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Typical Wannier-function downfolding starts with a mean-field or density functional set of bands to construct
the Wannier functions. Here, we carry out a controlled approach, using density matrix renormalization group
computed natural orbital bands, to downfold the three-band Hubbard model to an effective single-band model.
A sharp drop-off in the natural orbital occupancy at the edge of the first band provides a clear justification for
a single-band model. Constructing Wannier functions from the first band, we compute all possible two-particle
terms and retain those with significant magnitude. The resulting single-band model includes two-site density-
assisted hopping terms with tn ∼ 0.6t . These terms lead to a reduction of the ratio U/teff , and are important in
capturing the doping-asymmetric carrier mobility, as well as in enhancing the pairing in a single-band model for
the hole-doped cuprates.
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Introduction. What is the minimal model that captures
the important physics of the high-temperature cuprate su-
perconductors? This has been a central question ever since
the discovery of the cuprates. It has been argued that the
single-band Hubbard and t-J models, in their simplest forms,
are sufficient to describe the physics of high Tc superconduc-
tivity. Unexpectedly, recent numerical simulations find that
superconductivity in the ground state of these single-band
models appears to be quite delicate. For example, in the
pure Hubbard and t-J models (t ′, t ′′ = 0), superconductivity
is found to be absent [1,2]. While the presence of a t ′ > 0 can
induce superconductivity [2–7], this corresponds to electron
doping and the question regarding the presence of hole-doped
superconductivity (t ′ < 0) is not completely resolved [2,4,6–
8]. The greatest delicacy appears to be associated with the
superconductivity; other aspects of the models, including anti-
ferromagnetism (AFM) as well as intertwined spin and charge
order, appear to be in qualitative agreement with the cuprates
[2,9–15].

This subtleness of pairing in the single-band models calls
for a reexamination of the downfolding process used to de-
rive them, since modest errors could have significant effects.
This downfolding is a two-step process, where first one
constructs from density functional methods the intermediate-
level three-band Hubbard (or Emery) model [16], which
includes Cu dx2−y2 , O px, and O py orbitals. Since the three-
band model is closer to an all-electron Hamiltonian of the
cuprates, one expects it to be more reliable than a one-band
model—but also more difficult to simulate. There is evi-
dence that the three-band model captures various aspects of
the cuprates, particularly magnetic and charge density wave
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properties [17–24], with greater uncertainty about the pair-
ing properties. To downfold to a single-band model, Zhang
and Rice argued that holes on oxygen sites bind to holes
on copper sites to form local singlets [25]. The Zhang-
Rice singlet picture has gained support from experiments
[26–28] as well as calculations [18,29,30], and motivated
studies of various single-band Hubbard [7,31–49] and t-J
models [3,5,11,50–57].

Here, we demonstrate an alternative way to downfold the
three-band Hubbard model based on a density matrix renor-
malization group (DMRG) [58] construction of Cu-centered
Wannier functions. The general idea of constructing effective
models using ab initio calculations has been explored in vari-
ous contexts [59–63]. Our approach uses DMRG to compute
the natural orbitals of the three-band model, and from those
construct Wannier functions, similar to a recent work that
downfolds hydrogen chains into Hubbard-like models [64].
The resulting single-band model includes additional two-site
density-assisted hopping terms tn whose magnitude is com-
parable to t . On a mean-field level, these new terms simply
reduce the ratio U/teff , with teff = t + tn〈n〉, where 〈n〉 is the
average number of holes per CuO2 unit cell. However, beyond
mean field, the tn terms capture the doping-asymmetric carrier
mobility, and, as revealed by a measurement of the super-
conducting phase stiffness, further enhance the pairing in the
hole-doped single-band model.

