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Electrons on honeycomb or pi-flux lattices obey the effective massless Dirac equation at low energies and at the
neutrality point, and should suffer quantum phase transitions into various Mott insulators and superconductors
at strong two-body interactions. We show that 35 out of 36 such order parameters that provide Lorentz-invariant
mass gaps to Dirac fermions belong to a single irreducible tensor representation of the SO(8) symmetry of
the two-dimensional Dirac Hamiltonian for the spin-1/2 lattice fermions. The minimal interacting Lagrangian
away from the neutrality point has the SO(8) symmetry reduced to U (1) × SU (4) by finite chemical potential,
and it allows only two independent interaction terms. When the Lagrangian is nearly SO(8) symmetric and
the ground state insulating at the neutrality point, we show it turns superconducting at the critical value of the
chemical potential through a “flop” between the tensor components, by exactly solving the SU (4) → SU (N )
generalization in the large-N limit. A lattice Hamiltonian that may exhibit this transition, parallels with and the
consequences for the Gross-Neveu model, and applicability to related electronic systems are briefly discussed.
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Introduction. Graphene at the neutrality point is a weakly
interacting gapless Dirac semimetal. Multilayer graphene
structures, in contrast, often appear to be Mott insulators.
The insulating state in rhombohedral trilayer graphene, for
example, with doping (and electric field) turns into a super-
conductor [1]. The latter phenomenon is reminiscent of the
much studied but still incompletely understood behavior of
cuprate superconductors. Cuprates are insulating antiferro-
magnets at half filling which become d-wave superconductors
with high critical temperatures above critical doping with
holes. Zhang [2,3] viewed this insulator-superconductor tran-
sition as a “flop” of a five-dimensional vector order parameter
composed of the three Néel and two superconducting compo-
nents, which is induced by the chemical potential which favors
the superconducting directions. Unfortunately, the SO(3) ×
SO(2)-symmetric three-dimensional Ginzburg-Landau theory
is now understood [4,5] not to exhibit a particularly wide
crossover regime near its unstable SO(5)-symmetric fixed
point, as was originally hoped, which significantly reduces the
range of relevance of such a unified theory. We argue below,
however, that a different unification of physically disparate
orders under the umbrella of an emergent internal symmetry
becomes possible in two-dimensional (2d) Dirac systems.

As a paradigmatic example we take the electrons in
graphene, which at low energies, at the neutrality point, and
when assumed noninteracting, are described by the eight-
dimensional Dirac Hamiltonian. The number eight comes
from the honeycomb lattice being bipartite (two sublattices),
there being two inequivalent Dirac cones, or valleys (fermion
doubling), and finally the electrons having spin-1/2. By a
judicious construction of the Dirac fermion the nontrivial
matrix structure of the Dirac Hamiltonian can be completely
stowed into the sublattice factor space, and then replicated
four times for the two valley and the two spin components.

When written like this the Dirac single-particle Lagrangian
besides its hallmark space-time SU (2) Lorentz symmetry
clearly displays the internal SU (4) symmetry, the latter acting
on the spin-valley index. Of course, since the particle number
is conserved, there is also the exact U (1) gauge symmetry
and the discrete time reversal symmetry. Both the Lorentz
SU (2) and the internal SU (4) symmetries are emergent at low
energies and broken by the lattice.

The long-range and Lorentz-violating nature of the
electron-electron Coulomb interaction notwithstanding, it
may still be profitable to ask, what is the minimal local in-
teracting Lagrangian that would respect the larger U (1) ×
SU (4) × SU (2) symmetry [6]? Such a Lagrangian would
define the truly minimal (maximally symmetric) interacting
field theory of 2d lattice spin-1/2 Dirac fermions. We show
first that such a Lagrangian is remarkably simple, and con-
tains only two independent quartic terms. Furthermore, the
36 Dirac fermion bilinears [7–9] that transform as Lorentz
singlets, i.e., the average of which would be the order pa-
rameters that represent Dirac masses, can be understood as
four distinct irreducible representations (irreps) 10, 10∗, 15,
and 1 under the SU (4) [10]. The first two irreps correspond to
x and y components of the 10 gapped superconducting order
parameters [11–13] and transform as the symmetric second-
rank tensor and its complex conjugate [14]. The irrep 15 is
the adjoint representation comprising all insulating mass order
parameters other than the quantum anomalous Hall (QAH)
state [15]. The latter transforms as an SU (4) singlet, i.e.,
as the irrep 1. The U (1) × SU (4) × SU (2) interacting field
theory already provides partial unification of dominant order
parameters in the Dirac system.

