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Second-order topological insulators (SOTIs) support topological states beyond the usual bulk-boundary
correspondence and provide important connections between quantum chemistry and topology. A hallmark of
the two-dimensional (2D) SOTIs is the emergence of corner states, which usually arise from the topologically
nontrivial obstructed states in the bulk. In contrast, we reveal a very different scenario where even trivial
obstructed bulk states can induce corner states due to their open boundaries. Remarkably, we show that these
two types of corner states can coexist in a single system and predict, from first-principles calculations, that the
monolayer C2N is a promising candidate for their observation. To overcome the limitation in manipulating corner
states, we demonstrate it can be accomplished using a magnetic exchange field, where the corner states can be
fully spin polarized and moved into the bulk states. Focusing on the example of the C2N/CrI3 van der Waals
heterostructure, we put forth a class of proximitized materials which enable the versatile control of corner states
through strain-controlled magnetic proximity effects. Our work reveals another type of topological state, and
provides a universal proposal for topological corner state modulations and applications.
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Introduction. Higher-order topological insulators are a
new class of topological crystalline phase characterized by
a generalized bulk-boundary correspondence [1–4]. Unlike
conventional topological insulators [5–13], their dimensional
difference between the nontrivial boundary state and the bulk
state is greater than 1. For example, a two-dimensional (2D)
second-order topological insulator (SOTI) has 1D gapped
edge states and 0D in-gap corner states (CSs) [14–20]. With
the guidance of topological quantum chemistry [21] and
related theories [22–26], 2D SOTIs are usually sought in
unconventional materials [27] with bulk band representations
(BRs) that can be decomposed into elementary BRs (eBRs),
i.e., generators of BRs, but not atomic-orbital-induced BRs
(aBRs), which correspond to trivial insulators. This absence
of the aBR decomposition is known as the obstructed atomic
limit (OAL), i.e., bulk obstruction [21,28–30]. The topolog-
ically nontrivial bulk obstruction is considered to be a key
signature of SOTIs, where the eBR centers are displaced from
the underlying atomic ions and thus generate electric multiple
moments, inducing fractionally charged CSs [1,31,32].

However, even with a trivial bulk obstruction, we identify
a scenario to realize CSs originating from the open boundary.
Remarkably, we find that these two different types of CSs
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(from both nontrivial and trivial bulk obstructions) can coexist
in SOTIs with bulk-boundary obstruction and can be realized
in realistic materials, supported by our first-principles calcu-
lations. Unlike the well-studied manipulation of skyrmions or
Majorana zero modes [33,34], the control of CSs as another
class of topological defects is largely unexplored. Together
with the experimental challenges of realizing SOTIs in real
electronic materials, this lack of CS control limits their poten-
tial applications.

To overcome these challenges, we predict from sym-
metry analysis and first-principles calculations that C2N, a
synthesized monolayer (ML) [35,36], is the bulk-boundary
obstructed SOTI. We further show a versatile CS control by
a magnetic exchange field. This principle is verified in the
van der Waals (vdW) heterostructure C2N/CrI3, where CrI3

is a well-studied 2D magnet [37,38]. The CSs are tunable
by using a vertical compressive strain which changes the
proximity-induced exchange splitting. In addition to identify-
ing a different SOTI and suggesting the 2D SOTI/2D magnet
as a promising platform for CS control, our work extends the
opportunities for proximitized materials [39,40] to implement
higher-order topological insulators and superconductors [3,4].

Bulk-boundary obstruction. We study the bulk-boundary
obstruction effect in a nearest-neighbor honeycomb lattice
model with three p orbitals, where pz orbitals are decoupled
from (px, py) orbitals due to the planar lattice, as illustrated in
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FIG. 1. (a) A Kekulé-honeycomb lattice: Thick (thin) bonds
show intracellular, γ (intercellular, γ ′) hopping. Flake boundaries
are labeled with different colors and numbers (1, 2, and 3). The
corner regions of such boundaries and maximal Wyckoff positions
(1b, 2d , 3g) indicated by the colorful dots are also given in a unit cell
(green rhombus), where the yellow and green dashed lines denote
equivalent paths for the Wannier centers of hpxy . (b) Energy spectra
for (a) with various boundaries, where the numbers of the boundaries
correspond to those in (a). The red, blue, and gray dots represent
corner, edge, and bulk states, respectively. The black arrow denotes
the Fermi levels by the electron counting, EF . Inset: Enlarged CSs
near EF .

