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Temperature evolution of the Kondo peak beyond Fermi liquid theory
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The limitation of Fermi liquid theory to very low energies and temperatures poses a fundamental problem
for describing the temperature evolution of the Kondo peak. Here Fermi liquid theory for the single impurity
Anderson model is extended beyond the low-energy and low-temperature regime by means of an ansatz for the
impurity self-energy based on the accurate description of the Kondo peak by the Frota function, the similarity
between energy and temperature in the second-order self-energy, and by exploiting Fermi liquid conditions.
Analytic expressions for the temperature dependence of the Kondo peak height and width derived from this
ansatz are in excellent agreement with numerical renormalization group data for temperatures beyond the Kondo
temperature. The derived expression thus allows to unambiguously determine the intrinsic Kondo peak width
and Kondo temperature from finite temperature measurements of the Kondo resonance.
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Scanning tunneling microscopy (STM) has become an im-
portant experimental tool for studying magnetic atoms and
molecules on metallic substrates [1–13]. In these systems the
coupling of the atomic or molecular spin to the conduction
electrons in the substrate can give rise to the Kondo effect
[14]: the magnetic moment is screened due to formation of
a total spin-singlet state between the atom or molecule and
the conduction electrons. The Kondo effect is signaled by the
appearance of a Kondo-Fano resonance in the STM spectra
[15–19]. Therefore, observation of the Kondo effect pro-
vides proof for magnetism in the uncoupled species [20,21].
Together with the possibility to detect magnetic excitations
via inelastic spin tunneling [6,10,22,23], STM spectroscopy
(STS) provides an excellent means for characterizing the mag-
netic properties of atoms, molecules, and nanoclusters.

The Kondo temperature TK is the energy scale that con-
trols the low-temperature dynamics of a Kondo system [24].
Importantly, TK defines a crossover temperature at which
the system enters the Kondo regime and the Kondo peak
starts to emerge. In STS, TK is conveniently determined
from the halfwidth �0

K of the Kondo peak, since kTK ∼ �0
K

(see below for a more precise definition). However, STM
spectra are often measured at temperatures comparable to
TK, where the Kondo peak is strongly broadened. In order
to estimate the intrinsic (i.e., zero temperature) width of
the Kondo peak, the temperature evolution of the Kondo peak
width is recorded and extrapolated to zero temperature. This,
however, requires knowledge about the functional form of the
low-temperature evolution of the Kondo peak width [25].

Using results from Fermi liquid theory (FLT) [14,26,27],
Nagaoka et al. derived a simple expression for the tem-
perature dependence of the Kondo peak’s halfwidth [28]:
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�NA(T ) ∼
√

2 �̃2 + (αkT )2, where α = π [4] and �̃ is the
renormalized width in FLT (see below) related to the Kondo
temperature, kTK ∼ �̃. This equation has been used in a num-
ber of papers to estimate the intrinsic width of the Kondo
peak from finite temperature measurements [20,21,29–34].
However, in order to fit the experimental data, often the tem-
perature coefficient α is used as an additional fit parameter,
even though according to FLT α should be exactly π in the
Kondo regime [14,35]. The main problem is the limitation of
FLT to very low temperatures and to very low energies (or bias
voltages in STS) [36,37]. For Kondo systems, temperature and
energy must be well below the Kondo temperature and width,
effectively one order of magnitude below TK. Especially the
latter poses a fundamental problem, as it leads to a false
estimate of the Kondo peak width even at zero temperature,
see Fig. 1.

In order to overcome this problem, in this Letter FLT
for Kondo systems will be extended to a larger range of
energies and temperatures. Specifically, we focus on the
single-impurity Anderson model (SIAM) [39]: a single impu-
rity level of energy Ed subject to an on-site Coulomb repulsion
U is coupled to a bath of noninteracting conduction electrons
which gives rise to a constant broadening of the impurity
with halfwidth � (wide band limit). Our starting point is
the impurity Green’s function (GF) for the particle-hole sym-
metric SIAM (Ed = −U/2) which according to renormalized
perturbation theory (RPT) can be expressed in terms of renor-
malized quantities as [27]

