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Semiconductor artificial graphene nanostructures where the Hubbard model parameter U/t can be of the order
of 100, provide a highly controllable platform to study strongly correlated quantum many-particle phases. We
use accurate variational and diffusion Monte Carlo methods to demonstrate a transition from antiferromagnetic
to metallic phases for an experimentally accessible lattice constant a = 50 nm in terms of lattice site radius
ρ, for finite-sized artificial honeycomb structures nanopatterned on GaAs quantum wells containing up to 114
electrons. By analyzing spin-spin correlation functions for hexagonal flakes with armchair edges and triangular
flakes with zigzag edges, we show that edge type, geometry, and charge nonuniformity affect the steepness
and the crossover ρ value of the phase transition. For triangular structures, the metal-insulator transition is
accompanied with a smoother edge polarization transition.
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In recent years, technological advances in photonic and
condensed-matter-based artificial superlattices give us oppor-
tunities to develop practical quantum simulators [1–14]. These
quantum simulators allow us to replicate complex systems
that are hard to fabricate and provide us with a playground
to verify theoretical predictions. In this respect, artificial
graphene (AG) nanostructures, designed by imitating the two-
dimensional (2D) honeycomb pattern of graphene, have been
proven to be good candidates for being reliable and control-
lable sources for both the fabrication and investigation of
many physical phenomena related to Dirac fermions [13–19].
In particular, AG nanostructures can be formed using semi-
conductor materials. While earlier reports on nanopatterned
artificial graphene on GaAs quantum well (QW) structures
found no evidence of massless Dirac fermions (MDFs),
presumably because of the relatively large lattice periods
[20–22], in recent experimental works using modulation-
doped AlGaAs/GaAs quantum wells [13,14], shrinking down
of the lattice constant of the honeycomb array to approx-
imately 50 nm allowed the observation of the predicted
graphenelike behavior [21,23–25].

The observation of Dirac fermions in AG also opens up
a fresh way of studying graphene quantum dots [26] where
geometry, size, and edge type is expected to give rise to sev-
eral physical properties such as band-gap opening [27], edge
magnetization [28–30], and optical control [31]. However,
the fabrication and reliability issues such as edge reconstruc-
tion or the presence of impurities, make it harder to observe
interesting phenomena predicted to occur in nanostructured
graphene. Semiconductor AG nanostructures, on the other
hand, offer several advantages such as the tunability of sys-
tem parameters including the lattice constant, site radius, and
potential depth, which, in turn, allow the control of electron-
electron interactions and tunneling strength between sites, in
particular the Hubbard parameter U/t . In experimental struc-
tures with a lattice constant a = 50 nm [14], U/t can be as
high as 350 (as we will argue below), i.e., two orders of
magnitude larger than the critical value for the antiferromag-

netic Mott transition predicted by calculations based on the
Hubbard model for a honeycomb lattice [32–35]. Moreover,
unlike in real graphene, long-range electron repulsion does
not cancel the attraction of the artificial confining potential
in AG even near charge neutrality. For such large and long-
ranged electron interactions, a nonperturbative many-body
approach is desirable for the careful treatment of correlation
effects.

Earlier theoretical work on electron interaction effects in
semiconductor AG nanostructures based on density func-
tional theory (DFT) showed that Dirac bands were stable
against interactions [23,24], which was also confirmed us-
ing path integral Monte Carlo calculations [25]. However,
recent calculations using Hartree-Fock and exact diagonal-
ization approaches for a triangular zigzag geometry with a =
12.5–15 nm show that a transition from an antiferromagnetic
(AFM) insulator to metallic phases occurs, pointing to the
importance of electron interactions [36].

In this Letter, we use continuum variational Monte Carlo
(VMC) and diffusion Monte Carlo (DMC) methods for
the nonperturbative and accurate treatment of many-body
correlations within the fixed-node approximation to study
GaAs-based AG nanostructures. First, we consider a hexag-
onal armchair geometry which serves as a bridge between
the finite-size samples and bulk graphene [27], with a lattice
constant a = 50 nm following recent experimental work [14].
We show that a transition from AFM to metallic phase occurs,
but is affected by a nonuniform charge distribution in the
sample due to finite-size effects. This charge nonuniformity,
which is not present in real graphene quantum dots, causes the
phase transition to be steeper and to occur at a smaller value
of ρ. We also investigate AG quantum dots with triangular
zigzag geometry and show that edge magnetization survives
the phase transition, in agreement with a previous theoretical
prediction for smaller lattice constants [36].