Our main result is, however, that when a certain condition
between the coupling constants of the two interaction terms is
met, and when the chemical potential is at the Dirac point, the
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minimal interacting Lagrangian exhibits further enlargement
from U (1) × SU (4) × SU (2) symmetry to SO(8) × SU (2).
The SO(8) arises because the two-component 2d massive
Dirac equation can be transformed into a “real” (Majo-
rana) form, so that four copies of the usual two-component
complex Dirac fermions are equivalent to eight copies of two-
component Majorana fermions. Most importantly, the SO(8)
symmetry ultimately unifies almost all the 36 mass order
parameters as

10 + 10∗ + 15 + 1 → 35 + 1, (1)

where on the [left-hand] right-hand side we mean the irreps
of [SU (4)] SO(8). 35 stands for the irreducible, symmetric,
second-rank SO(8) tensor, and gathers together all the insu-
lating and the superconducting mass gaps other than the QAH
state. The SO(8)-symmetric field theory has a single interac-
tion coupling constant, and we argue that, at strong coupling,
and depending on its sign, the ground state (1) either through
the canonical Gross-Neveu transition [6] becomes the QAH
insulator, which preserves SO(8) and spontaneously breaks
the Z2 (time reversal) symmetry, or (2) spontaneously breaks
SO(8) down to SO(4) × SO(4) through a new phase transition
solved here in the large-N limit.

As the first application of the SO(8) grand unified theory of
graphene we demonstrate that the insulator-to-superconductor
transition becomes induced by the chemical potential. Taking
the sign of the interaction coupling in the SO(8)-symmetric
theory so that SO(8) → SO(4) × SO(4) transition is real-
ized, we show that the theory becomes exactly solvable in
the large-N limit, when the original SU (4) is generalized
to SU (N ). At the neutrality point and strong coupling the
exact ground state may then be any of the gapped insulators
(other than QAH) or the superconductors, including some of
their linear combinations. To study the competition between
the insulating and superconducting ground states we detune
the above condition between the two interaction couplings
in the SU (N ) theory to explicitly favor the insulating solution
at the Dirac point. Finite chemical potential is then shown to
benefit the superconducting solution, and to eventually cause
a first-order transition between the two competing classes
of states at its critical value. Our exact calculation provides
a proof of principle that the same interaction may lead to
insulating or superconducting state, depending on doping.

Dirac Lagrangian. The low-energy Dirac Lagrangian of
the tight-binding nearest-neighbor-hopping Hamiltonian on
the bipartite honeycomb lattice and at half filling can be writ-
ten as [16,17]

L0 = ψ†(14 ⊗ (12∂τ − iσ1∂1 − iσ2∂2))ψ, (2)

where σi are the standard Pauli matrices, 1N is a N-
dimensional unit matrix, and the eight-component Grassmann
field ψT = (ψT

+ (x), ψT
− (x)), with ψσ (x) = ∫

dDqeiqxψσ (q)
given by ψ†

σ (q) = [u†
σ (K + q), v†

σ (K + q), iv†
σ (−K +

q),−iu†
σ (−K + q)]. uσ and vσ are electron variables on the

triangular sublattices of the honeycomb lattice, and σ = ± is
the third projection of spin-1/2. The D = 2 + 1-dimensional
energy-momentum vector q = (ω, �q) collects together the
Matsubara frequency ω and the wave vector �q, K = (0, �K ),
where ± �K are the inequivalent Dirac points, | �q| < � � | �K|,

� is the momentum cutoff, and τ represents the imaginary
time. The reference frame is chosen so that qx = �q · �K/| �K|,
qy = ( �K × �q) × �K/| �K|2, and the Fermi velocity is set to
unity.