G(ω) = Z/[ω + i�̃ − �̃(ω; T )], (1)

where the chemical potential μ has been set to zero. Z is
the quasiparticle (QP) weight Z ≡ [1 − ∂ω�(0; 0)]−1, where
�(ω; T ) is the electronic self-energy resulting from the
Coulomb repulsion U between electrons at the impurity site.
�̃ ≡ Z · � is the renormalized halfwidth of the impurity

2469-9950/2023/108(16)/L161109(5) L161109-1 ©2023 American Physical Society

https://orcid.org/0000-0003-4434-844X
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.108.L161109&domain=pdf&date_stamp=2023-10-23
https://doi.org/10.1103/PhysRevB.108.L161109


DAVID JACOB PHYSICAL REVIEW B 108, L161109 (2023)

0.0

0.2

0.4

0.6

0.8

1.0

-0.2 -0.15 -0.1 -0.05  0  0.05  0.1  0.15  0.2

 · 
πΔ

ω / Δ

NRG
Frota
FLT
NA [4]

A
(ω

)

FIG. 1. SFs for the SIAM with U = −2Ed = 10� at T = 0 cal-
culated by NRG (gray full circles) [38] compared to the approximate
SFs given by FLT (black dashed line) and NA [4] (blue dashed line).
Also shown is the Frota lineshape (red solid line) fitted to the NRG
data with �K as the fitting parameter (�K ∼ 0.0275 · �) and the
amplitude given by Friedel sum rule, A0

K = 1/π�. The QP weight
entering the FLT and NA expressions for the SFs is Z ∼ 0.055,
obtained from the curvature of the NRG SF at the Fermi level.

level, and �̃(ω; T ) ≡ Z (�(ω; T ) − �(0; 0) − ω ∂ω�(0; 0)) is
the renormalized self-energy, describing interaction effects
between QPs. Note that at particle-hole symmetry the
Hartree contribution to the self-energy �(0, 0) = U/2 ex-
actly cancels Ed = −U/2 in the denominator of the GF;
also by construction, �̃(0; 0) = ∂ω�̃(0; 0) = 0. From the GF
we can determine the spectral function (SF), A(ω; T ) =
−Im G(ω; T )/π , which can be directly related to the dI/dV
spectra in STS [40,41].

Perturbation theory to second order [42] yields for the
renormalized self-energy �̃2(ω; T ) = −i[ω2 + (πkT )2]/2�̃.
Hence, to second order the SF in FLT is given by
AFLT(ω; T ) = − 1

π
Im(Z/{ω + i�̃[1 + 1

2 (ω/�̃)2 + 1
2 (πkT/

�̃)2}). By making a further approximation to the FLT SF
[43], Nagaoka et al. obtained a Lorentizan form for the SF
[4], i.e., ANA(ω; T ) = 1

π�
[(ω/2�̃)2 + 1 + (πkT/2�̃)2]−1

with halfwidth given by �NA(T ).
Figure 1 shows the Kondo peak in the SF computed by

numerical renormalization group (NRG) [38] compared to the
approximate SFs AFLT(ω) and ANA(ω) for T = 0, where the
QP weight Z has been obtained by matching the curvatures
of AFLT at T = 0 and the actual Kondo peak in the NRG SF
at the Fermi level, i.e., ∂2

ωAFLT(0; 0) = ∂2
ωA(0; 0). In FLT the

halfwidth of the actual Kondo peak �0
K is considerably un-

derestimated, even though the fit with the actual Kondo peak
at low energies ω � �0

K is perfect. In contrast, the Nagaoka
approximation (NA) for the SF considerably overestimates
the halfwidth. Additionally, the NA SF does not correctly
capture the curvature of the Kondo peak at the Fermi level
either. Thus, while the FLT SF yields a proper low-energy
and low-temperature description of the Kondo peak, the NA
actually does not.