The three-band model. We present the lattice structure and
the terms in the three-band Hubbard model in Fig. 1(a). Each
CuO2 unit cell consists of three orbitals: Cu dx2−y2 , O px, and
O py. We study clusters with cylindrical boundary conditions.
For an Lx by Ly cylinder, there are NCu = LxLy Cu sites and
NO = (2Lx + 1)Ly O sites. In the undoped insulator at half
filling, there is one hole per unit cell, and the model is written
in the hole picture with d†

iσ or p†
jσ creating a hole with spin σ

on a Cu site i or O site j. Hole doping corresponds to 〈n〉 > 1
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FIG. 1. (a) The three-band Hubbard model and our phase con-
vention for the orbital basis. (b) Charge and spin structure on a
12 × 5 cylinder at a hole doping ∼0.15. The length of the arrows
and the diameter of the circles represent 〈Sz〉 and local doping, re-
spectively. The spins are colored to indicate different AFM domains.
There are weak magnetic pinning fields applied on the boundary
sites in the dotted boxes. (c) Average orbital-resolved local doping
pCu/O along the length of the cylinder with ptot = pCu + 2pO. (d) and
(e) Pairing order 〈�†

i j + �i j〉 between neighboring Cu sites i and
j. The thickness/color of the bond indicates the magnitude/sign of
the pairing. The pairing orders away from the edges are similar for
(d) which has pair fields applied on the shaded left edge and (e) which
spontaneously breaks symmetry.

while electron doping corresponds to 〈n〉 < 1. The three-band
Hamiltonian is

HTB = −tpd

∑

〈i j〉σ
(d†

iσ p jσ + H.c.) − tpp

∑

〈〈i j〉〉σ
(p†

iσ p jσ + H.c.)

+ Ud

∑

i

nd
i↑nd

i↓ + Up

∑

i

np
i↑np

i↓ + �pd

∑

iσ

p†
iσ piσ ,

(1)

where tpd/tpp hops a hole between nearest-neighbor Cu-O/O-
O sites, and the summation 〈i j〉/〈〈i j〉〉 runs over all relevant
pairs of sites. We have chosen a gauge for the orbitals as
shown in Fig. 1(a) so that all hoppings are negative; Ud and
Up are the on-site repulsion term on the Cu and O sites;
�pd = εp − εd is the energy difference for occupying an O
site compared to occupying a Cu site. We set the energy scale
with tpd = 1.0, and take tpp = 0.5, Ud = 6.0, Up = 3.0, and
�pd = 3.5, unless otherwise noted, which appropriately de-
scribes a charge-transfer system where Ud > �pd and �pd >

2tpd . Estimates for tpd range from 1.1 [65] to 1.5 eV [66].
Comparing with previously used parameters [21,66], here we
increase �pd to incorporate the effect of Vpd , and choose a
somewhat smaller Ud for a stronger pairing response [67].
Systems h1 and e1 have hole and electron dopings of 0.15.
Another hole-doped case h2 with Ud = 3.5 and �pd = 5.0
describes a Mott-Hubbard rather than charge-transfer system
[68]. The calculations are carried out using the ITENSOR li-
brary [69]. We typically perform around 20 sweeps and keep
a maximum bond dimension of 7000 to ensure convergence
with a maximum truncation error of O(10−5).

FIG. 2. (a) At a hole doping of 0.15, occupancies of the natural
orbitals obtained by diagonalizing the single-particle correlation ma-
trix Mαβ = ∑

σ 〈C†
ασCβσ 〉, with C† = {d†, p†

x, p†
y}. The natural orbital

states/occupancies correspond to the eigenvectors/eigenvalues of
Mαβ . The inset is a zoom-in of the region that shows a sharp drop
at the second band beyond which occupancies are limited (<2%).
(b) and (c) Cu-centered Wannier functions at two different locations
constructed from the natural orbitals of the first band. Color/area of
the circles indicate the sign/magnitude of the local orbital compo-
nent. (e) Overlap of Wannier functions (truncated to a 5 × 5 CuO2

unit cell) with their centers shifted to the same site, showing they are
almost translational invariant.