Fig. 1(a). The resulting total Hamiltonian H takes the form of
H = hpz ⊕ hpx,y , where hpz and hpx,y denote the hopping terms
in the pz and (px, py) orbital subspaces, respectively. Further
details regarding the model can be found in our Supplemental
Material (SM) [41]. Previous work has shown that applying
Kekulé modulation in the hpz [γ < γ ′ in Fig. 1(a)] can lead
to a bulk-obstructed SOTI with emergent CSs [18,42–45], as
confirmed in our calculations [41]. However, it is unclear how
the combined effect of the hpz and hpx,y contributes to the
topology and CSs of the H . To address these questions, we
first investigate the topology of hpx,y and subsequently explore
the superposition effect of hpz and hpx,y .

To characterize the topology of the half-filling hpx,y , we
calculate its symmetry indicators and related corner charges
as

χ (6) = ([
M (2)

1

]
,
[
K (3)

1

])
,

Q(6)
corner = e

4

[
M (2)

1

] + e

6

[
K (3)

1

]
mod e, (1)

where the superscript 6 of χ (6) and Q(6)
corner labels the C6

symmetry of our model and the invariant [�(n)
p ], � = K or

M, indicates the difference in the number of eigenvalues
(e2π i(p−1)/n) of Cn operation at � and � in the occupied bands
manifold [32]. The calculated irreducible representations (ir-
reps) for the occupied bands of hpx,y at several high-symmetry
k points (HSKPs) are shown in Table I, which give a symme-
try indicator χ

(6)
hpx,y

= (0, 0), indicating the half-filling hpx,y is
topologically trivial and therefore no in-gap CSs are expected.
However, the in-gap CSs are surprisingly found in the hexago-
nal flakes of the hpx,y with boundaries 1 and 2 [Fig. 1(a)] [41],
which contradicts the prediction of the symmetry indicator.
We uncover the unanticipated CSs resulting from the bound-
ary obstruction as follows.

As shown in Tables I and S1 [41], the occupied parts of hpx,y

cannot be decomposed as a sum of aBRs, but can be decom-
posed as a sum of eBRs induced from Wyckoff positions 1b,

TABLE I. Irreps for the occupied bands of the hpx,y . The number
in front of each irrep denotes its repeat times. The last row gives the
three equivalent eBR decompositions of the occupied bands.

� M K

Bands �−
6 ⊕ �+

5 ⊕ M−
4 ⊕ 2M−

3 ⊕ K1 ⊕ K4⊕
�−

3 ⊕ �+
2 M+

1 ⊕ 2M+
2 2K5

Decomposition 1 (B1g ⊕ B3u)@3g
Decomposition 2 2(E ′ ⊕ A′

2)@2d
Decomposition 3 (E2g ⊕ E1u ⊕ B2u ⊕ A2g)@1b

2d , or 3g, respectively. The site symmetry groups of Wyckoff
positions 1b, 2d , and 3g are D6h, D3h, and D2h, respectively.
The high-symmetry lines (1b ↔ 2d) and (2d ↔ 3g) have site
symmetry groups C2v and Cs, respectively. Due to the relations

C2v ⊂ (D6h ∩ D3h),

(A1 ⊕ 2B1) ↑ D3h = E ′ ⊕ A′
2,

(A1 ⊕ 2B1) ↑ D6h = E2g ⊕ E1u ⊕ B2u ⊕ A2g,

Cs ⊂ (D3h ∩ D2h),

A′ ↑ D2h = B1g ⊕ B3u,

A′ ↑ D3h = E ′ ⊕ A′
2, (2)