The underestimate of the Kondo peak width in AFLT is
owed to the low-energy nature of FLT, limiting the validity of

the SFs to energies ω � �0
K. The same problem arises for the

temperature dependence which is likewise limited to very low
temperatures T � TK ∼ �0

K. In principle this problem could
be solved by including higher order terms in the perturbation
expansion. However, very high order terms would be required
to achieve a meaningful extension of the energy and temper-
ature range of FLT. But with growing order the terms also
become increasingly cumbersome for an analytical treatment
[44,45].

On the other hand, the Frota function
AF(ω) = A0

K · Re
√

i�K/(ω + i�K ) [46] yields an essentially
exact description of the Kondo peak for energies up to several
times the halfwidth �0

K, as shown by the red curve in Fig. 1. A0
K

is the amplitude of the Frota function, while �K determines its

halfwidth via �0
K =

√
3 + √

12 · �K = 2.542 · �K. It is now
important to realize that the parameters for the Frota function
can be determined exactly from FLT since FLT becomes
exact in the limit ω → 0, T → 0. First, the Friedel sum rule
determines the amplitude of the Kondo peak, resulting in
A0

K = 1/π�. Second, matching the curvatures of the Frota
SF and FLT SF at the Fermi level, ∂2

ωAF(0) = ∂2
ωAFLT(0; 0),

yields �K = �̃/2 = Z · �/2. This is how Z in Fig. 1 was
determined in practice; instead of taking the second derivative
of the NRG spectral function numerically, which tends to be
very noisy, first the Frota lineshape was determined via the
�K parameter, and then the QP weight via Z = 2�K/�.

Additionally, the finding �K = �̃/2 allows us to establish
an exact relation between the Kondo temperature TK accord-
ing to Wilson [24] and the intrinsic width of the Kondo peak
�0

K. According to FLT π�̃ = 4kTK/w, where w = 0.4128 is
Wilson’s number [14], hence �K = 2 kTK/πw ∼ 1.542 kTK,
and therefore,

�0
K = 2.542 �K = 2.542 × 2

π · w
kTK ∼ 3.92 kTK. (2)

The prefactor of 3.92 is close to the value of ∼3.7 found
numerically by Zitko and Pruschke from NRG calculations
[47].

We next determine the renormalized self-energy �̃ that ex-
actly yields the Frota lineshape at T = 0. First, we introduce
the “Frota GF” whose imaginary part yields the Frota spectral
function, GF(ω) ≡ − i

�

√
i�K/(ω + i�K ), where �K = �̃/2.

The corresponding renormalized self-energy that yields
GF(ω) when plugged into (1) is easily determined to be
�F(ω) = ω + i2�K(1 − √

1 − iω/�K ).
The crucial step now is to extend the T = 0 “Frota self-

energy” �F to finite temperatures. Inspired by the symmetry in
ω and πkT of the second order contribution to the self-energy
�̃2 ∼ i[ω2 + (πkT )2], we make the following Ansatz for the
temperature-dependent �̃:

�̃(ω; T ) = Re �F(ω) + i Im �F[ε(ω; T )], (3)

where ε(ω; T ) ≡
√

ω2 + (πkT )2. Note that the real part of �̃

is crucial to recover the Frota lineshape at T = 0.
The real and imaginary parts of �̃ can be written explicitly

as real functions:

Re �̃(ω; T ) = ω − σω

√
2 �K

√
S(ω/�K ) − 1, (4)

Im �̃(ω; T ) = 2 �K −
√

2 �K

√
S(ε/�K ) + 1, (5)
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where σω ≡ sgn(ω) is the sign function and S(x) ≡ √
1 + x2

has been introduced. The GF can now be written as

G(ω; T ) =
√

2/�

σω

√
S
(

ω
�K

) − 1 + i
√

S
(

ε(ω,T )
�K

) + 1
. (6)

In the limit T → 0 the GF reduces to the Frota form, given
by GF(ω). In the following we concentrate on the spectral
function [48] given by the imaginary part of (6) which can
be written as

A(ω; T ) =
√

2

π�

√
S
(

ε(ω,T )
�K

) + 1

S
(

ω
�K

) + S
(

ε(ω,T )
�K

) . (7)

A first test for the validity of the Ansatz (3) for the temper-
ature dependent �̃ is to compute the temperature dependent
height of the Kondo peak, found by evaluating A at ω = 0:

