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Maximization of the ratio between Kitaev and residual Heisenberg interactions is a major goal in the
current research on Kitaev-Heisenberg magnets. Here we investigate Kitaev-Heisenberg exchange in a recently
discovered crystalline phase of α-RuCl3 under pressure—it displays unusually high symmetry, with only one
type of Ru-Ru links and uniform Ru-Cl-Ru bond angles of ≈93◦. Using quantum chemical calculations, we
find a very small nearest-neighbor Heisenberg J , which yields a K/J ratio between Kitaev and Heisenberg
exchange as large as ∼100. We also find that this is associated with vanishingly small d-shell trigonal splittings,
i.e., minimal departure from ideal jeff =1/2 moments. This reconfirms RuCl3 as a most promising platform for
materializing the much sought-after Kitaev spin-liquid phase and should stimulate further experiments under
strain and pressure.
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Introduction. Many magnetic materials can be described
as extended collections of atomic magnetic moments. Elec-
tronic correlations, along with relativistic effects and specific
crystallographic features, determine (i) the character of those
moments and (ii) how they interact with each other. Mag-
netic moments are parametrized in terms of (pseudo)spin
quantum numbers and g factors; their interaction is through
effective coupling constants (ECCs). The latter may imply
isotropic terms (defining Heisenberg’s textbook model of
interacting moments), but also anisotropic contributions, sym-
metric and/or antisymmetric; in other words, several effective
interaction parameters. The anisotropic ECCs were long re-
garded as just small perturbations to the isotropic terms; yet,
it now appears that in certain magnets, they actually define
the largest interaction scale. Small perturbation turned into
dominant interaction obviously represents a radical change of
frame, i.e., a change of paradigm, in magnetism research.

Research in this area has recently boomed with the real-
ization that large anisotropic ECCs may give rise to novel,
exotic magnetic phases, e.g., peculiar flavors of quantum
spin liquids (QSLs). The latter represent special states of
matter that display quantum entanglement and can host un-
conventional fractionalized excitations. Such properties are
of genuine fundamental interest; they may also have far-
reaching implications and a decisive impact on technology,
e.g., data storage, memory devices, and (topological) quan-
tum computation, if suitable QSL materials are identified.
Special attention is presently being paid to honeycomb, but
also triangular magnetic lattices. A main driving force is Ki-
taev’s concept of bond-dependent anisotropic interactions on a
honeycomb network of localized moments [1]. Sizable, bond-
dependent Kitaev interactions [1,2] have now been confirmed

in several honeycomb transition-metal oxides and halides. The
magnetic ground state, however, is, in most of these sys-
tems, ordered due to residual isotropic Heisenberg couplings,
involving both nearest [3,4] and farther neighbors. A main
question is therefore which the most suited chemical plat-
forms and set of structural parameters are (e.g., bond lengths
and bond angles) that maximize the ratio between Kitaev and
Heisenberg exchange.

A distinct system in this context is α-RuCl3: although
it is ordered antiferromagnetically under normal conditions,
this antiferromagnetic phase lies in close proximity to a QSL
state [6]. The latter can be reached by applying a modest
in-plane magnetic field [7–9], which raises the question of
whether strain or pressure could be used as well for tuning the
magnetic ground state. Interestingly, a new crystalline phase
has recently been identified under a pressure of 1.26 GPa
[5]; see Fig. 1. Here we report ab initio quantum chemical
results for the Ru-site multiplet structure and nearest-neighbor
ECCs in this recently discovered crystalline arrangement. The
computations reveal an unusually large K/J ratio of ∼100
between Kitaev (K) and Heisenberg (J) ECCs, reconfirming
α-RuCl3 as one of the most promising chemical settings for
materializing the Kitaev QSL ground state. Additionally, we
find a very peculiar inner structure of the effective moments,
with d-shell trigonal crystal-field splittings as low as 9 meV,
which is 4–5 times less than in α-RuCl3 under ambient pres-
sure [10–13]. This points to minimal departure from ideal
jeff =1/2 moments [2,14], through near cancellation of two
different effects—trigonal compression of the ligand cage and
anisotropic fields related to farther ions. The apparent correla-
tion between minimal departure from ideal, cubic-symmetry
jeff =1/2 moments and maximized K/J ratio is quite
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FIG. 1. (a) Unit cell of α-RuCl3 for p=1.26 GPa [5]. (b) Hexag-
onal ring of edge-sharing RuCl6 octahedra. Gray and green spheres
represent Ru and Cl ions, respectively.