where the A1 (B1) and A′ are the irreps of the C2v and Cs,
respectively, the three eBR decompositions for the occupied
bands of the hpx,y in Table I are equivalent [21,28]. In other
words, the occupied bulk bands of hpx,y are in trivial OAL,
and their Wannier centers can adiabatically move between
the 3g, 2d , and 1b sites through the lines (1b ↔ 2d) and
(2d ↔ 3g) in periodic boundary conditions. These lines are
depicted as the yellow and green dashed lines in Fig. 1(a).
However, the equivalence between the Wannier states at these
three Wyckoff positions will be broken by any open boundary
termination that possesses these Wannier sites, as electron
filling of these sites on the edge is half of its filling in the
bulk (since such a site is shared by two unit cells). This results
in an obstruction of these Wannier states in the open boundary
conditions, referred to as a boundary (edge) obstruction [46],
which gives rise to the CSs. As shown in Fig. 1(a), only
terminations 1 and 2 allow some sites of the three Wyckoff
positions to appear on the edges. The CSs of hpx,y can only be
obtained in nanoflakes with terminations 1 and 2 [41].

Next, we demonstrate the bulk-boundary obstruction with
H = hpz ⊕ hpx,y , whose energy bands are superpositions of
the bands of hpz and hpx,y [41]. The topological invariants
and observables of H can be accessed from those of hpz and
hpx,y [32]. At half filling, the symmetry indicator of hpz is
χ

(6)
hpz

= (2, 0) [18] and of H is χ
(6)
H = χ

(6)
hpx,y

+ χ
(6)
hpz

= (2, 0),

the same as χ
(6)
hpz

. This implies that the in-gap CSs of H are the
same as those of hpz and can only be obtained with termination
3 [41]. By calculating the hexagonal flakes of the H with
terminations shown in Fig. 1(b), the in-gap CSs appear in all
cases. By comparing Fig. 1(b) and Fig. S2 [41], we see that
the appearance of the CSs of H in the flakes with terminations
1 and 2 is due to the boundary obstruction of hpx,y , while in
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FIG. 2. (a) C2N with maximal Wyckoff positions (1b, 2d , 3g) in
the unit cell (green rhombus). Black-dashed lines: The flake bound-
aries for the CS calculations. (b) Orbital-resolved bands of C2N with
essential eBRs. Red dots: pz orbitals; blue curves: fitted π bands
using the Wannier method. (c) Calculated energy spectra for the π

bands of C2N hexagonal flakes with Wannier functions. Red, blue,
and gray dots represent corner, edge, and bulk states. (d) Same as
(c) but for C2N using first-principles calculations. Charge distribu-
tions of the unoccupied (occupied) CSs are shown upper left (lower
right).

the flake with termination 3 it is due to the nontrivial bulk
topology of the hpz subspace.

Bulk-boundary obstructed SOTI in C2N. We find the ex-
perimentally fabricated ML C2N (for brevity C2N) to be an
ideal 2D SOTI with bulk-boundary combined obstruction. The
C2N is a semiconductor with a hexagonal planar structure
[35,47,48], as shown in Fig. 2(a). Its has a p6/mmm space
group (No. 191) symmetry and consists of 12 C and six
N atoms at Wyckoff positions 12q and 6k. The C2N has a
combination of π bands (pz) and σ bands (sp2), due to the
decoupling of its pz orbitals from its sp2 (s, px, py) orbitals.
Since the spin-orbit coupling (SOC) in C2N is small [41],
it can be effectively neglected, allowing the material to be
treated as spinless in this section.

The orbital-resolved energy bands [Fig. 2(b)] show half-
filled π bands of C2N. The calculated irreps for these π bands
at several HSKPs are displayed in Table S2 [41]. The BRs
of these π bands can be decomposed into an aBR A′′@12q
corresponding C pz orbitals, along with two essential eBRs
B2g@3g and B1u@3g, both located at empty sites 3g [repre-
sented by red dots in Fig. 2(a)]. These two essential eBRs
correspond to the three highest valence bands and the three
lowest conduction bands, respectively, shown in Fig. 2(b).
The irreps of these essential eBRs are consistent with those
of the 2D Kekulé distorted hexagonal model [18], suggesting
that it can explain the low-energy physics and topological
properties of the π bands. The occupied essential eBRs of
the π bands, B2g@3g, have a nonzero real-space invari-
ant (RSI) δ1@3g = −m(Ag) + m(Au) − m(B1g) + m(B1u) −
m(B3g) + m(B3u) − m(B2g) + m(B2u) = −1 [49], which is the
same as the one calculated with all the occupied C2N bands
and demonstrates the mismatch between the average elec-
tronic centers (Wyckoff sites 3g) and the atomic positions
(Wyckoff sites 6k and 12q).

