
PHYSICAL REVIEW B 108, L161112 (2023)
Letter

Anomalous bilayer quantum Hall effect
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In parallel to the condensed-matter realization of quantum Hall (Chern insulators), quantum spin Hall
(topological insulators), and fractional quantum Hall (fractional Chern insulators) effects, we propose that
bilayer flat band (FB) lattices with one FB in each layer constitute solid-state analogs of bilayer quantum Hall
(BQH) system, leading to anomalous BQH effect without a magnetic field. By exact diagonalization of a bilayer
kagome lattice Hamiltonian, as a prototypical example, we demonstrate the stabilization of excitonic condensate
Halperin’s (1,1,1) state at the total filling vT = 1 of the two FBs. Furthermore, by tuning the interlayer tunneling
and distance between the kagome layers at vT = 2/3, we show phase transitions among Halperin’s (3,3,0),
spin-singlet (1,1,2), and particle-hole conjugate of Laughlin’s 1/3 states, as previously observed in conventional
BQH systems. Our work opens a new direction in the field of FB physics by demonstrating bilayer FB materials
as an attractive avenue for realizing exotic anomalous BQH states including non-Abelian anyons.
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Condensed-matter realization of the quantum Hall effect
(QHE), first proposed by Haldane [1], has been one of the
most significant scientific breakthroughs that instigated the
origin of topological states of matter. Subsequently, topo-
logical insulators exhibiting quantum spin Hall effect were
proposed by Kane-Mele [2,3] and Bernevig-Hughes-Zhang
[4], further fostering the field of topological materials [4,5].
Of particular latest interest is the interplay between topology
and electron interaction, inherent to a topological flat band
(FB). Two-dimensional (2D) lattices hosting Chern FBs [6–9]
have been shown to stabilize the fractional QH (FQH) effect
without a magnetic field, manifesting a fractional Chern insu-
lator (FCI) as a condensed matter analog of the FQH effect
[10–12]. The anyonic statistics followed by emergent excita-
tions of FQH systems [13–15] make them appealing due to
the potential application of non-Abelian anyons in topological
quantum computation [16,17].

Beyond single-component FQH, on the other hand, mul-
ticomponent FQH effects offer a richer and more exotic
quantum phase diagram, with extra degrees of freedom allow-
ing for additional tuning parameters [18–20]. Bilayer quantum
Hall (BQH) systems, such as GaAs quantum wells [21–24],
are spectacular examples of the multicomponent FQH effect.
Either a wide quantum well or a double quantum well can
be mapped onto two layers of two-dimensional electron gas
separated by a finite distance [Fig. 1(a)] forming the two-
component FQH setup, leading to exotic multicomponent
quantum Hall plateaus [21–24]. In addition, BQH systems are
known to host a plethora of Abelian and non-Abelian FQH
phase transitions owing to exceptional tunability of parame-
ters, such as interlayer distance and tunneling strength, which
has generated a lot of theoretical and experimental interest
[25–30].

In parallel to anomalous QH and FQH effects, the concept
of anomalous BQH effect is quite appealing since it could
lead to tunable exotic phases, including excitonic superfluid

[31,32], and non-Abelian anyons with two-body interactions
at vT < 1 [26,28], while its realization in single-component
FCIs requires strong n-body interaction (n > 2) [33–35] or
vT > 1 [36,37]. So far, however, the material realization of
BQH effect without a magnetic field has remained elusive.
Some recent works [38–40] discussed the possibility of sta-
bilizing multicomponent bosonic/fermionic FQH states in a
single FB partially filled by spin-up and -down electrons.
However, this is extremely hard, if not impossible, to do
experimentally; also, the tunability of intercomponent inter-
action and tunneling strength, an essential element of BQH
systems, is entirely lacking. It is also worth noting that some
earlier works [41–43] illustrated the stabilization of multicom-
ponent FQH states in higher Chern number FBs, although still
lacking in tunability and experimental feasibility.

In this Letter, we propose a direct solid-state analog of
the BQH effect, to open the door for its materials realiza-
tion by exploiting a two-layer FB system whose layer index
of the two separate layers is easily accessible in experi-
ments, in contrast to spin index within the same band. We
use a bilayer kagome lattice [Fig. 1(b)] as a prototypical
example, which is one of the most widely studied 2D lat-
tices and material systems hosting topological FBs [7,44–
47]. Excitingly, a recent experiment observed the topolog-
ical FB in a monolayer breathing-kagome lattice [48], and
bilayer-kagome-lattice materials have also been experimen-
tally synthesized as candidates to host quantum spin liquids
[49,50]. In addition, topological FBs are proposed in mul-
tilayer heterostructures [51,52], as well as in metal-organic
frameworks [53–56].