remarkable. It seems to indicate that the nearest-neighbor J
is minimized in the case of degenerate t2g orbitals.

Ru-site multiplet structure, nature of magnetic mo-
ments. The electrostatic field due to the ligand ions around
each ruthenium magnetic center splits the valence Ru 4d
levels into eg and t2g components, with the latter lying at sig-
nificantly lower energy; the large t2g–eg splitting then yields a
t5
2g leading ground-state configuration. With one hole (s=1/2)

in the t2g sector (leff =1), sizable spin-orbit coupling (SOC)
provides a set of fully occupied jeff =3/2 and magnetically
active jeff =1/2 states [2,14]. For threefold [5] (or lower)
site symmetry, the degeneracy of the t2g sublevels is typically
lifted and the jeff =1/2 and jeff =3/2 spin-orbit states may
feature some degree of admixture.

To determine the Ru3+ 4d5 multiplet structure in α-RuCl3

at p = 1.26 GPa, we carried out quantum chemical com-
putations using the MOLPRO suite of programs [15] and
crystallographic data as reported by Stahl et al. [5]. A cluster
consisting of one “central” RuCl6 octahedron and the three
in-plane adjacent octahedra was designed for this purpose (see
Supplemental Material [16]). The crystalline environment was
modeled as a large array of point charges which reproduces
the Madelung field within the cluster volume; to generate this
point-charge embedding, we employed the EWALD program
[17,18]. The numerical investigation was initiated as a com-
plete active space self-consistent field (CASSCF) calculation
[19,20] with all five 4d orbitals of the central Ru ion con-
sidered in the active orbital space. Post-CASSCF correlation
computations were carried out at the level of multireference
configuration interaction (MRCI) with single and double ex-
citations [19,21] out of the Ru 4d and Cl 3p orbitals of the
central RuCl6 octahedron. SOCs were accounted for follow-
ing the procedure described in Ref. [22].

The Ru3+ 4d5 multiplet structure in the newly discov-
ered crystalline phase of α-RuCl3 is depicted in Table I,
at three different levels of approximation: CASSCF, MRCI,
and MRCI + SOC. This allows one to easily disentangle
three different effects: crystal-field splittings, post-CASSCF
correlation-induced corrections, and spin-orbit interactions.
As concerns the former, we find that the trigonal splitting
within the t2g levels is tiny, i.e., 9 meV, which is 4–5 times
smaller than in α-RuCl3 at ambient pressure [10–13]. Having
nearly degenerate t2g levels for a sizable amount of trigonal
distortion of the ligand cage sounds odd at first. What makes
it happen is the presence of a competing effect—trigonal
fields related to the anisotropy of the extended solid-state

TABLE I. Ru3+ 4d5 multiplet structure. Each value in the
MRCI+SOC column indicates a Kramers doublet (KD); for each
of the t4

2ge1
g crystal-field terms, only the lowest and highest KDs

are shown. Only the crystal-field terms enlisted in the table were
included in the spin-orbit computation. Notations corresponding to
Oh symmetry are used.