A0(T ) = 1

π�

√√√√ 2

1 +
√

1 + (
πkT
�K

)2
. (8)

Figure 2(a) shows the height A0(T ) according to (8) compared
to NRG data [49], and to the height computed within FLT or
NA (both approximations coincide for ω = 0). The agreement
between (8) and NRG is excellent for temperatures up to
TK, and very good for temperatures up to the bare linewidth,
kT � �. In contrast, in FLT (or NA) the decay of the SF with
temperature is far too strong, leading to a severe underestimate
of the Kondo peak height already for temperatures ∼TK.

Next we determine the halfwidth of the Kondo peak �K

as a function of temperature, which can be obtained from the
condition A(�K; T ) = 1

2 A0(T ). Inserting Eqs. (7) and (8) and
squaring yields

S(ε/�K ) + 1 = 1

4

[S(�K/�K ) + S(ε/�K )]2

1 + S(πkT/�K )
. (9)

Using the identity [S(ε/�K )]2 = [S(�K/�K )]2 + (πkT/

�K )2 in Eq. (9) would lead to a quartic equation for
S(�K/�K ), which could in principle be solved analytically,
but leads to a very long and cumbersome expression
for S(�K/�K ). Instead we Taylor expand S(ε/�K ) ≈
S(�K/�K ) + (πkT/�K )2/2S(�K/�K ), leading to
[S(�K/�K ) + S(ε/�K )]2 ≈ 4S(�K/�K )2 + 2(πkT/�K )2.
This approximation leads to a biquadratic equation for
S(�K/�K ) which can be solved easily. Using �K =
�K

√
S2 − 1, we finally obtain the halfwidth of the Kondo

peak as a function of temperature [50]:

�K(T ) = �K ·
√

a + b
√

1 + (
πkT
�K

)2 + c
(

πkT
�K

)2
, (10)

where a ≡ 1 + √
3 ∼ 2.732, b ≡ 2 + √

3 ∼ 3.732, and c ≡√
3/2 ∼ 0.866 are constants, and the Frota width parameter

�K yields the Kondo temperature TK = �K/1.542 and the
intrinsic halfwidth �0

K = 2.542 �K.
Equation (10) is the central result of this paper. As shown

in Fig. 2(b), it is in excellent agreement with NRG data for
temperatures up to TK, and is very accurate for temperatures
up to �0

K/k ∼ 2.542 �K/k where it starts to deviate more
strongly from NRG. In contrast, the temperature evolution of
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FIG. 2. Height and halfwidth of Kondo peak as functions of
temperature T for the SIAM with U = −2Ed = 10�. (a) Height
A0(T ) according to (8) (full red line), compared to NRG (black
circles) [38,49], and to FLT/NA (dashed blue line). The inset shows a
closeup of the low-temperature region. (b) Halfwidth �K(T ) accord-
ing to (10) (full red line), compared to NRG (black circles) [38,49],
and to the NA given by �NA(T ) (blue dashed line) [4]. The thin red
dashed line shows the low-temperature approximation (11). The ver-
tical black and gray dashed lines show kTK = �K/1.542 ∼ 0.018 �

and �0
K = 2.542 �K ∼ 0.070 �, respectively. The same QP weight

as in Fig. 1, Z ∼ 0.055, has been used.

the Kondo peak width in the NA given by �NA(T ) (Eq. (8)
of Ref. [4]) yields a poor description of the NRG data in
the entire temperature range. The curvature in the NA in the
temperature range kT � �K is very different both from the
NRG data and from �K(T ) given by Eq. (10). It also leads to
an overestimate of ∼10% for the intrinsic Kondo peak width
in agreement with Fig. 1.