Importantly, using layer degree of freedom instead of
spin, the intercomponent interactions and tunneling strength
become highly tunable. The individual FB layers can be
separated by a tunneling barrier [57] [Fig. 1(c)]; then one
may access different phase regions by systematically tun-
ing the tunneling barrier materials and interlayer distance,
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FIG. 1. (a) Schematic of BQH setup containing two layers of
2D electron gas separated by a distance d and a tunneling barrier.
(b) Schematic of bilayer kagome lattice with blue and orange colors
indicating atoms in layers L1 and L2 respectively. (c) Schematic of
possible device configuration that can be used to realize anomalous
BQH effect. VU(L) represent gate voltages for upper (lower) layer.
FB material is indicated by a green layer with a tunneling barrier in
between. (d) Single-particle band structure of bilayer kagome lattice
at λ = 0.3t and t⊥ = 0. The two FBs belonging to individual layers
are depicted in blue and orange color respectively.

and at the weak tunneling limit with a high barrier one can
change the distance and hence interlayer Coulomb interaction
independently [23,58]. This is very crucial for realizing dif-
ferent exotic Abelian/non-Abelian phase transitions hosted
in anomalous BQH systems as we propose, which directly
mimic the conventional BQH systems fabricated using double
quantum wells [23]. Here, using the exact diagonalization
(ED) method, we demonstrate characteristic signatures of
anomalous BQH states in a bilayer kagome lattice. We have
calculated topological degeneracy of the ground-state man-
ifold on a torus, a nontrivial Chern matrix, and excitonic
off-diagonal long-range order, to prove the stabilization of
excitonic condensate states at total filling vT = 1 of two FBs,
and further illustrate the potential of this lattice in stabiliz-
ing exotic tunable anomalous BQH states at vT = 2/3. We
use a nearest-neighbor (NN) tight-binding model of a bilayer
kagome lattice [Fig. 1(b)] with spin-orbit coupling (SOC) that
conserves the out-of-plane spin-component [44], leading to
the kinetic part of the total Hamiltonian in the absence of
interlayer tunneling,

Hkin =
∑

σ

⎡
⎣−t

∑
〈i, j〉α

c†
iσαc jσα

+ iλ
∑

〈i, j〉αβ

2√
3

(rki × rk j ) · ταβ c†
iσαc jσβ

⎤
⎦ (1)

where t is the NN hopping integral, λ represents SOC
strength, rki and rk j are the two NN unit vectors pointing from
atomic site k to i and j respectively with i, j, and k forming a
triangle in the kagome lattice (see Fig. S1 in the Supplemental
Material (SM) [59]), α(β ) are spin indices, τ = (τx, τy, τz )
with τi being the ith Pauli’s matrix, and σ (σ ′) represents each
layer of the bilayer lattice. Electron interactions are described

by an extended Hubbard model including NN intralayer (V )
and direct interlayer (V⊥) interactions. V⊥ depends on the
interlayer distance d as shown in Fig. 1(b), and can be varied
easily, rendering the tunability of inter-component interac-
tions. We also include tunneling between the layers (t⊥) in
the interaction part of the Hamiltonian, which is given as

Hint =
∑
σ,σ ′

⎡
⎣V

∑
〈r,r′〉intra

nrσ nr′σ + V⊥
∑

r

nrσ nrσ ′

+ t⊥
∑

r

c†
rσ crσ ′

]
(2)

where nrσ = c†
rσ crσ is the electron density operator. The spin

indices are suppressed. Throughout this work we set V = 2t ,
which is smaller than the single-particle gap separating the
FBs [Fig. 1(b)], while a distance dependence of V⊥ = 1.5t/d
is assumed. Note that d (hence V⊥) and t⊥ can be systemati-
cally varied in general and independently in a bilayer FB setup
at the weak tunneling limit, as mentioned above [23,58].