Ru3+ 4d5 CASSCF MRCI MRCI
splittings (eV) +SOC

2T2g

(
t5
2g

)
0 0 0
0.01 0.01 0.19
0.01 0.01 0.20

4T1g

(
t4
2ge1

g

)
1.16 1.32 1.38
1.17 1.32 |
1.17 1.32 1.49

6A1g

(
t3
2ge2

g

)
1.15 1.59 1.78 (×3)

4T2g

(
t4
2ge1

g

)
1.84 1.93 2.06
1.85 1.94 |
1.85 1.94 2.11

environment. Remarkably, mutual (near) cancellation of those
two yields a cubiclike Ru-site multiplet structure. Also quite
evident in Table I is the presence of minimal splittings within
the jeff =3/2-like manifold once SOC is accounted for (last
column), i.e., minimal admixture among the jeff =1/2 and
jeff =3/2 spin-orbit states. It is additionally seen that the
post-CASSCF MRCI treatment yields sizable corrections to
some of the relative energies, the most substantial arising for
the 6A1g crystal-field term.

Intersite magnetic couplings for proximate jeff =1/2 mo-
ments. To obtain the intersite effective magnetic couplings,
calculations for a block of two edge-sharing RuCl6 octahedra
were performed. The four in-plane octahedra coordinating this
two-octahedra central unit were also explicitly included in
the quantum chemical computations, but using more compact
basis sets (see Supplemental Material [16] for detailed infor-
mation). The farther solid-state surroundings were also in this
case modeled through Madelung-field point-charge embed-
ding [17,18]. CASSCF computations were carried out with
six (Ru t2g) valence orbitals and 10 electrons as active [ab-
breviated as (10e,6o) active space]. In the subsequent MRCI
treatment, single and double excitations out of the central-unit
Ru t2g and bridging-Cl 3p orbitals were accounted for. The
initial CASSCF optimization was performed for the lowest
nine singlet and lowest nine triplet states associated with the
(10e,6o) setting. Those were the states for which SOCs were
further accounted for [22], either at the CASSCF or MRCI
level, which yields, in each case, a number of 36 spin-orbit
states.

Only one type of Ru-Ru link is present in α-RuCl3 at p=
1.26 GPa. A unit of two nearest-neighbor octahedra exhibits
C2h point-group symmetry, implying a generalized bilinear
effective spin Hamiltonian of the following form for a pair
of adjacent 1/2-pseudospins S̃i and S̃ j :

H(γ )
i j = JS̃i · S̃ j + KS̃γ

i S̃γ
j +

∑

α �=β

�αβ (S̃α
i S̃β

j + S̃β
i S̃α

j ).

(1)
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The �αβ coefficients denote the off-diagonal components
of the 3 × 3 symmetric-anisotropy exchange tensor, with
α, β, γ ∈{x, y, z}. An antisymmetric Dzyaloshinskii-Moriya
coupling is not allowed, given the inversion center. The lowest
four spin-orbit eigenstates from the ab initio quantum chem-
ical output (eigenvalues lower by ∼0.2 eV with respect to
the eigenvalues of higher-lying excited states, as illustrated,
for example, in Table I) are mapped for each different set of
calculations onto the eigenvectors of the effective spin Hamil-
tonian (1), following the procedure described in Refs. [10,23]:
those four expectation values and the matrix elements of the
Zeeman Hamiltonian in the basis of the four lowest-energy
spin-orbit eigenvectors are put in direct correspondence with
the respective eigenvalues and matrix elements of (1). Having
two of the states in the same irreducible representation of the
C2h point group, such a one-to-one mapping translates into
two possible sets of effective magnetic couplings. The relevant
array is chosen as the one whose g factors fit the g factors
corresponding to a single RuCl6 t5

2g octahedron. We used the
standard coordinate frame usually employed in the literature,
different from the rotated frame employed in earlier quantum
chemical studies [10,24] that affects the sign of � (see, also,
discussion in Ref. [25]).

