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We find that, in the presence of weak incoherent effects from surrounding environments, the low-temperature
conductance of nearest-neighbor tight-binding fermionic chains exhibits a counter-intuitive monotonic growth
with system length when Fermi energy is near the band edges, indicating a superballistic scaling. This fascinating
environment-assisted superballistic scaling of conductance occurs over a finite but extended regime of system
lengths. This regime can be systematically expanded by decreasing the coupling to the surrounding environments
and by reducing temperature. This behavior is robust against weak disorder and slight shifts from band edge,
although the extent of the superballistic scaling regime is affected by them. We give precise predictions of how
the superballistic scaling regime depends on coupling to surrounding environments, disorder strength, shifts
from band edge, and temperature. There is no corresponding analog of this behavior in isolated systems. The
superballistic scaling stems from an intricate interplay of incoherent effects from surrounding environments and
exceptional points of the system’s transfer matrix that occur at every band edge.
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Introduction. The resistance of a normal metal wire is
proportional to its length, indicating diffusive transport. As
a result, the metal’s resistivity, given by resistance per unit
length per unit cross-sectional area, is well defined. Deviation
from this diffusive behavior, which leads to ill-defined resis-
tivity, can be seen in a variety of situations, particularly in
low-dimensional systems, and has been of great research in-
terest [1–12]. Even outside of the diffusive regime, resistance
generically increases with system length. The main exception
is that of perfectly ballistic transport where resistance does not
scale with system length [13–17].

In this letter, we demonstrate the possibility of behavior
different from all of the above: resistance of a wire can decay
monotonically over a finite but large regime of system lengths.
In other words, there exists a regime in which conductance,
i.e., the inverse of resistance, can increase monotonically
with system length, thereby exhibiting superballistic scaling.
This rather counter-intuitive behavior occurs close to zero
temperature near the band edges of the system, assisted by
weak incoherent effects from the surrounding environments.
The regime exhibiting superballistic scaling systematically
expands on weakening the system’s coupling to its surround-
ing environments without completely isolating it from them.

We find this intriguing behavior by combining con-
cepts from non-Hermitian physics [18–21] with those from
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quantum chemistry and mesoscopic physics. Borrowing from
the latter, we model the surrounding environments by Büttiker
voltage probes (BVPs) [22–37]. We show that the superballis-
tic scaling of conductance near every band edge arises from
an interplay of the incoherent effects from the BVPs and
exceptional points (EPs) of the system’s transfer matrix that
occurs at every band edge [38]. The transfer matrix is a non-
Hermitian matrix that appears in scattering theory. It plays a
fundamental role in determining the band structure of the sys-
tem and its transport properties [39–41]. To our knowledge,
the role of non-Hermitian properties of the transfer matrix
on environment-assisted transport has remained completely
unexplored, despite the latter being investigated both theo-
retically and experimentally, across physics, chemistry, and
biology [27–29,35,42–61].

It is worth mentioning that the term “superballistic” has
been used in various separate contexts. In some experiments,
conductance larger than the maximum conductance of free
electrons has been termed superballistic [62–64]. In a sepa-
rate set of works, faster-than-ballistic spread of an initially
localized wavepacket has been explored both theoretically
and experimentally [65–67]. However, to our knowledge, the
superballistic scaling of conductance with system length has
not been reported before. Unlike the spread of an initially lo-
calized wavepacket, this feature crucially requires presence of
incoherent effects from surrounding environments and there-
fore cannot be seen in an isolated system.

Lattice chain with BVPs. We consider a nearest-neighbor
tight-binding lattice chain consisting of N sites. For sim-
plicity, we consider the single-band Hamiltonian given by
ĤC = ∑N−1

n=1 g(ĉ†
nĉn+1 + ĉ†

n+1ĉn) + εĤdis, where ĉn is the
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FIG. 1. A schematic of our setup showing a tight-binding chain
subjected to left bath (L), right bath (R), and BVPs, all of which
are at the same inverse temperature β. The left and right baths are
coupled with strength τ , while the nth BVP is coupled with strength
τPν (n). The chemical potential of the probes μn, n = 1, 2, · · · N are
determined by demanding the zero-particle current between nth site
and nth probe.

fermionic annihilation operator at the nth site. The Hamilto-
nian Ĥdis contains random quadratic disorder terms in onsite
energies and hopping. The parameter ε controls the overall
strength of disorder. This chain is attached to a source bath
with chemical potential μL at the left end, i.e, at first site, and
a drain bath with chemical potential μR at the right end, i.e, at
N th site, which drives a current through the chain. Each bath
is modeled via an infinite number of fermionic modes, and
the system bath couplings are taken bilinear and number con-
serving. For simplicity, we consider the wide-band limit, with
τ giving the effective strength of coupling with the left and
right baths. The source and drain can be arbitrarily strongly
coupled, we do not put any restriction on the magnitude
of τ .