Our model of nanostructured semiconductor AG con-
sists of N interacting electrons in a honeycomb array
of N confining potentials, described by the many-body
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in effective atomic units (electronic charge e, dielectric con-
stant ε, effective mass m∗, and h̄ are set to 1), where 1/ri j

is the Coulomb interaction between the electrons, V (ri ) is
the total potential energy of the confining potentials, and k
is the spring constant of the quadratic gate potential located at
the center of the system which controls the finite-size effects.
Typical material properties for GaAs, an effective elec-
tron mass m∗ = 0.067m0 and dielectric constant ε = 12.4,
are used. The corresponding effective Bohr radius is a∗

0 =
9.794 nm, and the effective Hartree energy is 11.857 meV.
The honeycomb array of potential wells is modeled using
Gaussian-like functions [25],

V (r) = V0

∑

R0

exp[−(|r − R0|2/ρ2)s], (2)

where s � 1, V0 is the potential depth, ρ is the radius, and s is
the sharpness of the potential wells. R0 is the location of the
potential wells. In our numerical calculations, the dot-to-dot
distance (lattice constant) was fixed to a = 50 nm, while sev-
eral radius values from ρ = 10 to 35 nm were covered. Three
different sharpness values were used: s = 1 for a Gaussian
potential, s = 2.8 for a sharp, muffin-tin-like potential, and
s = 1.4 in between. V0 values vary depending on dot radius
(e.g., increasing monotonically with the dot radius, from −38
to −15 meV for s = 1.4 and N = 42), tuned to keep the total
energy of the system close to zero, since our aim is to imitate
the charge neutral behavior of finite-sized graphene quantum
dots. For too high values of V0, electrons tend to escape the
system during VMC or DMC simulations, while for too low
values overlocalization occurs [21].

The accuracy of the numerical calculations depends on
the trial wave functions in both VMC and DMC methods.
One starts with a set of single-particle orbitals (e.g., local-
ized Gaussians or from self-consistent calculations) to build
a Slater-Jastrow trial wave function �T (R) which is a linear
combination of products of up- and down-spin Slater deter-
minants of these orbitals multiplied by a Jastrow factor (the
details of our Jastrow factor is given in Ref. [37]). After
the VMC calculations where Jastrow parameters as well as
the Gaussian functions’ width are optimized using an energy
minimization technique [38], we use fixed-node DMC [39,40]
to project the optimized many-body wave function onto a bet-
ter approximation of the true ground state, an approximation
that has the same nodes as �T (R). The resulting fixed-node
DMC energy is an upper bound to the true energy and depends
only on the nodal structure of the Slater part of the trial wave
function �T (R) [39].

In order to form Slater determinants, we prepare three
different types of orbitals aiming to capture metallic or AFM
insulator phases, depending on the potential well radius ρ:
(i) Localized Gaussian functions are proven to be one of
the most suitable functions for 2D systems of quantum dots
[37,41,42] and are expected to provide a better description of
strongly localized states. (ii) Tight-binding (TB) orbitals, at
the other extreme, may be used to describe metallic phases in

FIG. 1. Armchair hexagonal flake results, s = 1.4, k = 0, and
N = 42, plotted for several trial wave functions. (a) VMC total
energy vs ρ. (b) DMC total energy vs ρ. (c) Extrapolated pair
spin density results for ρ = 10 nm, using a tight-binding trial wave
function. (d) Extrapolated pair spin density results for ρ = 35 nm,
using a tight-binding trial wave function. The reference electron is
located at the point marked by an × for (c) and (d).

which electrons move more freely. (iii) Mean-field Hubbard
(MFH) orbitals can describe both localized and liquidlike
states depending on the ratio U/t . Corresponding variational
and fixed-node energies of those three types of orbitals are
expected to suggest a possible transition from a metallic state
to an AFM order as a function of ρ. In this work, all quantities
that do not commute with the Hamiltonian were calculated
using an extrapolated estimator, 〈Ô〉 = 2〈Ô〉DMC − 〈Ô〉VMC

[39].
Figure 1(a) shows the VMC energies obtained from TB,

MFH, and Gaussian orbitals, as a function of ρ, for an arm-
chair hexagonal geometry with 42 sites and 42 electrons. The
parabolic gate potential parameter is turned off (k = 0) and its
effect will be discussed in a later section. At low ρ, Gaussian
and MFH U = 20t orbitals provide better variational energies.
As ρ is increased to ≈27 nm, a clear crossover (from an insu-
lator to metallic phase) occurs above which TB and MFH U =
2t orbitals take the lead. Fixed-node DMC energies, however,
reveal a somewhat different picture, shown in Fig. 1(b). From
ρ = 10 nm to ρ ≈ 18 nm, all trial wave functions give similar
energies within the statistical error bars, and split near ρ ≈ 18
nm. After the split, the ground state of the system is repre-
sented by TB and MFH U = 2t trial wave functions. These
results show that, surprisingly, the TB trial wave function has
an equally good nodal structure as the Gaussian orbitals at
low ρ values, raising questions about the true nature of the
ground state. To reveal the underlying electronic and mag-
netic structure, we consider the pair densities pσσ0 (r, r0), the
probability of finding an electron with spin σ at location r
when an electron with spin σ0 is fixed at location r0, and the
pair spin densities, p↑↓(r, r0) − p↓↓(r, r0). Figures 1(c) and
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FIG. 2. DFT band structure of bulk artificial graphene for (a) ρ =
15 nm and (b) ρ = 25 nm. The inset figure shows the U/t ratio
plotted against dot radius ρ, predicted by DFT and single-particle
calculations.