Let us list some global symmetries of L0:
(1) gauge U (1),

ψ → eiφψ, ψ† → e−iφψ†, (3)

(2) antiunitary time reversal,

ψ → (σ2 ⊗ σ2 ⊗ σ2)ψ∗, ψ† → ψT (σ2 ⊗ σ2 ⊗ σ2), (4)

(3) internal U ∈ SU (4),

ψ → (U ⊗ 12)ψ, ψ† → ψ†(U † ⊗ 12), (5)

(4) Lorentz U ∈ SU (2),

ψ → (14 ⊗ U )ψ, ψ̄ → ψ̄ (14 ⊗ U †), (6)

accompanied by the corresponding rotation of the space-time
vector (τ, �x). Here, ψ̄ = ψ†(14 ⊗ σ3).

Interacting Lagrangian. Next, we exhibit the local inter-
action terms quartic in fermion fields that would respect the
above symmetries, with the SU (4) generalized to SU (N ).
There are four such terms:

I1 = [ψ̄ (1N ⊗ 12)ψ]2, I2 = [ψ̄ (Ga ⊗ 12)ψ]2, (7)

I3 = [ψ̄ (1N ⊗ σi )ψ]2, I4 = [ψ̄ (Ga ⊗ σi )ψ]2. (8)

Here Ga, a = 1, . . . , N2 − 1, are the Hermitian generators of
SU (N ), and Tr(GaGa′ ) = Nδaa′ . The summation convention
is assumed.

For any N 	= 2, only two, and any two, of these four terms
are linearly independent [18]. We may chose these two to be I1

and I2, so that the general U (1) × SU (N ) × SU (2)-invariant
local interaction term in the Lagrangian becomes

L1 = g1I1 + g2I2. (9)

When g2 = 0, the Lagrangian L = L0 + L1 is nothing but the
canonical Gross-Neveu model in D = 2 + 1 with N fermion
flavors; for N → ∞ and g1 < g1c = −π/(4N�) one finds
〈ψ̄ψ〉 	= 0, i.e., the QAH state. For g1c < g1, on the other
hand, 〈ψ̄ψ〉 = 0 [19–22].

In [18] we derive the following Fierz identity:

−(N + 1)I1 = [ψ†(Sb ⊗ σ2)ψ∗][ψT (Sb ⊗ σ2)ψ] + I2. (10)

The index b = 1, . . . , N (N + 1)/2, and Sb are symmetric,
N-dimensional real matrices, with Tr(SbSb′ ) = Nδbb′ . The in-
teraction term L1 can therefore also be written as

L1 = − 1

N + 1
{g1[ψ†(Sb ⊗ σ2)ψ∗][ψT (Sb ⊗ σ2)ψ]

+ g̃1[ψ†(Ga ⊗ σ3)ψ]2}, (11)

where g̃1 = g1 − (N + 1)g2. Let us now assume both g1, g̃1 >

0, so that the QAH state is suppressed (〈ψ̄ψ〉 = 0). Us-
ing the Hubbard-Stratonovich (HS) transformation [23] the
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Lagrangian L = L0 + L1 can be expressed as

L = L0 + N + 1

4

(
�∗

b�b

g1
+ mama

g̃1

)
− ma[ψ†(Ga ⊗ σ3)ψ]

+ �b

2
[ψ†(Sb ⊗ σ2)ψ∗] + �∗

b

2
[ψT (Sb ⊗ σ2)ψ]. (12)

The averages of the HS fields satisfy (N + 1)〈�b〉 =
2g1〈ψT (Sb ⊗ σ2)ψ〉, and (N + 1)〈ma〉 = 2g̃1〈ψ†(Ga ⊗
σ3)ψ〉, and transform as the irreps N (N + 1)/2 (symmetric
tensor) and N2 − 1 (adjoint) of the SU (N ), respectively.
Both are singlets under Lorentz SU (2). When g2 = 0
Eq. (12) provides an alternative representation of the standard
Gross-Neveu model.

Majorana representation. When g2 = 0 the symmetry of
the Lagrangian L is in fact SO(2N ). To see this, rotate ψ →
χ = 1N ⊗ ei(π/4)σ1ψ , which makes the Dirac Hamiltonian for
χ fully imaginary, and transforms the fermion bilinears as

ψ†(Ga ⊗ σ3)ψ → χ†(Ga ⊗ σ2)χ, (13)

ψT (Sb ⊗ σ2)ψ → χT (Sb ⊗ σ2)χ. (14)

The form of the second bilinear does not change, since the
antisymmetric SU (2) tensor σ2 transforms as a singlet.