This lattice chain is subject to weak incoherent effects from
surrounding environments apart from the source-drain baths.
This is modeled by attaching BVPs at all the sites. These are
baths similar to the source and drain baths, except that their
chemical potentials {μn} are such that there is no average
particle current into each of them. The temperature of all the
baths are considered the same, given by inverse temperature
β. The microscopic Hamiltonian Ĥ for this whole setup can
be written as Ĥ = ĤC + ĤL + ĤR + ∑′ ĤPn + ĤCL + ĤCR +∑′ Ĥ (n)

CP . ĤL is the Hamiltonian of the left bath (source), ĤR is
the Hamiltonian of the right bath (drain), ĤPn is the Hamil-
tonian of the probe attached to the nth site of the system,
ĤCL, ĤCR, and Ĥ (n)

CP are the Hamiltonians which describe the
coupling of central system with source, drain, and nth probe,
respectively, and

∑′ denotes sum over the sites where the
BVPs are attached. A schematic of our entire setup is shown in
Fig. 1. We describe the setup in terms of the retarded nonequi-
librium Green’s function (NEGF) of the system, given by
G(ω) = [ωI−HC −�L(ω) − �R(ω)−∑N

n=1 �Pn (ω)]−1. Here
I is the N × N identity matrix, HC is the N × N single par-
ticle Hamiltonian corresponding to ĤC , and �L(ω), �R(ω),
�Pn (ω) are the retarded self-energy matrices of the left, right,
and probe baths, respectively, the only nonzero elements
of which are [�L(ω)]11 = −iτ/2, [�R(ω)]NN = −iτ/2, and
[�Pn (ω)]nn = −iτPν (n)/2. We will consider both the case of
constant coupling to BVP, i.e, ν (n) = 1, and the case of
disordered coupling to BVP, where ν (n) > 0, but otherwise

random. Let us also define the average coupling to the probes
τP = τPν, where ν is the average value of ν (n).

To describe conductance, we choose μR = εF , μL = εF +
δμ, μn = εF + δμn, where εF is the Fermi energy. The
conductance is then given by Landauer-Büttiker formula as
[22–32,68]

G(εF ) = τ 2|G1N (εF )|2

+ τ 2τP

N∑
n, j=1

ν ( j)|GNn(εF )|2W−1
n j (εF )|Gj1(εF )|2.

(1)

Here the elements of the N × N matrix W (εF ) are

Wn j = −τPν ( j)|Gn j |2, ∀ n �= j,

Wnn = τ (|Gn1|2 + |GnN |2) + τP

N∑
j �=n

ν ( j)|Gn j |2, (2)

where we have suppressed the argument εF for brevity. The
above equations show that, knowing the retarded NEGF, the
conductance in presence of the probes can be obtained. In
absence of the probes [i.e., setting τP = 0], the conductance
is given by G0(εF ) = τ 2|G0

1N (εF )|2, where G0(εF ) is the re-
tarded NEGF in absence of the probes.

Main result. Let ω±
b be the band edges of the system in the

thermodynamic limit in absence of disorder. For our system
ω±

b = ±2g. Then, our main result can be succinctly stated as
follows:

G(ω±
b ∓ η) increases monotonically with N,

∀ N (1)
SB < N < min

{
Nη, Nε, Nβ, N (2)

SB

}
. (3)

Here N (1)
SB ∼ τ

−1/3
P , N (2)

SB ∼ τ
−1/2
P depend only on the aver-

age coupling to the probes, Nη ∼ πη−1/2 depends only on
deviation from band edge, Nε ∼ √

3πε−1/2 depends only on
strength of disorder in the system, Nβ ∼ πβ1/2 depends only
on temperature. Knowing these dependencies on various pa-
rameters, it is clear that this regime can be parametrically
expanded by reducing τP, ε, η, and temperature. Thus, over a
finite but extended regime of system lengths, there can be a su-
perballistic scaling of conductance. Note that the possibility of
such behavior, even in an idealized setting, was not known be-
fore. In the following, we show that this fascinating behavior
is a consequence of EP of transfer matrix occurring at every
band edge. We consider the upper band edge εF = ω+

b . Due to
particle-hole symmetry of the setup, exactly same results are
obtained at the lower band edge εF = ω−

b . Henceforth, we set
the system hopping parameter to g = 1, which therefore sets
our energy scale.