1(d) show the pair spin densities for a reference spin-down
electron fixed on top of a site (chosen to break the system
symmetry and away from the edges) shown with a cross (×).
At ρ = 10 nm, electrons are well localized at the sites, leading
to an AFM insulator. On the other hand, at large values of ρ,
spin-spin correlations are weak and short ranged up to nearest
neighbors. While these results confirm that a transition from
an AFM insulator to a metallic phase does occur as observed
in previous work [36], there are several issues left to address:
(i) an inconsistent signature regarding the crossover ρ value
obtained from VMC and DMC energies and the underlying
dynamics of the transition, (ii) finite-size and edge effects, and
(iii) the relationship to bulk properties.

Now, we turn our attention to the 2D bulk properties for
similar system parameters used in our calculations. As men-
tioned earlier, V0 values are tuned to keep the total energy of
the system close to zero. The question is whether such a set
of parameters leaves the Dirac cone structure intact, which
may otherwise have repercussions on electronic and magnetic
properties. In Fig. 2, we show the results of our DFT calcu-
lations in the local density approximation (LDA). The Dirac
cone structure is preserved for the range ρ = [12.5, 30] nm;
outside this range the Dirac fermion picture becomes dis-
torted. Moreover, we can estimate the TB hopping parameter
t from the slope of the Dirac cones as t = 2

3 a−1dE/dk, where
a is the lattice constant. As we see from Fig. 2, t increases
with increasing ρ but decreasing s, as expected. In addition
to t , to build a Hubbard model, we estimated the U value for
a single well using U = 2π

∫
rn(r)Ve(r)dr after solving the

single-particle Schrödinger equation. In the inset of Fig. 2,
we plot U/t as a function of ρ which shows a fast decay
from ≈300 to 50 between ρ = 15 and 20. Surprisingly, these
results indicate that the critical U/t value for a metal-insulator
transition in AG is much higher than the critical value of ∼3.8
predicted by Hubbard calculations [32–35], presumably due
to the importance of long-range interactions and deviation
from the nearest-neighbor TB approximation as ρ increases.
On the other hand, according to our quantum Monte Carlo
(QMC) calculations, MFH trial wave functions based on the
LDA estimation of U/t do not provide the most suitable
fixed-node energies, and the nodal structure of the simplest
TB trial wave functions works best for the whole range of

FIG. 3. Effect of k on total electron densities for an arm-
chair hexagonal flake. s = 1.4, ρ = 25 nm, and N = 42 using a
tight-binding trial wave function. (a) k = 0. (b) k = 3.56 × 10−4

meV/nm2.

system parameters regardless of the underlying electronic or
magnetic state.

Next, we focus on finite-size effects. While V0 is tuned to
imitate the overall charge neutrality, long-range electron in-
teractions still affect the charge distribution inside the system,
pushing the electrons towards the edges and/or corners, as can
be seen in Fig. 3(a) for the hexagonal armchair system with
N = 42, s = 1.4, and ρ = 25 nm. While, in principle, V0 can
be decreased further to achieve charge uniformity, this would
localize the electrons too strongly to their sites and make the
system negatively charged unlike in real graphene systems.
An alternative solution is to apply a quadratic gate poten-
tial controlled by the parameter k in Eq. (1). When k > 0,
a quadratic gate potential attracts the electrons towards the
center of the system so that the charge uniformity is preserved,
and finite-size effects are minimized, as shown in Fig. 3(b) for
k = 3.56 × 10−4 meV/nm2.

In order to understand in more detail the dynamics of the
transition from an AFM insulator to metallic phase including
effects of charge nonuniformity and quantum well poten-
tial sharpness, we consider a real-space spin-spin correlation
function g normalized by the density-density correlations, g =
〈sis j〉/〈nin j〉, where si and ni are the average total spin and
total electron densities on site i within a radius r, and i, j are
the nearest-neighbor sites. We used r = a/2 in all spin-spin
correlation calculations, where a is the lattice constant. The
output values of the function remain in the [−1, 1] range, with
g = −1 corresponding to AFM and g = 0 corresponding to
the metallic configuration (g = 1 means that all spins are in
the same direction, which does not happen in the subspace
Sz = 0 considered here). In Fig. 4(a), g is plotted against ρ