We decompose the new Dirac fermion as χ = χ1 − iχ2,
and χ† = χT

1 + iχT
2 , where χ1,2 are “real”, or Majorana

fermions. In terms of the 4N-component Majorana fermion
φT = (χT

1 , χT
2 ) the Lagrangian for g2 = 0 now simplifies into

L =φT [12N ⊗ (12∂τ − iσ1∂1 − iσ3∂2)]φ

+ N + 1

8Ng1
TrS2 + φT (S ⊗ σ2)φ, (15)

where the order parameter matrix S is

S = �′
bσ3 ⊗ Sb + �′′

bσ1 ⊗ Sb + mc12 ⊗ GS
c + mdσ2 ⊗ GA

d ,

(16)
and represents the general 2N-dimensional, symmetric, real,
traceless matrix, and �b = �′

b − i�′′
b . GS

c are the symmetric,
and GA

d are the antisymmetric generators of SU (N ), so the in-
dices c = 1, . . . , (N − 1)(N + 2)/2, and d = 1, . . . , N (N −
1)/2 [24]. The Lagrangian L in Eq. (15) is now mani-
festly invariant under the transformation φ → (O ⊗ 12)φ,
S → OSOT , where O ∈ SO(2N ). The (N + 1)(2N − 1) HS
fields (�′

b,�
′′
b, ma) transform as the symmetric, traceless,

second-rank tensor under SO(2N ).
Large-N. In the limit N → ∞ in Eq. (12) the theory be-

comes exactly solvable by the saddle-point method [23]. The
details of relatively straightforward but somewhat long calcu-
lations are provided in [18]. Hereafter we take N = 2n and n
integer. At the SO(2N )-symmetric point, for g2 = 0 the min-
imum is the order parameter matrix S such that S2 = M212N ,
and

M = � − π

g1
(17)

for g1�/π > 1, and otherwise zero [18]. When M 	= 0 the
SO(2N ) symmetry becomes broken to SO(N ) × SO(N ). If
[S, σ2 × 1N ] = 0 the ground state is an insulator; otherwise it
is a superconductor. One can also show that S contains at most
N + 1 different and mutually anticommuting terms in the

expansion in Eq. (16) [18,25,26]. The number of Goldstone
excitations is N2.

When the chemical potential μ > 0, the Lagrangian be-
comes deformed as L → L + Lμ, and the term

Lμ = μψ†ψ = μφT (σ2 ⊗ 1N ⊗ 12)φ (18)

reduces SO(2N ) to U (1) × SU (N ), and the Lorentz SU (2)
to SO(2). We therefore restore g2 	= 0 to consider the case
with the lower internal symmetry, while for simplicity still
retaining the Lorentz SU (2) of L1. By selecting g2 < 0 the
symmetry at μ = 0 is broken in favor of the insulating solu-
tion. The insulating order parameter matrix G = maGa at the
minimum satisfies G2 = m21N , with m = √

mama determined
by [18]

π

g̃1
= � − max(μ, m). (19)

The solution for m reduces to Eq. (17) if g̃1(� − μ)/π > 1,
so that μ < m, but is otherwise zero. The insulating solution,
obtained at μ = 0, would this way be suppressed completely
beyond a certain value of the chemical potential [27]. The
gauge U (1) is preserved, but the internal SU (N ) is sponta-
neously broken as SU (N ) → U (1) × SU (N/2) × SU (N/2),
leading to N2/2 Goldstone excitations. For N = 4, due to
local isomorphisms SU (4) � SO(6) and SU (2) × SU (2) �
SO(4), this can also be understood as SO(6) → SO(2) ×
SO(4).

At the superconducting minimum the order parameter ma-
trix S� = �bSb is such that again S2

� = �21N , but with the
amplitude � determined by [18]

π

g1
= � −

√
μ2 + �2 + μ ln

⎡
⎣ μ

�
+

√
1 +

(
μ

�

)2
⎤
⎦, (20)

with the last term recognizable as the familiar Cooper log. The
right-hand side is uniformly increased by a finite chemical
potential, and the superconducting solution is consequently
enhanced relative to its value at μ = 0. One can show that
the subgroup of the SU (N ) that leaves the superconducting
ground state invariant is SO(N ). Since the particle-number
U (1) is also broken, the number of Goldstone excitations is
now N (N + 1)/2.