Without disorder, exactly at band edge, zero temperature:
numerical results. First, we present numerical results in the
complete absence of disorder, i.e., ε = 0, constant coupling
to BVP, ν (n) = 1, take β → ∞, and Fermi energy exactly at
upper band edge εF = ω+

b . In Fig. 2(a), we show plots of
conductance with system length, for various small values of
probe strength τP. For small N , we clearly see a remnant of
the subdiffusive scaling G(ω+

b ) ∼ N−2 expected in absence of
probes [38]. After this, we find the surprising superballistic
regime G(ω+

b ) ∼ Nφ , φ > 0 for a finite regime in system
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FIG. 2. (a) Behavior of G(ω+
b ) with system length N for small

values of τP, without any disorder. The black dots show approximate
result obtained on replacing G(ω+

b ) by G0(ω+
b ) (i.e., without the

probes) in Eqs. (1) and (2). (b) Similar plots but at larger values of
τP which captures the eventual crossover to conventional diffusive
regime at large N . (c) The scaling of the start (end) of the superbal-
listic regime N (1)

SB (N (2)
SB ) with τ−1

P , the continuous line showing fit of
τ

−1/3
P (τ−1/2

P ). (d) The orange circles show G(ω+
b ) with disordered but

weak coupling to BVPs (τP = 10−5, ν (n) randomly chosen between
0 and 1). The green squares show the same, with additional small
disorder in the system (ε = 10−4). The light green continuous lines
show results for individual disorder realizations. The blue diamonds
show conductance versus N , without any disorder in the system, but
with slight shift in Fermi energy from band edge (η = 2 × 10−5).
The black dotted plot shows G(ω+

b ) without any disorder, but with
τP → τP = 0.5τP. The vertical green dashed line corresponds to√

3πε−1/2 with ε = 10−4. The vertical blue dot-dashed line corre-
sponds to πη−1/2, with η = 2 × 10−5.

length. The exponent φ is nonuniversal. Importantly, the su-
perballistic regime expands as τP is reduced. Beyond the
superballistic regime, the conductance starts saturating with
system length, eventually decaying as we increase the system
length further. Although not seen in our numerics for small τP

up to the largest accessible N , we expect this slow decay with
system length to eventually lead to standard diffusive behavior
G(ω+

b ) ∼ N−1. This is captured for sufficiently large values of
τP in Fig. 2(b).

To further analyze the superballistic regime, we extract
from our numerics the onset and the termination of this
regime. These correspond to the minimum and the following
maximum of the plots in Fig. 2(a), respectively. In Fig. 2(c),
we plot the starting (ending) system size of superballistic
regime N (1)

SB (N (2)
SB ) as a function of τ−1

P . We find that N (1)
SB ∼

τ
−1/3
P and N (2)

SB ∼ τ
−1/2
P . For τP 
 1, we have τ

−1/3
P 
 τ

−1/2
P ,

which shows that the superballistic regime can be enhanced by
reducing τP. Therefore, the extent of this superballistic regime
NSB = N (2)

SB − N (1)
SB increases as NSB ∼ τ

−1/2
P , with decrease

in τP.

Origin of superballistic scaling: transfer matrix EPs.
For nearest-neighbor one-dimensional systems, the re-
tarded Green’s function G(ω) is the inverse of a tridi-
agonal matrix. Using properties of tridiagonal matri-
ces, in absence of any disorder, the elements of G(ω)
can be written as [68] G
 j (ω) = (−1)
+ j �1,
−1(ω)�N− j,N (ω)

�1,N (ω) ,

where �1,
−1(ω),�N− j,N (ω),�1,N (ω) satisfy the following
equations(

�1,N (ω)
�1,N−1(ω)

)
=

(
1 iτ

2
0 1

)
[T(ω)]N

(
1

− iτ
2

)
,

(
�1,
−1(ω)
�1,
−2(ω)

)
=

(
1 iτ

2
0 1

)
[T(ω)]
−1

(
1
0

)
, (4)

(
�N− j,N (ω)

�N− j−1,N (ω)