obtained from different trial wave functions, for s = 1.4 and
k = 3.56 × 10−4 meV/nm2 to obtain charge uniformity. We
have also added a weighted average of all trial wave functions
using the Boltzmann distribution at T = 4 K, representing the
ground state, to ensure that no effects are missed when various
trial wave functions lead to the same ground-state energies
within statistical noise. The emerging picture is that the sys-
tem remains strongly AFM between ρ = 10 and 18 nm, then
starts fading smoothly, finally reaching a fully metallic regime
around ρ = 30 nm. We note that the DMC energies for k > 0
split around ρ = 26 nm [see the inset of Fig. 4(a)], in contrast
with the k = 0 results in Fig. 1(b) where the split occurs near
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FIG. 4. Armchair hexagonal flake results. (a) Extrapolated spin-
spin correlation function for s = 1.4, k = 3.56 × 10−4 meV/nm2,
and N = 42. The inset in (a) shows DMC energy results shifted
by a constant value. (b) Extrapolated spin-spin correlation function
weight averaged at T = 4 K plotted for several k, s, and flake sizes.

ρ = 18 nm. Figure 4(b) summarizes all weight-averaged g
values obtained for different k and s values, and for both flake
sizes. Interestingly, for k = 0 the transition from an AFM to
metallic regime is sharper than for charge uniform systems
(k > 0), albeit at lower ρ values. Sharpness s and system size
N , on the other hand, do not have a significant effect on the
transitions.

For triangular zigzag structures, spin-polarized edges even
in the metallic phase are expected due to the imbalance
between the two sublattices [28–30,36,43], with a nonzero
ground-state total spin Sz = (NA − NB)/2, where NA and NB

are the number of A and B sublattice atoms, according to
Lieb’s theorem [44]. In our AG flake, the total spin is Sz = 2
for N = 46 and Sz = 5/2 for N = 61. An analysis of the spin-
spin correlation functions for s = 1.4 and k = 2.7 × 10−4

meV/nm2 leads to a similar picture as before; the system with
N = 46 sites is perfectly AFM between ρ = 10 and 20 nm,
then smoothly vanishes between ρ = 20 and 35 nm, before
becoming completely metallic. For N = 61 sites, although the
transition is not as smooth presumably due to larger statistical
fluctuations at a large system size, a similar picture emerges
[Fig. 5(c)]. In order to understand the edge magnetization
during the transition, we consider an edge polarization ratio
defined as

pr = 〈|si∈edge|〉 − 〈|si∈bulk|〉
〈|si∈edge|〉 + 〈|si∈bulk|〉 , (3)

which gives one if only edge sites are polarized, and zero if
edge and bulk sites are equally (un)polarized. In Fig. 5(b),
the edge polarization ratio increases as ρ increases, indicating
that spins are polarized more at the edges as the system goes
into a metallic phase similar to real triangular zigzag graphene
quantum dots, and consistent with the spin density results in
the insets of Figs. 5(b) and 5(d), demonstrating a metallic
phase with edge-polarized spins at ρ = 35 nm for 46 sites and
at ρ = 30 nm for 61 sites. Additionally, in Fig. 5, the weighted
average analysis also confirms that the triangular zigzag
AG flake undergoes a metal-insulator transition between
∼18 and 30 nm dot radius. However, the edge polariza-
tion transition occurs slower compared to the metal-insulator
transition.

FIG. 5. Triangular flake with zigzag edge results, s = 1.4 and
k = 2.7 × 10−4 meV/nm2, plotted for several trial wave functions
and different flake sizes. (a), (c) Extrapolated spin-spin correlation
function for 46 and 61 sites. (b), (d) Extrapolated edge polarization
function for 46 and 61 sites. Inset of (b): Extrapolated spin density
results for ρ = 35 nm, N = 46, using a tight-binding trial wave func-
tion. Inset of (d): Extrapolated spin density results for ρ = 30 nm,
N = 61, using a tight-binding trial wave function.

In summary, we have shown that a metal-antiferromagnetic
insulator transition occurs in nanopatterned GaAs-based arti-
ficial graphene structures including up to N = 114 electrons
with a lattice constant a = 50 nm as a function of site ra-
dius, using accurate variational and diffusion Monte Carlo
methods, within the Dirac regime as confirmed by our den-
sity functional calculations. Our approach, where a simple
tight-binding trial wave function combined with a Jastrow
factor is found to be sufficient to account for electron corre-
lation effects in both metallic and antiferromagnetic regimes,
allows direct modeling of system parameters, making it pos-
sible to systematically investigate the effects of edge type,
geometry, size, quantum well shape, and gate potentials. We
have shown that the steepness and the crossover ρ value
of the phase transition is affected by charge nonuniformity
due to finite-size effects. For triangular structures exhibiting
magnetized edge states, the edge polarization transition is
shown to occur more slowly compared to the metal-insulator
transition.
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