Previous studies of the three-band model have identi-
fied features consistent with the cuprates, including doping
asymmetry, formation of stripes on the hole-doped side,
and commensurate AFM on the electron-doped side [20,21].
There is evidence for d-wave pairing correlations for both
electron and hole doping, with the dominant component
between nearest-neighbor Cu sites [18,19,23,70–72]. On two-
leg ladders, the correlations exhibit power-law decay [70–72].

Of particular concern for finite-size effects is the quan-
tization of stripe filling around a short cylinder [21]; here,
we choose a width-5 cylinder so that one stripe can form
lengthwise [see Fig. 1(b)]. The Cu-Cu pairing is shown in
Fig. 1(e). Along the stripe an additional pairing modulation
reflects an edge-induced charge density oscillation, as shown
in Fig. 1(c). Similar pairing occurs whether it is pinned by
edge pair fields [Fig. 1(d)] or allowed to arise spontaneously
as a finite bond dimension broken symmetry [2] [Fig. 1(e)].
The existence of pairing for a hole-doped three-band model
has also been reported in a recent infinite projected entangled-
pair states study [73].

Downfolding into a Wannier single-band model. The oc-
cupied bands in the DMRG wave functions are identified
by measuring the single-particle correlation matrix Mαβ =∑

σ 〈C†
ασCβσ 〉, with {C†} = {d†, p†

x, p†
y}, whose eigenvectors

and eigenvalues define the natural orbitals (NOs) and their
occupancies, respectively. In a noninteracting system, the NO
occupancies make a step function at the Fermi level. Here,
this step near i ∼ 35 is completely smeared out [Fig. 2(a)],
reflecting the strong correlation in the system. However, there
is a sharp drop in occupancies at i = 60, the total number
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of Cu sites, indicating the end of the first band. Beyond the
first band, the total occupancy is <2%, and for the electron
doped case, <0.4%. This provides a strong justification for
downfolding into a single band, which would be exact if
the higher-band occupancies were zero. We observe similar
sharp drop-offs for narrower width-2 and width-4 systems.
This indicates that the drop-off is due to short-range physics
involving the Cu and surrounding O orbitals, which can be
seen clearly on small systems. We observe a similar sharp
drop-off for a range of three-band parameters, including in
the Mott-Hubbard regime.

Given the accuracy of the truncation to a single band,
we can derive an effective single-band model through the
standard Wannier construction with a simple single-particle
transformation. We first localize the functions of this band
into Cu-centered Wannier functions (WFs) (see Supplemental
Material [67] for details). We show two representative WFs
in Figs. 2(b) and 2(c), which are evidently highly localized.
Functions on different sites are almost identical; evidence for
this translational invariance is shown in Fig. 2(d).

To construct the effective Hamiltonian in the WF space, we
first organize the WFs into a NCu-by-(NCu + NO) real isomet-
ric matrix A (AA† = 1), with entry Ai j being the weight of
the three-band orbital j in the Wannier function centered at
Cu site i [74]. The matrix A defines a single-particle transfor-
mation from the three-band basis {C†} = {d†, p†

x, p†
y} to the

WF basis {c†}:

c†
i =

∑

j

Ai jC
†
j . (2)

We invert this relationship, taking

C†
j =

∑

i

Ai jc
†
i + higher bands, (3)

where we omit the higher bands. The Wannier Hamiltonian is
obtained by inserting Eq. (3) into the three-band Hamiltonian
[Eq. (1)]. The single-particle terms kαβ , which include the tpd ,
tpp, and �pd terms, become

kαβC†
ασCβσ → kαβ

∑

i j

AiαAjβ c†
iσ c jσ . (4)

The two-particle terms Uα , which include the Ud and Up terms,
become

Uαnα↑nα↓ → Uα

∑

i jkl

AiαAjαAkαAlα c†
i↑c j↑ c†

k↓cl↓. (5)

