(negative). Figure 1 shows I (2)

3 at late times after a quench
in the XY model. Remarkably, I (2)

3 remains a function of the
cross ratio. This is observed also for larger values of α and
other choices of the Hamiltonian parameters; in addition, the
data seem to approach curves that depend on few details of the
system [43].

Bipartitioning protocol. Another type of global quench that
has attracted a lot of attention is the time evolution after
joining two globally different states [44]. We consider here
the basic case in which the initial state consists of a domain of
spins aligned along z joined with a domain of spins aligned in
the opposite direction. If we take the Hamiltonian of the XY
model with Jx �= Jy the quench is global; indeed, the initial
state is locally different from any excited state of the Hamilto-
nian. We stress that the initial state is not critical, and we are
not aware of any CFT description of the infinite time limit.
Figure 2 shows the Rényi-3 and Rényi-4 tripartite information
in the nonequilibrium steady state emerging at infinite time. In
agreement with the previous discussion, the slowest connected
correlations decay as 1/r2, and we obtain nonzero I (α)

3 . Again,
the latter become functions of the cross ratio and seem to
remain so even in more sophisticated bipartitioning protocols
[43]. In the XY model considered here, the asymptotic curves
do not even seem to depend on Jx and Jy.

Quench with symmetry-protected topological order. We
consider time evolution under Eq. (4) of two initial states: (a)
the product state with all spins aligned in the z direction (cf.
Ref. [40]) and (b) the same as (a) with one spin flipped (cf.
Ref. [39]). In case (a), I (α)

3 vanish. In case (b), I (α)
3 become

nonzero and seem to approach the same curves as in the
domain-wall quench above. Since the latter is dual to case (b)
[39], our analysis suggests that I (α)

3 are not affected by the
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FIG. 2. Rényi-α tripartite information at infinite time after the
quench from |. . . ↑↑↓↓ . . .〉 under the XY Hamiltonian in Eq. (3),
with (Jx, Jy, h) = (1, 0.5, 0) for |A| = |C| ∈ {50, 100, 150, 200} and
variable |B|. The solid curves are predictions from Eq. (6).

Kramers-Wannier duality. A more detailed analysis of global
quenches into this kind of systems is reported in Ref. [45].

Toward universality. All systems investigated with nonzero
I (α)
3 exhibit extensive entropies with logarithmic corrections,

which can in turn be traced back to the presence of disconti-
nuities in the filling function (or Fermi weight) ϑ (k) [46,47].
We remind the reader that, in an integrable model with a
thermodynamic Bethe ansatz description [48,49], filling func-
tions characterize excited states in the thermodynamic limit
and represent the fraction of particle excitations per given
momentum [50]; in noninteracting models, ϑ (k) ∼ 〈b†

kbk〉 is
the coarse-grained fermion occupation number. For example,
in the Fermi sea equivalent to the ground state of the XX
model in zero field, we have ϑ (k) = 1+sgn[cos(k)]

2 . We are not
aware of theorems connecting discontinuities in ϑ (k) with
conformal invariance when |2ϑ (k) − 1| �= 1, but we stress
that discontinuities produce nevertheless algebraically decay-
ing correlations.

For the sake of simplicity, we restrict ourselves to filling
functions with symmetric discontinuities limk→k±

F
[2ϑ (k) −

1] = tanh(η±
kF

), with η−
kF

= −η+
kF

. We find that the large-
distance properties of the state can be described by a QFT of
massless Dirac fermions, whose Euclidian action reads [43]

S =
∫

dx
∫

dτ
∑

kF

∑
s=±

ψ
†
s,kF

[∂τ + isv(kF)∂x]ψs,kF , (5)

where kF distinguishes theories emerging in the ex-
pansion around different discontinuities, v(kF) is the
velocity, and the fields satisfy standard anticommuta-
tion relations {ψs,kF (x), ψ†

s′,k′
F
(y)} = δss′δkF,k′

F
δ(x − y)I,

{ψs,kF (x), ψs′,k′
F
(y)} = 0. The standard procedure to compute

the Rényi entropies of subsystems starts with reinterpreting
the moments of the reduced density matrix tr[ρα

X ] as partition
functions (cf. fig. 1 of Ref. [11]) in models formed by α

copies of the original one under the condition that each field
is identified with the successive copy of itself when crossing
the space-time lines corresponding to X at fixed (imaginary)
time τ = 0. The moments are finally conveniently identified
with the correlation functions of local branch twist fields
(associated with the global symmetry of exchange of the

copies) [51], which are localized at the boundaries of X and
implicitly defined through the partition functions.