To verify the nontrivial topological properties of C2N, we
further calculated its symmetry indicators and topological
CSs. The symmetry indicators from all the occupied C2N
bands are determined to be χ (6) = (2, 0), which confirms that
C2N is in the OAL. Symmetry indicators calculated using only
the occupied π bands of C2N are the same as those calculated
using all occupied bands, indicating that its nontrivial topo-
logical properties are determined by its π bands, in agreement
with the above analysis.

The χ (6) = (2, 0) topological invariant of C2N suggests
that the corner charge of the layer will be fractionalized with
a value of e/2 in the spinless case and e in the spinful case
for each π/3 sector. A half-filled 18-band tight-binding (TB)
model based on Wannier functions, whose centers are located
on the C and N atoms, shows good agreement with the π

bands of C2N [Fig. 2(b)]. The TB model of the hexagonal
flake displayed six CSs at zero energy [Fig. 2(c)], in line
with the symmetry indicators. A slight energy splitting of
the in-gap CSs can be ascribed to the finite-size effect of
the flake. However, when the same flake was calculated from
first principles, there is a slight difference. The two groups of
approximately sixfold degenerate states appear in the energy
gap and the average corner charge was e, instead of e/2 for
the spinless case, as shown in Fig. 2(d). This discrepancy can
be understood by analyzing the remaining occupied σ bands.

As shown in Table S3 [41], the irreps of the occupied
σ bands have trivial symmetry indicators [χ (6) = (0, 0)] and
zero RSIs. The decompositions of the irreps means that the
Wannier centers of sp2 orbitals can be adiabatically moved
between the 3g, 2d , and 1b sites. As we discussed in previous
section, the equivalence between these sites is broken by a
boundary termination, leading to the formation of six new
half-filling CSs. The total corner charge in each π/3 sector of
the spinless C2N flake is e, contributed by CSs from the π and
σ bands, respectively. Thus, C2N is a different bulk-boundary
obstructed 2D SOTI, with its corner charge simultaneously de-
rived from both the nontrivial obstructed subspace (π bands)
and the trivial obstructed subspace (σ bands) of its occupied
bulk states.

Tailoring CSs in 2D SOTI/2D magnet heterostructures. We
next show that the magnetic exchange field M can effectively
manipulate the CSs of the 2D SOTIs based on a spinful Kekulé
model [42],

H =
∑

〈i j〉,s
ti jc

†
isc js + M

∑

i

c†
i σzci, (3)

where 〈i j〉 are the nearest neighbors on the honeycomb lattice,
the transfer integral ti j is γ (γ ′) on bold (thin) bonds in
Fig. 1(a), and the s = {↑ / ↓} represents the spin up/down,
respectively. The second term represents an out-of-plane mag-
netic exchange field with its strength, M, and Pauli matrix, σz.

A finite M splits the spin-degenerate energy levels into
spin-polarized energy levels, both for bulk and corner (edge)
states. As shown in Fig. 3(a), the spin-degenerate in-gap CSs
at the Fermi level, EF , are divided into two groups [middle
panel in Fig. 3(a)], with one occupied and one unoccupied,
due to M �= 0 and the requirement of charge conservation.
Both sets of CSs are fully spin polarized, allowing for
manipulation of the spin-degenerate CSs into energetically
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FIG. 3. (a) A schematic for the energy-level evolution of Eq. (2)
tuned by a magnetic exchange field M, showing three types of CSs
with specific M and 	E , where 	E represents the energy difference
between the VBM and lowest CSs. The solid (dashed) lines: spin-up
(spin-down) states. The colors of the lines, black (red), indicate the
bulk (corner) states. (b) M-dependent energy spectra for Eq. (2) with
γ ′/γ = 1.25, where the colored dots and the black arrow have the
same meaning as in Fig. 2. Solid (open) circles: spin-up (spin-down)
CSs. (c) A vdW heterostructure C2N/CrI3. (d) Bands for (c), where
the red (blue) dots indicate the spin-up (spin-down) pz orbitals in
C2N.

distinguishable half CSs by applying M. As M increases, the
CSs move further away from the EF until they finally become
hidden in the bulk states [right panel in Fig. 3(a)]. To simu-
late the M manipulation of CS, calculations were performed
on open flakes of the magnetic Kekulé model. As shown in
Fig. 3(b), the CSs (red) evolve consistently with the process
described above, with half CSs appearing [middle panel in
Fig. 3(b)].