Single-particle band structure is shown in Fig. 1(d). With
t⊥ = 0, the two layer-indexed FBs have the same Chern num-
bers, which exactly match the two Landau levels in each
layer of a conventional BQH system. We use a slightly high
SOC (λ = 0.3t) to isolate the bottom FBs from other bands.
This procedure is widely used in realizing FCI where a high
flatness ratio of FB is desirable [44]. It is worth mentioning
that such conditional parameters can be realized using Floquet
band engineering in real materials [47,60]. To study the effect
of interactions, we exactly diagonalize the full Hamiltonian
(H = Hkin + Hint) in reciprocal space with interactions pro-
jected to the two FBs of a finite lattice containing a total
number of Ns = 6 × Nx × Ny sites. The total filling factor is
given by vT = Ne/(Nx × Ny), where Ne is the number of elec-
trons in the system. Under periodic boundary condition, we
implement translational symmetry and diagonalize the Hamil-
tonian in each momentum sector q = (2πkx/Nx, 2πky/Ny)
with kx and ky being the integers, labeled as (kx, ky). One
can also assign a pseudospin notation to each FB and define
Sz = (N↑ − N↓)/2, where N↑(↓) is the number of electrons
in FB belonging to the upper (lower) layer. Sz is a good
quantum number when t⊥ = 0. Detailed methodology of ED
for multiple bands can be found in earlier work [61] (also see
SM Sec. I [59]).

First, we study the vT = 1 case. Multicomponent FQH
systems are described by Halperin’s (m, m, n) wave functions
[18]. In the following, we only use integers (m, m, n) to refer
to these states. In a BQH setup with negligible t⊥, the vT = 1
plateau is described by (1,1,1) state featuring a nondegenerate
ground state on two tori [40]. In Fig. 2(a) we plot the en-
ergy spectra for Sz = 0, or the case of balanced layers with
N↑ = N↓, at a finite d = 0.3a and negligible t⊥. There is
clearly the presence of a nondegenerate ground state separated
from excited states in two systems of different sizes, which
are shown to confirm the convergence of our results. For all
subsequent calculations the system size of 4 × 3 is used. The
(1,1,1) state on two tori should belong to the total momentum
sector (

∑N
i=1 ki

x,
∑N

i=1 ki
y), where N = Nx × Ny, implying that

all the reciprocal points are occupied; for the 4 × 3 system, it
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FIG. 2. (a) Momentum-resolved spectra of H at d = 0.3a,
t⊥ = 0, and Sz = 0 for two system sizes, Ns = 6 × 5 × 2 and Ns =
6 × 4 × 3 denoted by green circles and red diamonds respectively.
(b) Berry curvature for total charge Chern number indicated by Cq.
(c) Energy spectra of H at d → 0 and t⊥ = 0 with varying Sz for
Ns = 6 × 4 × 3. Red (yellow) diamonds denote the ground (excited)
states. (d) Eigenvalues of ρ (2) for (b) plotted in descending order.

is the (2,0) sector, as shown in Fig. 2(a), implying a nontrivial
topology of the ground state with a binding of particle-hole
between two layers. Beyond the energy spectra, we extract the
Chern number matrix C = [C↑↑ C↑↓

C↓↑ C↓↓] for the two-component
FQH system, which contains information for quantized Hall
conductance [27,38–40]. For Abelian multicomponent FQH
states, the diagonal and off-diagonal elements of C are re-
lated to intra- and intercomponent Hall transports respectively.
Each component of C is defined under twisted boundary
conditions with θ

x(y)
↑(↓) being the twist angle in layer ↑ (↓)

in the x (y) direction [38–40,59,62]. With θ x
↑ = θ x

↓ = θ x and
θ

y
↑ = θ

y
↓ = θ y, charge Hall conductance is related to Cq =∑

σ,σ ′ Cσ,σ ′ . For the single nondegenerate ground state at vT =
1, we numerically calculate Berry curvatures on an 11 × 11
mesh in the phase space and obtain a topological invariant
Cq = 1 with a well-defined smooth Berry curvature as plotted
in Fig. 2(b), further confirming the nontrivial topology of the
(1,1,1) state.

A fundamental global property of Halperin’s (1,1,1)
ground state at vT = 1 is the binding of electrons in one layer
to the empty states (holes) in the other layer. Such interlayer
excitons form a coherent superfluid which has been observed
in counterflow transport measurements. In fact, bilayer quan-
tum Hall systems are the only physical systems where this
exotic transport property of excitonic superfluid has been ob-
served [31,32,57], albeit under a strong magnetic field. Next,
we show excitonic properties of the ground state in a bilayer
kagome lattice at vT = 1 without a magnetic field. In Fig. 2(c)
we show the energy spectra of H for vT = 1 with negligible
d and t⊥ at multiple Sz, which determines the relative number
of electrons in each FB. The degeneracy of states with vary-
ing Sz indicates that there is no energy cost for electrons to

tunnel in between the two layers, a signature of spontaneous
symmetry breaking, also known as the “which layer” uncer-
tainty [32]. This leads to a huge interlayer tunneling current
at zero energy as observed in double quantum well BQH
experiments [31]. At a finite d , the state with Sz = 0 becomes
energetically stable due to anisotropy in interactions (see SM
Sec. II [59]).