In spin chains, if the subsystem consists of two disjoint
blocks, there is an additional complication related to the non-
locality of the Jordan-Wigner transformation; indeed, there
are spin operators in X whose fermionic representation in-
cludes fermions lying in between the blocks. This problem can
be overcome by writing the reduced density matrix as a linear
combination of four density matrices [25]. One should then
generalize the field theory description to capture such a richer
structure—see, e.g., sec. 4 of Ref. [29]. For example, one also
encounters terms of the form tr[· · · PAρ

n j

A∪CPAρ
n j+1

A∪C · · · ], where
PA counts the parity of the fermions in the first block A. In
the QFT language, PA corresponds to the transformation that
changes the sign of the field when crossing A. In general, there
are also other contributions with the same root, but they are
multiplied by expectation values of strings of Pauli matrices,
which in our nonequilibrium setting decay exponentially with
the separation. Accordingly, these terms can be dropped (see
Ref. [43] for more details). This is why, despite the similarity
with Fermi seas, condition |η±

kF
| → ∞ after global quenches

generally leads to an unusual tripartite information: The value
of the filling function at the discontinuities does not charac-
terize the long-distance properties of all the relevant degrees
of freedom, as a nontrivial behavior of the filling function
between the discontinuities has the strong effect to turn some
algebraically decaying correlations into exponentially decay-
ing ones.

In our situation, in turn, a part of the structure behind
the QFT procedure sketched above is lost. Specifically, the
action of the α-copy model is still simply the sum of α

copies of S in Eq. (5), but only a physical part of the fields,
namely, �phys

kF
(x) = ∑

s[1 + exp(2sη+
kF

)]−1/2ψs,kF (x), satisfies
the standard conditions relating different copies on X at zero
imaginary time (whereas the unphysical parts of the copies
are independent). The same subtlety applies to PA, which
changes only the sign of the physical fields. A direct con-
sequence of having physical and unphysical fields is that
the energy density of the α-copy model does change when
crossing X at τ = 0, undermining, e.g., the interpretation
of tr[ρα

X ] as the correlation function of local branch twist
fields [51]. As detailed in Ref. [43], however, it is possible
to work out the asymptotic behavior of the Rényi entropies
of connected and disconnected spin blocks using the re-
solvent method, like what was done in Refs. [52–55] for
fermions.

Results. We announce here the simplest results, as they
are already sufficient to unveil the most striking feature of
the tripartite information. To start with, we focus on the limit
|η±

kF
| → ∞. Since the same condition is satisfied in a Fermi

sea, we can use the correspondence with the ground state of
a CFT and take advantage of the results of Ref. [29], which
computed the terms tr[· · · PAρ

n j

A∪CPAρ
n j+1

A∪C · · · ] contributing to
the tripartite information in the CFT ground state one by one
(together with terms that do not contribute in our case).

The resulting prediction reads

Gα(x)
|η±

kF
|→∞

−−−−−→
ln {∑

δ j∈{0, 1
2 }

j=1,...,α−1

[
�(�δ|τ̂x )
�(�0|τ̂x )

]ν}
α − 1

− ln 2, (6)
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where τ̂x is the (α − 1) × (α − 1) period matrix of the Rie-
mann surface Rα with elements:

[τ̂x]�n = 2i

α

α−1∑
k=1

sin
(

πk
α

)
cos

[ 2πk(�−n)
α

]P(k/α)−1(2x−1)
P(k/α)−1(1−2x) . (7)

Here, Pμ(z) denotes the Legendre functions, �(�z, M ) =∑
�m∈Zα−1 exp(iπ �mt M �m + 2π i �m · �δ) is the Siegel theta func-

tion, and ν is the number of discontinuities of the filling
function (assuming |η±

kF
| → ∞ for each one of them). The

quench in Fig. 2 can be used to check this prediction; in-
deed, |η±

kF
| → ∞. The agreement between numerical data and

prediction is excellent. We stress that, contrary to the CFT
analog, our system does not exhibit crossing symmetry; in-
deed, Gα (x) �= Gα (1 − x).