The nearest-neighbor ECCs obtained by spin-orbit MRCI
are K =−3.73, J =−0.03, �≡�xy =1.62, and �′ ≡�yz =
�zx =0.45 (meV). A remarkable finding is the vanishingly
small J value in the MRCI + SOC computations, which
yields a fully anisotropic K-�-�′ effective spin model for
the nearest-neighbor magnetic interactions. That this coin-
cides with realizing nearly ideal jeff =1/2 moments at the
transition-metal sites seems to be more than merely fortuitous,
as also discussed in the next section.

The competition between ligand and “crystal” trigonal
fields (i.e., between nearest-neighbor and beyond-nearest-
neighbor electrostatics) and possible important implications
as concerns the overall magnetic properties of a given system
have been discussed earlier in relation to single-site effective
magnetic parameters such as the single-ion anisotropy [26]—
in particular, it is, in principle, possible to revert the sign of
the latter by modifying the amount of ligand-cage trigonal
distortion [26]. Finding that this applies as well to intersite
effective interaction parameters (i.e., the Heisenberg J) is even
more exciting. For comparison, the MRCI nearest-neighbor
couplings in α-RuCl3 at ambient pressure are K = −5.6, J =
1.2, � = 1.2, and �′ = −0.7 (meV) [10]. The Heisenberg
J being sizable at ambient pressure, the K/J ratio is much
smaller [10]. This corresponds to somewhat stronger trigonal
compression of the Cl6 polyhedron and additional small dis-
tortions that actually lower the Ru-site point-group symmetry
to less than trigonal.

Trigonal splittings in related iridate structures. Spotting
this particular RuCl3 crystalline arrangement, where (i) the
effects of ligand-cage trigonal compression and of farther-
surrounding trigonal fields cancel out each other, (ii) the
Ru-site t2g levels are consequently degenerate (or nearly de-
generate), such that close to ideal jeff =1/2 moments are
realized, and (iii) the intersite isotropic Heisenberg interaction
approaches zero, raises the question of whether an equiva-
lent sweet spot can be identified in related Kitaev-Heisenberg
quantum magnets, e.g., in Ir-oxide honeycomb compounds.

Interestingly, the fact that the Heisenberg J changes its
sign and therefore reaches a point where it simply vanishes
has already been pointed out, for both “213” hypothetical
iridate structures [24] and H3LiIr2O6 [27]. Such a situation is
achieved in iridates for ligand-cage trigonal squeezing provid-
ing Ir-O-Ir bond angles of ≈98◦ [24,27], but an analysis of the
on-site multiplet spectra was not performed in those specific
iridate crystalline settings.

To verify this important aspect, we carried out additional
quantum chemical computations for “iridate” embedded clus-
ters, i.e., CASSCF calculations for a fragment consisting of
one IrO6 octahedron as the central quantum mechanical unit
(see Supplemental Material [16] for details). The outcome of
this numerical test is rewarding: also in the iridate system,
a vanishing Heisenberg J [24] is associated with vanishing
d-shell trigonal splittings, i.e., a minor deviation from pristine
jeff =1/2 states. In particular, without accounting for SOC,
we find a trigonal splitting of only 25 meV within the Ir t2g

levels, to be compared with a spin-orbit coupling constant
of 400–500 meV for Ir ions. That the near cancellation of
ligand and “crystal” trigonal fields occurs for stronger trigonal
compression of the ligand cage (≈98◦ vs ≈93◦ metal-ligand-
metal bond angles) has to do with the larger effective charges
in iridium oxides (formally, Ir4+ vs Ru3+ magnetic sites and
O2− vs Cl− ligands). Notably, various Kitaev-Heisenberg su-
perexchange models do assume (for simplicity) degenerate
t2g levels, but not distorted metal-ligand-metal superexchange
paths with bond angles away from 90◦.