Although the Wannier Hamiltonian has O(N2) single-
particle and O(N4) two-particle terms, both the single-particle
and two-particle terms decay quickly with the distance
between sites. Magnitudes of the single-particle hoppings
beyond third nearest neighbors are smaller than 0.01t and
are truncated. The largest two-particle term is the on-site
repulsion U . The second largest is the nearest-neighbor
density-assisted hopping tnc†

j,σ ci,σ niσ̄ . We also keep the

TABLE I. Parameters for the Wannier single-band model from
downfolding the three-band model. h and e correspond to hole and
electron doping of 0.15. tpd is nominally 1.5 eV.

Case (Ud , �pd ) t/tpd tn/t t ′/t t ′
n/t t ′′/t t ′′

n /t U/t

h1 (6.0, 3.5) 0.27 0.60 0.07 0.05 −0.04 −0.09 12.6
e1 (6.0, 3.5) 0.28 0.52 0.08 0.08 −0.05 −0.04 13.7
h2 (3.5, 5.0) 0.21 0.33 0.08 0.05 −0.03 −0.04 11.8

second and third nearest-neighbor density-assisted hoppings
(t ′

n and t ′′
n ). All other two-particle terms are less than 0.05t

and are truncated. After these simplifications, we obtain a
truncated Wannier model:

H =
∑

i,δ,σ

−t δc†
i+δ,σ ci,σ +

∑

i

Uni,↑ni,↓

+
∑

i,δi,σ

−t δ
n (c†

i+δ,σ ci,σ + c†
i,σ ci+δ,σ )niσ̄ . (6)

Here, i + δ is the first, second, or third nearest neighbor of site
i, with conventional hopping amplitudes t , t ′, and t ′′, and with
density-assisted hopping amplitudes tn, t ′

n, t ′′
n . The resulting

model parameters are summarized in Table I for downfolding
based on three different three-band systems [75].

Note that the nearest-neighbor tn coefficients are almost
twice the size of an effective exchange coupling J ∼ 4t2/U ∼
0.32. Given their substantial magnitude, it is surprising how
rarely these terms have been considered [76–79]. The exis-
tence of the tn term is guaranteed by a finite component of the
nearest-neighbor Cu orbitals in the Wannier function, which
is robust since regular Wannier functions must have those
components to satisfy orthogonality. Its magnitude is substan-
tial mainly because of the large value of Ud . The tn term is
much larger for the cuprate-relevant charge-transfer case h1,
compared with the Mott-Hubbard case h2 that has a similar
U/t ratio. This is directly tied to the higher O occupancy in the
charge-transfer case, which makes the WFs more extended.

We also note that the WFs and thus the model parameters
are similar for the hole- and electron-doped cases, even if
their parental three-band states are quite different in spin and
charge order, indicating that the downfolding is determined
by the local physics. Just as the sharp drop in occupancy after
the first band shows little dependence on system size, we find
the Wannier Hamiltonian also exhibits little dependence on
cluster size.

Two key questions now arise: (1) Does the Wannier
model Hamiltonian give the same properties as the three-band
model? Given the straightforward and robust nature of our
downfolding, we expect this to be so, and comparisons de-
tailed in the Supplemental Material [67] for moderate system
sizes support this. (2) Does a mean-field treatment of the
tn terms, reducing the system to a standard Hubbard model,
also match the properties of the three-band model? Although
this may be largely true for the spin and charge degrees of
freedom, we will argue that the delicate nature of the pairing
is not correctly captured by the mean-field/standard Hubbard
treatment. In any case, the large magnitude of tn poses a
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FIG. 3. (a)–(c) Action of the tn term, and resulting hopping
strengths, depending on the occupations of the sites involved. (d) On
a width-4 cylinder, mobility of a pair of holes/electrons (in unit of t)
measured by the slope of pair energy vs 1/(Leff + 1)2, for the t-tn-U
model and the teff -U model.

potential difficulty for a mean-field treatment since any de-
viations could be significant.