)
= [T(ω)]N− j

(
1

− iτ
2

)
. (5)

In above, T(ω) is a 2 × 2 matrix given by T(ω) = T0(ω) +
iτP
4 (I2 + σz ), where T0(ω)=ω

2 (I2 + σz ) − iσy is the transfer
matrix of the tight-binding chain, I2 is 2 × 2 identity matrix
and σx,y,z are the Pauli matrices. The above equations show
that the nature of T(ω) controls the system size scaling of
various elements of the retarded NEGF in presence of BVPs,
while T0(ω) does the same in their absence. It can be eas-
ily checked that T0(ω) has EPs at ω = ω±

b . As has been
recently shown [38], this behavior is a consequence of an
antilinear symmetry of transfer matrices of nearest-neighbor
tight-binding chains, which makes them pseudo-Hermitian. It
holds in general even for multiband cases. As a consequence,
in absence of the probes, conductance shows a universal sub-
diffusive scaling G0(ω+

b ) ∼ N−2 at every band edge [38]. In
our plots in Fig. 2, this is seen to survive up to a finite size
N (1)

SB for small τP.
For small τP and N 
 N (2)

SB the leading order behavior
should be captured by using T(ω+

b ) � T0(ω+
b ). This is same

as using Eqs.(1), (2), with G(εF ) replaced by G0(εF ). This
approximation can also be justified using a more careful,
order-by-order perturbation in τP [68]. Conductance calcu-
lated in this approximation is shown by the black dots in
Fig. 2(a). Indeed they overlap with the exact results in the
entire subdiffusive and the superballistic regimes. This clearly
establishes that the superballistic regimes stems from how
the second term in Eq. (1), which embodies the effect of
BVPs, is affected by the transfer matrix EP occurring at the
band edge.

To explain the scaling of N (1)
SB with τP, we look at the

condition for observing the subdiffusive scaling. Clearly, this
is seen in the regime where the effect of the probes is neg-
ligible. So, we calculate the expression for conductance up
to the lowest order in τP. Since the second term in Eq. (1)
is explicitly proportional to τP, in calculating all required
matrix elements for that term, we simply set τP to zero. From
Eq. (2), we see that this makes W (εF ) diagonal, which leads

to G = τ 2|G0
1N |2 + ττP

∑N

=1

|G0

N |2|G0

1
|2
|G0

1
|2+|G0

N |2 + O(τ 2

P ), where we

have suppressed the argument εF for brevity. Due to transfer
matrix EP at εF = ω+

b , it can be checked that the second
term in above expression diverges as N , while the first term
decays as N−2 [68]. Clearly, N (1)

SB , which gives the end of the
subdiffusive regime and the beginning of the superballistic
regime, must correspond to the case where the two terms are
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comparable τN (1)
SB

−2 ∼ τPN (1)
SB . This directly gives N (1)

SB ∼
τ

−1/3
P , as has been numerically seen in Fig. 2(c). Thus, we

conclude that the superballistic scaling comes from the second
term in Eq. (1), in the regime where the EP of the transfer
matrix governs its leading behavior.

To explain the scaling of N (2)
SB with τP, we note that the

presence of the probes makes T(ω) always diagonalizable,
with magnitude of one of the eigenvalues >1, as can be
easily confirmed by direct calculation. Consequently, it can
be shown that for |
 − j| large, |G
 j (ω)|2 ∼ e−|
− j|/ξ , with
ξ−1 = 2κ1 = 2 log |λ+| [68] where λ+ is the eigenvalue of
T(ω) with higher magnitude. Whenever this is the case, the
conductance in Eq. (1) gives diffusive scaling G(ω) ∼ N−1 for
N � ξ , as has been shown in seminal work [32]. This holds
for all values of ω. Hence, in presence of probes, at large
enough system sizes, we always get diffusive behavior, as
shown in Fig. 2(b). Thus, the superballistic scaling is observed
for N � ξ . So, we have N (2)

SB ∼ ξ . At band edges, to leading or-
der on τP, the magnitude of eigenvalues of T(ω) can be shown
to be |λ±| � 1 ± √

τP. This leads to ξ−1 = 2 log |λ+| � 2
√

τP

[68], which then gives N (2)
SB ∼ τ

−1/2
P , as numerically seen in

Fig. 2(c).
Effect of small disorder, small shifts from band edge, finite

temperature. If disordered couplings to BVPs are consid-
ered, we numerically see that up to the superballistic regime,
the conductance is almost exactly the same as the case of
uniform coupling with the average strength, i.e., τP → τP.
Figure 2(d) (orange circles) shows a representative plot, which
completely overlaps with the corresponding uniform coupling
result (black dotted line).