Phase diagram for J =0 and finite third-neighbor Heisen-
berg coupling J3. The magnetic ground state of the extended
lattice is, in most Kitaev-Heisenberg honeycomb systems, or-
dered due to finite isotropic Heisenberg couplings, involving
both nearest [3,4] and farther neighbors [10,11]. A natural
question is under which conditions the K/J ratio is max-
imized. A vanishing nearest-neighbor J , as found here, is
therefore promising. To illustrate the chance of materializing
a QSL ground state in α-RuCl3 under a pressure of 1.26 GPa,
by effective-model exact diagonalization calculations (see
Supplemental Material [16] for computational details and
additional plots), we derived extended phase diagrams for
variable �, �′, and third-neighbor Heisenberg coupling J3,
while J is set to 0.

Starting with the case of negligible J3, it is seen in Fig. 2(a)
that QSL ground states are found for a wide range of � > 0
and �′ > 0 values. The expectation value of the flux operator
Wp =26Sx

1Sy
2Sz

3Sx
4Sy

5Sz
6 is illustrated through a color map. The

computed QSL phases can be classified into three categories:
Kitaev QSL (〈Wp〉∼1 [1]) near �=�′ =0, QSL1 with a slow
decay of spin-spin correlations due to strong ferromagnetic
fluctuations, and QSL2 with a rapid decay of spin-spin corre-
lations, similar to the Kitaev QSL. In the QSL2 region, 〈Wp〉
is negative but its absolute value is not small, |〈Wp〉|∼0.4.
A typical spin structure factor for the QSL2 phase is shown
in the inset of Fig. 2(a). Such a star-shaped structure factor
indicates a proximate Kitaev QSL [28] displaying nonvan-
ishing longer range spin-spin correlations. As concerns the
ferromagnetic (FM) phase, it resembles a ferrimagnetic state
for large � and �′ values.

A phase diagram computed for variable � and J3 is pro-
vided in Fig. 2(b). The J3 Heisenberg coupling is known to
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FIG. 2. (a) Generic phase diagram for variable off-diagonal cou-
plings � and �′ in units of the ferromagnetic Kitaev interaction
parameter |K|. Inset: spin structure factor illustrating the proximate
Kitaev spin liquid [28] in the QSL2 region. (b) Phase diagram for
variable � and third-neighbor Heisenberg coupling J3; K and �′/�
are set to –1 and 2/5, respectively. Inset: phase boundaries for addi-
tional �′/� ratios.

be finite and antiferromagnetic in α-RuCl3 [11]. The second-
neighbor Heisenberg interaction J2, on the other hand, is much
weaker and usually neglected [11,29]. Our analysis shows that
for J3��/2, a regime that is confirmed by fits of inelastic
neutron scattering spectra [29], the quantum spin liquid is
stable, even for �′/�=0.2, i.e., a ratio of the two off-diagonal
couplings that is significantly smaller than the ratio derived by
spin-orbit MRCI.

Conclusions. In spite of being a central figure in the current
research on quantum magnetism, textbook jeff =1/2 spin-
orbit ground states [14] are rarely found in solids [30–34].
Here we show that nearly ideal jeff =1/2 moments are re-
alized in a recently reported crystalline phase of α-RuCl3,
identified under a pressure of 1.26 GPa [5]. In particular,
we compute a vanishingly small trigonal splitting within the
transition-metal t2g valence subshell in this crystallographic
setting. Remarkably, this occurs in the presence of sizable
trigonal squeezing of the ligand cages—it turns out that the
effect of the latter is counterbalanced by trigonal fields having
to do with the more distant crystalline surroundings. More-
over, the nearly ideal jeff =1/2 character of the pseudospins
is associated with a maximized K/J ratio for the intersite
magnetic interactions, through a vanishingly small value of
the nearest-neighbor Heisenberg J . The apparent correlation
between these two features—neat jeff =1/2 moments and
maximized K/J ratio—deserves careful further investigation;
for instance, clarifying how different (super)exchange mecha-
nisms cancel out each other for degenerate t2g orbitals but yet
distorted metal-ligand-metal paths, when it comes to nearest-
neighbor Heisenberg exchange.
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