Remarkably, limx→1− Gα (x) = − ln 2 for every α; there-
fore (by the replica trick), we conclude that the genuine
tripartite information also approaches the same value:

I3 = lim
x→1−

G(x) = − ln 2 . (8)

This limit corresponds to small separation between the blocks
compared with their size, i.e., to the limit 1 � |B| � |A|, |C|.
We call it residual tripartite information because x is exactly
equal to 1 only when |B| = 0, for which the tripartite infor-
mation is zero by definition. Such unusual nonzero residual
tripartite information should be contrasted to the ordinary zero
value, which is found both in other nonequilibrium settings,
such as after translationally invariant quenches from ground
states of gapped Hamiltonians and critical Hamiltonians with
c = 1

2 , and in equilibrium at any temperature, independently
of criticality.

Equation (8) is the main result of these notes. In all in-
vestigated systems with nonzero tripartite information, our
analysis points to a universal residual tripartite information
equal to − ln 2, irrespectively of the quench protocol. In sup-
port of it, we also announce G2(x) with generic η−

kF
and η+

kF
:

G2(x) = ln
[ 1+(1−x)γ

2

] ⇒ G2(1−) = − ln 2, (9)

where γ = ∑
kF

{ 1
π

arg[sin( π
4 + iη+

kF
)/ sin( π

4 + iη−
kF

)]}2. Fig-
ure 1 shows the excellent agreement of the prediction from
Eq. (9) with numerical data.

Numerical method. The Rényi entropies have been nu-
merically evaluated using their expressions in terms of the
fermionic correlation matrix ��n = δ�n − 〈a�an〉. The latter
has been computed directly in the generalized Gibbs ensemble
emerging in the limit of infinite time [56,57]. For the entropy
of connected subsystems we used Sα (X ) = tr{ln[( IX +�X

2 )α +
( IX −�X

2 )α]}/[2(1 − α)], where �X is the correlation matrix in
X [58,59]. For the entropy of disjoint blocks in the generalized
XY model, we used the algorithm proposed in Ref. [25],
which allows one to express Sα (A ∪ C) in terms of four matri-
ces: �1 ≡ �A∪C , �2 ≡ PA�1PA, �3 ≡ �1 − �A∪C,B�−1

B �B,A∪C ,
and �4 = PA�3PA, where �A,A′ is the correlation matrix in
which the row and column indices run in A and A′, respec-
tively (we refer the reader to sec. 3 of Ref. [25] for the formula
with α = 2, 3, 4 [60]). The terms claimed before to survive the
infinite time limit are those constructed with �1 and �2 only.
For disjoint blocks in the dual XY model, we have generalized
the previous algorithm following Ref. [40], and it is detailed
in Ref. [45].

Discussion. We have shown that the Rényi-α tripartite in-
formation captures universal properties in the limit of infinite
time after a global quench whenever the correlations in the
stationary state decay sufficiently slow with the distance. We
have provided evidence that I (α)

3 can be obtained within a QFT,
and in some cases, we have been able to predict their asymp-
totic behavior. We think that the proposed framework could
be generalized at least to interacting integrable systems that
can be described by thermodynamic Bethe ansatz, which have
similar relaxation properties. If nonzero, we always found
negative I (α)

3 ; we wonder how general this property is in our
setting. Finally, we defined the residual tripartite information
I3, which we found either equal to 0 or to − ln 2. We leave
the question open of which values I3 could attain with inter-
actions.
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