For the Lagrangian to be almost SO(8)-symmetric we now
assume 0 < g̃1 − g1 � g1. The insulator-to-superconductor
flop then occurs at μ = μc, where

μcg1

π
=

√
N |g2|

g1

(
g1�

π
− 1

)
. (21)

At μ = μc the Dirac mass suffers a discontinuity from m in
Eq. (19) to � in Eq. (20), with [18]

m − � = πN |g2|
2g2

1

. (22)

Lattice model. A lattice model where the insulator-to-
superconductor transition could be observable is

H = −t
∑
〈i, j〉

c†
i c j + λ

∑
hex.

⎧⎨
⎩

∑
〈〈i, j∈hex.〉〉

νi jc
†
i c j + H.c.

⎫⎬
⎭

2

, (23)
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where c†
i = (c†

i,+, c†
i,−) creates an electron at the site i on the

honeycomb lattice. Besides the first hopping term the second
interaction term involves next-nearest-neighbor pairs of sites
on each hexagon of the honeycomb lattice, with the phase
factors νi j = −ν ji = ±i, as given by the Kane-Mele model
[28]. At λ = λc1 < 0 and at filling one half there should
be the Dirac semimetal–QAH transition [29] described by
the canonical Gross-Neveu field theory [16,20,30], studied
by the large-N expansion [31–33] and the conformal boot-
strap [34]. It represents the singlet version of the quantum
anomalous spin Hall transition [30,35]. At λ > 0, on the
other hand, the relevant field theory should be given by
Eq. (15), so that for λ > λc2 > 0 [29] the symmetry-breaking
pattern is SO(8) → SO(4) × SO(4), with the lattice terms
deciding the precise ground state. It is conceivable that this
phase transition becomes discontinuous for low N , as typical
for matrix order parameters [36–38]. Our prediction is that
the ground state flops into a gapped superconductor with
doping.

Related systems. Any 2d 2N-component Dirac Hamilto-
nian can be transformed into the Majorana form, and if
the short-range interactions feature an emergent SU (N ) and
Lorentz symmetries as well, be tuned into the SO(2N )-
symmetric form. This includes spinless fermions hopping
on honeycomb or pi-flux lattices (N = 2), and even the
quasiparticles in the d-wave superconductor (N = 4) [8]. The
interpretation of the ordered states that form the representa-
tions 1 and (N + 1)(2N − 1) of the SO(2N ) depends on the

physical context. Another related example is the rhombohe-
dral trilayer graphene, which in the simplest approximation
could be described by the Hamiltonian in Eq. (2) with
the replacement (in the momentum space) p1 = p cos(θ ) →
p3 cos(3θ ) and p2 = p sin(θ ) → p3 sin(3θ ). Oddness of the
single-particle Hamiltonian in space and time derivatives al-
lows it to adopt the Majorana form, but the lack of the Lorentz
symmetry necessitates three independent contact interactions.
The density of states is diverging at the neutrality point,
however, and consequently the critical interaction vanishes.
Details will be presented in a separate publication.

Conclusion. In reality the internal SU (4) is broken by the
lattice and the Coulomb interactions to SU (2) × SO(2), with
SU (2) as spin rotations, and the SO(2) related to translations
[6,8]. Likewise, the Lorentz symmetry is reduced to spatial
rotations alone. Such a reduced symmetry allows nine inde-
pendent local interaction terms [6,39,40]. On the other hand,
the long-range Coulomb interaction is believed to be irrel-
evant near Gross-Neveu-like critical points [30,41,42]. It is
conceivable that the ultraviolet complexity of real-world Dirac
systems notwithstanding, the unified SO(8) theory emerges as
the effective low-energy description for a not-too-unrealistic
choice of two-body interactions. This theory allows an exact
solution in the well-defined large-N limit, which offers a proof
of principle that the superconductor indeed may be an insula-
tor flopped by the chemical potential [2].
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