We further illustrate excitonic coherence order by calculat-
ing eigenvalues of the excitonic reduced two-body density ma-
trix [61], ρ (2)(k, k′; k, k

′
) = 〈
|ψ†

2 (k)ψ1(k′)ψ†
1 (k

′
)ψ2(k)|
〉,

where ψ
†
1(2)(k) creates an electron in the FB belonging to layer

1 (2) at reciprocal lattice point k, and |
〉 is the many-body
ground-state wave-function. The eigenvalues of the two-body
density matrix are the occupations of bosonic natural orbitals.
Hence, the presence of one large eigenvalue signifies Bose-
Einstein condensation. In Fig 2(d), we plot the normalized
eigenvalues (λn), i.e., eigenvalues divided by the total number
of excitons in the system (for a system size 4 × 3, it is 6) in
descending order, so that the presence of one large, normal-
ized eigenvalue of order 1 concretely shows the presence of
excitonic superfluid. At d ∼ 0.3a, there is indeed one large
eigenvalue ∼0.8, implying that 80% of excitons are in the
same natural orbital. We note that if the interlayer distance
is reduced further, the condensation factor is enhanced as
expected (Fig. S2 in SM [59]). This concretely shows the
presence of a symmetry-broken condensate order parameter
pointing to the possible experimental observation of excitonic
superfluid in counterflow transport measurements without a
magnetic field in bilayer FB lattices. Next, we focus on filling
factor vT = 2/3, in order to illustrate the tunability of anoma-
lous BQH states as realized in the bilayer kagome system.
At vT = 2/3 and a relatively large d = 2.25a between the
two layers, we plot the energy spectrum for balanced layers
(Sz = 0), as depicted in Fig. 3(a). The individual layers are
decoupled when d is large and should stabilize the (3,3,0) state
[28], which is simply the bilayer Laughlin’s state. We first
use topological degeneracy of the ground-state manifold on a
torus to identify the nontrivial character of this state [63–65].
Intercomponent correlations in the (m, m, n) state, in general,
can be studied using the K matrix, K = [m n

n m], as formulated
within the field theory framework [66,67]. Topological degen-
eracy of the ground state for a system with vT = p/q on a
torus is given by the determinant of the K matrix, detK = qN ′,
where N ′ is an integer describing different translations of the
individual center of mass (COM) of a component, while q
determines the overall COM degeneracy. In the case of the
(3,3,0) state at vT = 2/3, and a 4 × 3 system size, the three
degenerate states corresponding to N ′ = 3 should lie at (0,0)
[61]. Taking COM degeneracy into account there should be
an additional threefold degeneracy for each of these states, as
depicted in Fig. 3(a).

To further illustrate this state to be topologically ordered,
we calculate the C matrix (which should be = K−1 [27])
for the nine quasidegenerate ground states of the(3,3,0)
state. For the three states at (0,0), we found that the
intracomponent Berry curvature is well defined and smooth
[Fig. 3(b)], from which we obtain a C matrix element,∑3

i=1 C↑↑ = 1, while the off-diagonal element of the C
matrix vanishes (

∑3
i=1 C↑↓ = 0). Similarly, for all the nine
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FIG. 3. (a) Energy spectra of H at d = 2.25a and t⊥ = 0 for Ns =
6 × 4 × 3 system size. Red diamonds (0,0) and blue (0,1) and green
(0,2) triangles denote the ninefold degenerate ground-state manifold
while yellow denotes the excited states. The inset shows the zoomed-
in view of ground-state manifold. (b) Total intracomponent Berry
curvature (C↑↑) of the three quasidegenerate states at (0,0) for the
system in (a). (c) d-driven phase transition from the (1,1,2) state to
the (3,3,0) state. (d) Intracomponent Berry curvature (C↑↑) for the
single state at (0,0) of the threefold degenerate ground-state manifold
of (1,1,2) calculated at d = 1.0a.

states in momentum sectors (0,0), (0,1), and (0,2), we obtain∑9
i=1 C↑↑ = 3 and

∑9
i=1 C↑↓ = 0. The other two elements

are related to these two by symmetry c↑ → c↓. This finally
gives

C =
[
C↑↑ C↑↓
C↓↑ C↓↓

]
= 1

9

[
3 0
0 3

]
, (3)

which is the inverse of the K matrix for the (3,3,0) state,
proving the topological characteristic of this state. In addition,
we calculate the spectral flow of these nine states under flux
insertion, confirming fractional charge Hall conductance
(Figs. S3(a) and S3(b) [59]).