Disorder in the system onsite energies and hoppings,
i.e, when ε > 0, nonperturbatively affects the single particle
eigenstates and induces localization. But, for weak disorder,
up to a finite system size, the eigenstates are affected only
perturbatively, and the effects of localization do not manifest.
It is within this regime that we expect the conductance scaling
to also remain almost unaffected. Since we are considering
the upper band edge, we look for the system size up to
which perturbation theory holds for highest single-particle
eigenstate. For the tight-binding chain, this system size can be
calculated as Nε ∼ √

3πε−1/2. Below Nε we expect negligible
effect of disorder. Figure 2(d) (compare green squares with
black dotted line) shows a representative plot with numerical
evidence of this.

The transfer matrix EPs are at the band edges of the system
in the thermodynamic limit. At any finite system size N , let the
maximum single-particle eigenvalue be ω+

N . We have ω+
b −

ω+
N � π2N−2 for the tight-binding chain. In absence of any

BVPs, it can be checked that the subdiffusive scaling of con-
ductance holds when ω+

N < εF � ω+
b . Since the superballistic

regime occurs due to effect of the BVPs on the subdiffusive
scaling regime, beyond this regime the superballistic scaling
cannot be expected. For εF = ω+

b − η, with given η, this gives
the length scale depending only on η, Nη ∼ πη−1/2, beyond
which conductance should not be monotonically increasing.
This behavior is shown in Fig. 2(d) (blue diamonds). We see
that superballistic scaling function is drastically changed on

shifting εF . However, note that even at εF = ω+
b , the scaling

function was not universal [see Fig. 2(a)].
Small finite temperature changes the expression for con-

ductance [22–32], leading to an integration over energies
around εF in a width ∼1/β. So, by similar arguments as
above, superballistic regime is expected to hold if temperature
satisfies β(ω+

b − ω+
N ) � βπ2N−2 � 1. For a chosen β, this

gives the system size Nβ ∼ πβ1/2 beyond which the super-
ballistic regime is not expected. However, due to numerical
instabilities, this regime is difficult to access computationally.

Combining all of the above, we arrive at our main result in
Eq. (3). We reiterate that there is no assumption on strength of
coupling to the source-drain leads τ , which need not be small.
Below, we further generalize the result.

Generalization to multiband systems. Our analytical under-
standing shows that the superballistic regime stems from an
interplay of the EPs of the transfer matrix, and the presence
of BVPs. There is a transfer matrix EP at every band edge of
any finite-ranged tight-binding chain, whether single-band or
multiband [38]. Consequently, a superballistic regime will be
seen near every band edge in all such cases. The multiband
case can arise from presence of an additional periodic onsite
potential in the system. Taking such a two-band case, the
superballistic scaling can be easily explicitly confirmed [68].

Probes versus many-body interaction. Akin to BVPs,
many-body interactions in the system can lead to inelas-
tic scattering processes [23,48,69,70]. But, the superballistic
scaling cannot be obtained with many-body interactions
alone. This is because, at band edges, it can be argued
that number-conserving many-body interactions have negli-
gible effect due to vanishing particle or hole density [68].
Therefore, presence of surrounding environment is crucial for
superballistic scaling. The simultaneous presence of BVPs
and many-body interactions remains a challenging and in-
teresting question beyond present analytical and numerical
techniques.

Conclusions and outlook. We reveal how non-Hermitian
properties of the transfer matrix affect environment-assisted
transport, leading to superballistic scaling of conductance,
a completely different regime of quantum transport. Physi-
cal effects of EPs of non-Hermitian matrices are of interest
in the field of non-Hermitian physics and optics [18–21].
Different kinds of anomalous transport and their micro-
scopic origins are of interest in statistical physics [8–12].
Environment-assisted transport is of interest in fields of meso-
scopic physics [27–29,35–52], quantum many-body physics
[53–56], quantum chemistry and biology [42–47], quantum
thermodynamics [48,52], and also in quantum simulation
experiments [57–61]. Our results therefore connect these
different research directions. The practical implications of
our results can be investigated in nanoscale quantum sys-
tems treated within density-functional theory [23,71–75], as
well as in two-dimensional topological insulators [76,77]
which provide effective one-dimensional ballistic transport
channels.
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