To realize this CS control in SOTI, we propose its materials
implementation in a C2N/CrI3 heterostructure [Fig. 3(c)], with
structural details in the SM [41]. The pz orbital-resolved spin-
polarized bands of the heterostructure are plotted in Fig. 3(d),
with an optimized equilibrium vdW gap, d0 = 3.61 Å. For the
calculated

√
3 × √

3 supercell of C2N, the bands were un-
folded onto the k points in the Brillouin zone of the primitive
cell of C2N [Fig. 4(a)] by using the k-projection method [50].
The results show that C2N was slightly magnetized by CrI3.

We next focus on the lower-energy CSs of the C2N/CrI3

heterostructure, originating from the π bands of C2N. The
spinful TB model for the π bands of C2N with M is used
based on Wannier functions. As denoted in Fig. 3(d), M in the
TB model can be estimated from the spin splitting of the low-
energy π bands, which is about 35.7 meV and slightly larger
than that in the graphene/CrI3 [39]. The valence band maxi-
mum (VBM) of the C2N/CrI3 heterostructure can be measured
from the valence π bands. As shown in Fig. 4(b), the results of
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FIG. 4. (a) Unfolded bands of C2N in the C2N/CrI3 heterostruc-
ture. (b) Same as Fig. 2(c) but for C2N/CrI3 heterostructures, where
the dashed line indicates its VBM. The solid (open) circles indicate
the spin-up (spin-down) CSs. (c) The evolution of M and 	E tuned
by the reduction of the vdW gap, 	d . (d) Same as (b) but with
	d = −0.48 Å.

the hexagonal flake of the spinful π -band model with M �= 0
reveal a tiny spin splitting between the two groups of CSs
with different spins. The VBM of C2N/CrI3 heterostructure,
as depicted by the black dashed line in Fig. 4(b), is located
below the lowest CSs. This result suggests the presence of the
in-gap half CSs, such that the C2N/CrI3 heterostructure is in
the phase depicted in the middle (pink) panel in Fig. 3(a).

Reducing the vdW gap can effectively enhance M and
alter the energy difference between the bulk states and CSs,
	E . Experimentally, this can be realized by applying ex-
ternal pressure with the goal to tune the pristine C2N/CrI3

heterostructure into a phase with hidden CSs [yellow panel
in Fig. 3(a)]. Figure 4(c) shows the evolution of M and 	E
in the C2N/CrI3 heterostructure as a function of its reduced
vdW gap, 	d = d0 − d . When the vdW gap is reduced by ap-
proximately 	d = −0.48 Å, this yields 	E > 0 and implies
that the lower group of CSs in the C2N/CrI3 heterostructure
become hidden states under a compressive strain >0.48 Å.
The energy levels of the hexagonal flake for the compressed
C2N/CrI3 heterostructure with 	d = −0.51 Å are presented
in Fig. 4(d), where the energy of the lower CSs is found
to be below the VBM, consistent with the results shown in
Fig. 4(c).

Our findings therefore reveal that the predicted bulk-
boundary obstruction is another path towards 2D SOTIs,
supported by symmetry analysis, tight-binding models, and
first-principles calculations where we identify the C2N
monolayer as a suitable materials candidate. The presence
of strain-tunable magnetic proximity effects, verified in
C2N/CrI3 vdW heterostructures, offers an important prospect
for a versatile control of the underlying CSs, which could
be made fully spin polarized or hidden by being pushed
into the bulk states. These findings suggest an exciting
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opportunity to introduce superconducting proximity effects
within our magnetic vdW heterostructures, potentially trans-
forming SOTIs into second-order topological superconductors
[51]. This implies that our CS manipulation method might
be extended to control Majorana zero modes, enabling the
exploration of their non-Abelian braiding or fusion processes
[52–55].
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