Effects of tn. We find that the tn terms have two primary
effects: First, they reduce the effective interaction strength
U/teff ; and second, they enhance hole hopping, reducing
the effective mass of pairs on the hole-doped side and pro-
moting phase coherence. The reduction of U/teff can be
understood from a mean-field treatment of tn where one re-
places tnc†

jσ ciσ (niσ̄ + n jσ̄ ) by tnc†
jσ ciσ 〈n〉, with 〈n〉 being the

average density of holes per Cu site, adding to the conven-
tional hopping. This changes U/t ∼ 13 to U/teff ∼ 7.5 (for
tn = 0.6, n = 1.15), close to U/t = 8, which is often used for
the cuprates.

Beyond mean field, we consider specific hopping processes
in Figs. 3(a)–3(c), written in the hole picture. For a doped hole
(i.e., a doublon) we expect the process shown in Fig. 3(a) to
be relevant, where the tn acts with magnitude 2tn. For undoped
regions with AFM particle-hole virtual hoppings, the process
shown in Fig. 3(b) acts with magnitude tn. On the electron-
doped side [the process shown in Fig. 3(c)], tn has no effect.
It does not seem possible to capture these various properties
correctly with a mean-field treatment.

We find that the resulting hole-pair mobility is enhanced
with the tnc†

j,σ ci,σ niσ̄ term versus its mean field tnc†
j,σ ci,σ 〈niσ̄ 〉,

2.75t vs 2.27t . In contrast, the mobility of a pair of electrons
with tn is much smaller, 1.49t , and reduced comparing to its
mean field 2.27t . Thus, the increased mobility of a single pair
hints at the possibility of enhanced pairing due to tn on the
hole-doped side.

To probe for superconductivity, we apply edge pair fields
to a 10 × 4 cylinder with and without a π phase shift between
the two edges, to measure the superconducting phase stiffness
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FIG. 4. Pairing response for the t-tn-U model in a 10 × 4 cylin-
der at a hole doping ∼0.11 (n ≈ 1.11). Pair fields have been applied
to regions near both edges, denoted by the black boxes, with the
phases on the two ends (a) being the same and (b) having a π shift.
(c) Extrapolation of the energies with the truncation errors for the two
different pair-field boundary conditions in (a) and (b). The energy
difference is a measurement of the superconducting phase stiffness.
(d) Same as (c) for the teff -U model that incorporates the effect of the
tn term only in mean field.

α. The results are shown in Fig. 4. Note that α = 0 indicates
the absence of superconductivity. The applied fields make α

proportional to an energy difference, α ∝ Lx
Ly

�E , where �E
can be extrapolated using DMRG. At a hole doping of 0.11
(〈n〉 ≈ 1.11), the t-tn-U model gives a stiffness α that is five
times larger than the teff -U model [80]. The pure Hubbard
model (without t ′ terms) is thought to be nonsuperconducting
[1]; our results hint that the tn terms, even without t ′, might
tip the balance towards superconductivity. In a more realistic
model where t ′ and t ′

n from Table I are included, we also find
a larger phase stiffness, �E = 0.012(4) with tn vs 0.002(4)
with teff , for a system at a hole doping of 0.11.

Summary and discussion. We have revisited the Zhang-
Rice downfolding of the three-band Hubbard model to a
single-band model, basing the downfolding on a DMRG simu-
lation of the three-band model. Our results give strong support
to the applicability of the one-band approach, where the small
occupancy of higher natural orbital bands shows their ir-
relevance. However, our Wannier-function downfolding also
shows that a density-assisted hopping term which is usually
neglected has a large coefficient. This term renormalizes the
hopping in mean field, but mean-field treatments are inad-
equate to capture the effects of this term on pairing. The
density-assisted hopping enhances hole mobility and hole-pair
mobility. This leads to enhanced superconducting pairing on
the hole-doped side on width-4 cylinders.
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