Next, we show a d-driven transition from the spin-singlet
(1,1,2) state at small d to the (3,3,0) state at large d in
Fig. 3(c). When d is small, the vT = 2/3 anomalous BQH
resembles the usual vT = 2/3 FQH state with spin; i.e., for
small d the pseudospin can be directly mapped onto electronic
spin, which stabilizes the (1,1,2) state with threefold degener-
acy on a torus [27]. In Fig. 3(c) we show a transition from the
three- to ninefold degenerate ground state, as d increases, with
gap closing at d = 1.5a. The latter (d > 1.5a) is identified
as the (3,3,0) state having the C matrix as shown in Eq. (3);
the former (d < 1.5a) is characterized with C = 1

3 [−1 2
2 −1],

as expected for the (1,1,2) state, numerically calculated from
the inter- and intracomponent Berry curvature [Fig. 3(d)].
We note that the energy spread of the ground-state manifold
in Fig. 3(c) is comparable to the many-body gap near the
phase transition point. This is not an artifact of the finite-size
effect but signifies a topological phase transition involving
gap closing and reopening with different numbers of states in

FIG. 4. (a) t⊥-driven phase transition at vT = 2/3, d = 2.0a,
Sz = 0 for Ns = 6 × 4 × 3 system size. (b) Phase diagram for a
bilayer kagome lattice at vT = 2/3 in the phase space of d and t⊥
between the two kagome layers.

the ground-state manifold on two sides of the transition point.
There is also a possibility of t⊥-driven transition at vT = 2/3
[28]. In Fig. 4(a) we show a transition from the (3,3,0) state
to the particle-hole conjugate of Laughlin’s 1/3 state (1/3)
at d = 2.0a. At weak t⊥, the (3,3,0) state is identified using
the C matrix as described earlier. At strong t⊥, the bilayer
effectively behaves as a single layer due to strong correlations
and stabilizes the 1/3 state with threefold COM degeneracy at
(0,0), (0,1), and (0,2), which is also seen in Fig. 4(a), similarly
to the BQH system [32]. Hence, in the phase space of t⊥ and
d , we identify three phases: (3,3,0) state at large d and weak
t⊥; (1,1,2) state at small d and weak t⊥; 1/3 state at small d
and strong t⊥, as shown by the phase diagram in Fig. 4(b).
The phase transition boundary from the threefold degenerate
(1,1,2) to the 1/3 state is obtained using gap-closing and
-reopening points (Fig. S3(c) [59]). This phase diagram for
the bilayer FB lattice is in excellent agreement with the one
found in a conventional BQH system [28].

In addition to the exceptional tunability of bilayer FB lat-
tices, an important aspect of realizing the exotic anomalous
BQH states in such systems is their experimental feasibil-
ity. Recently, FCI was experimentally identified in twisted
bilayer graphene over a hexagonal boron nitride substrate
under a weak magnetic field [68] and in a twisted bilayer
transition metal dichalcogenide without a magnetic field [69].
A promising way to realize anomalous BQH states is to
construct two such bilayers separated by a tunneling bar-
rier[(Fig. 1(b)]. Moreover, Floquet engineering of isolated
FBs has been shown as a promising route towards realizing
FCIs in 2D materials, for example, graphene [60], and a
metal-organic 2D monolayer with kagome bands [47]. This
approach can be generalized to bilayers of such FB materi-
als. One possibility is using Floquet engineering to isolate
two FBs of bilayers such as superatomic graphene lattice,
whose single-layer structure has already been experimentally
synthesized using molecular building blocks of triangulene
[70] (also see SM Sec. VI [59]). In addition, the striking
tunability of anomalous BQH states, as illustrated here for a
bilayer kagome lattice, could also lead to material realization
of non-Abelian anyonic states without a magnetic field. We
observe some preliminary signatures of such exotic states (SM
Sec. V [59]) whose further investigation has been left for
future work.
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