A Taylor expansion of the inner square root in (10) to
second order,

√
1 + (πkT/�K )2 ≈ 1 + 1

2 (πkT/�K )2, yields
an approximate expression for the halfwidth that resembles
the expression found by Nagaoka et al. [4]:

�K(T ) ≈
√(

�0
K

)2 + (αkT )2, (11)

where now α =
√

1 + √
3 · π ∼ 5.193, different from π

found by Nagaoka et al., but also different from the values
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FIG. 3. Measured halfwidth of the Kondo peak versus tempera-
ture (black solid squares) and fit to �K(T ) given by (10) (full red
line) for the fused Goblet dimer (data from Ref. [34]), resulting
in �K ∼ 1.95 meV corresponding to �0

K ∼ 5.0meV and TK ∼ 15 K.
The blue dashed line shows a fit to the halfwidth �NA(T ) in the
NA. FD corrected halfwidths [50] are shown as solid gray circles,
while the full orange line shows a fit of �K(T ) given by (10) to
these, resulting in �K ∼ 1.3 meV corresponding to �0

K ∼ 3.3 and
TK ∼ 9.9 K.

found by fitting α in the NA to experimental data for spin-1/2
Kondo systems [21,31,34]. Note that Eq. (11) is only valid in
the very low temperature regime T � TK, as shown by the
red dashed line in Fig. 2(b), which starts to deviate consid-
erably from the exact result (10) for kT � 0.3�K ∼ 0.5TK.
However, experimental STS data is usually measured at tem-
peratures comparable to TK, where the approximation (11) is
not accurate anymore, explaining fit values of α different from
5.193. Recently, it was also pointed out that simple square root
expressions can, in general, not capture the correct behavior
of Kondo linewidth both in the low and high-temperature
regime [37].

Finally, we test how well Eq. (10) can be fitted to existing
STS data of a spin-1/2 Kondo system. Figure 3 shows the
temperature evolution of the Kondo halfwidth for the fused
Goblet dimer deposited on Au(111), measured by STS [34]
(black solid squares) compared to fits of the halfwidth �K(T )
given by Eq. (10) (red solid line) and to �NA(T ) in the NA
(blue dashed line). While Eq. (10) performs somewhat better
than the NA, it obviously does not fit very well the exper-
imental data either, even though the temperatures are well
below �0

K/k ∼ 37 K [34], where Eq. (10) is expected to be
very accurate according to the comparison with NRG, c.f.
Fig. 2(b).

A likely explanation for the disagreement is the presence
of additional broadening mechanisms in the STS experiment,
often not taken into account in the analysis of the STS data,
as recently discussed by Gruber et al. [33]. For example,
smearing of the Fermi-Dirac (FD) distribution at the STM
tip leads to temperature-dependent broadening of the dI/dV
spectra, described by a convolution of the derivative of the FD
distribution and the spectral function [33,37], which can be
evaluated numerically. The intrinsic halfwidth of the Kondo
peak in the underlying spectral function can then be deter-
mined by numerically solving the equation for the effective
halfwidth of the Kondo peak in the dI/dV [50]. The gray
circles in Fig. 3 show the thus FD corrected experimental
data. For the experimental temperature range the effect of
FD broadening is considerable (20%–30%). As shown by the
orange line in Fig. 3, the FD correction leads to a considerably
better fit of Eq. (10) with the data. Importantly, it leads to a
considerably lower estimate of �0

K and TK. Also, other broad-
ening mechanisms discussed in Ref. [33] may play a role, and
further improve the fit, when taken into account. The issue
of accurately measuring Kondo widths in STS experiments
clearly deserves further attention.

In summary, the Fermi liquid description of the Kondo
peak has been extended to a larger energy and temperature
range by means of an ansatz for the temperature dependent
renormalized self-energy. The extension beyond Fermi liq-
uid theory is crucial to correctly describe the width of the
Kondo peak at finite temperatures. Analytic expressions de-
rived from this ansatz for the height and width of the Kondo
peak at finite temperatures show excellent agreement with
numerical renormalization group data up to experimentally
relevant temperatures around TK. The derived expression for
the temperature evolution of the Kondo peak width thus
allows to extract the intrinsic Kondo peak width and cor-
responding Kondo temperature from finite-temperature STS
measurements of Kondo systems. The discrepancy with pub-
lished experimental STS data of a spin-1/2 Kondo system
[34] can certainly be attributed to the neglect of extrin-
sic broadening mechanisms in the analysis of the STS
data.
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