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Attractive Su-Schrieffer-Heeger-Hubbard model on a square lattice away from half-filling
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The Su-Schrieffer-Heeger (SSH) model, with bond phonons modulating electron tunneling, is a paradigmatic
electron-phonon model that hosts an antiferromagnetic order to bond order transition at half-filling. In the
presence of a repulsive Hubbard interaction, the antiferromagnetic phase is enhanced, but the phase transition
remains first order. Here, we explore the physics of the SSH model with an attractive Hubbard interaction, which
hosts an interesting interplay among charge order, s-wave pairing, and bond order. Using the numerically exact
determinant quantum Monte Carlo method, we show that both charge order, present at weak electron-phonon
coupling, and bond order, at large coupling, give way to s-wave pairing when the system is doped. Furthermore,
we demonstrate that the SSH electron-phonon interaction competes with the attractive Hubbard interaction and
reduces the s-wave pairing correlation.
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Introduction. Electron-electron and electron-phonon corre-
lations are two fundamental interactions in condensed matter
quantum many-body systems. The basic qualitative features
of the electron-electron interaction are famously studied in
the Hubbard model [1–5], which, depending on the inter-
action’s magnitude and doping, can exhibit metallic phases,
long-range spin/charge patterns, and superconducting pairing
[6–10]. Similarly, the phenomena induced by the electron-
phonon interaction are often studied in the Holstein [11] and
Su-Schrieffer-Heeger (SSH) [12] models. The former consid-
ers site phonon vibrations that influence the on-site chemical
potential and can result in charge density wave (CDW) and
s-wave pairing [13–27]. The latter considers bond phonon
vibrations that modulate nearest-neighbor tunneling and give
rise to antiferromagnetic order and bond order wave (BOW)
[28–41].

The interplay between the electron-electron and the
electron-phonon interactions has attracted a lot of attention.
Extensive studies on the repulsive Hubbard-Holstein model
at half-filling have shown that magnetic and charge order
dominates in the strong electron-electron and electron-phonon
interaction regimes, respectively [42–46]. Where the electron-
electron and electron-phonon interactions are comparable,
numerical simulations reveal a metal or superconducting
pairing phase [47–50]. Away from half-filling, Monte Carlo
simulations are severely undermined by the sign problem
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[51–55], and numerical evidence predicts either supercon-
ducting pairing or stripe order [48,56].

The combined effects of SSH phonons with Hubbard in-
teractions have only been more recently investigated. The
repulsive SSH-Hubbard (SSHH) model on a square lattice fea-
tures a direct first-order transition between antiferromagnetic
order and BOW at half-filling [57,58]. The repulsive SSHH
model also suffers from a sign problem away from half-filling.
Nonetheless, a density matrix renormalization group study
on narrow two-dimensional (2D) cylinders and a functional
renormalization group study of square lattices have shown evi-
dence of superconducting pairings around 1/8 doping [59,60].

In the above studies, the on-site electron-electron inter-
action was taken to be repulsive. However, a similar, and
potentially rich, phenomenology is expected at the interplay
between the electron-phonon interaction and attractive on-
site electron-electron interactions. In particular, the attractive
Hubbard model exhibits a competition between charge order
and s-wave pairing [61–64], with bond order due to SSH
phonons. Importantly, the attractive SSHH model does not
suffer from the sign problem. This makes it a rare electron-
electron and electron-phonon model that can be studied
exactly at all fillings and low temperatures.

In this Letter, we present a study of the single-orbital
square lattice attractive SSHH model with periodic bound-
ary conditions. We consider the full phonon dynamics and
focus on the phase transitions away from half-filling. Due to
the absence of the sign problem, we can simulate systems
of up to 12 × 12 spatial sites at low temperatures using the
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determinant quantum Monte Carlo (DQMC) method [13,65–
68]. First, we show the effects of an attractive interaction in
the half-filled BOW ground state. In addition, we analyze the
effect of temperature and phonon frequency on the ground
state phase transitions. At half-filling, the system presents
either a charge density wave or bond order depending on
the magnitude of the electron-phonon interactions. Larger
attractive interactions reduce the bond order. Away from half-
filling the system abruptly goes into an s-wave pairing ordered
phase independent of the magnitude of the electron-phonon
interaction.

Model and method. The attractive SSHH Hamiltonian is

Ĥ = − t
∑

〈i, j〉,σ
(1 − λX̂i j )(ĉ

†
iσ ĉ jσ + H.c.) − μ
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where ĉiσ (ĉ†
iσ ) destroys (creates) an electron of spin σ =↑,↓

on site i, U is the strength of the electron-electron interac-
tion, n̂iσ = ĉ†

iσ ĉiσ is the number operator, M is the phonon
mass, and ω0 the phonon frequency. X̂i j and P̂i j are the
canonically conjugate phonon displacement and momentum.
The dimensionless electron-phonon coupling strength is g =
λ/

√
2Mω0/h̄. When U < 0, the Hubbard interaction is at-

tractive. The chemical potential μ controls the density of
the system. The system is at half-filling, 〈n〉 = ∑

i〈n̂i↑ +
n̂i↓〉/N = 1, for μ = 0. In an ordered phase, a gap can open
such that the system leaves half-filling only beyond a finite
critical μc. The value of μc depends on the other system pa-
rameters. Here, we work in units where h̄ = M = t = kB = 1
(kB is the Boltzmann constant).

The attractive SSHH model does not suffer from the sign
problem because both the SSH phonons, the chemical poten-
tial, and the Hubbard-Stratonovich [69–73] field couple to the
spin-up and spin-down electrons identically. Consequently,
the determinants that arise from integrating the fermionic
degrees of freedom are identical for the two spin species,
and the configurational weight is a perfect square. We work
with inverse temperature β = Lτ�τ = 16t , 21t , 24t , where
Lτ = 300 is the number of imaginary time steps. Even for
the largest value of �τ = 0.08t , the estimate of the Trotter
error is of the same order as the statistical error bars in the
structure factors. In addition, to elucidate finite-size effects,
we compare three L × L systems with L = 8, 10, 12.

To characterize the underlying ground state phases
in different parameter regimes, we calculate the CDW
correlations and structure factors, CCDW(i, j) = 〈(n̂i,↑ + n̂i,↓)
(n̂ j,↑ + n̂ j,↓)〉 and their Fourier transform SCDW(q) = 1

N∑
i, j eiq(i− j)CCDW(i, j), and the BOW correlations and

structure factors, CBOW(i, j) = ∑
σ 〈ĉ†

i,σ ĉi+x̂(ŷ),σ ĉ†
j,σ ĉ j+x̂(ŷ),σ 〉

and its Fourier transform SBOW(q) = 1
N

∑
i, j eiq(i− j)CBOW

(i, j), respectively. In the rest of this Letter, we take
q = (π, π ) as the default whenever SBOW/CDW is mentioned.
The SBOW/CDW for all q �= (π, π ) were measured but
are negligible. The various wave pairing correlations are

characterized by P (i, j) = 〈�̂( j)�̂†(i)〉 [74]. For the case of
s-wave pairing, �̂†(i) = ĉ†

i,↑ĉ†
i,↓. The average density 〈n〉 is

also useful in giving insight into the properties of the phases.
Results. Regardless of the sign of U , on a bipartite lattice,

performing a (staggered) particle-hole transformation on both
electron species changes the sign of the chemical potential
while leaving the Hamiltonian and the spin, charge, and pair
correlations invariant. As a consequence, the phase diagram
is symmetrical under reflection about the point 〈n〉 = 1. Fur-
thermore, on a bipartite lattice precisely at 〈n〉 = 1 (μ =
0), the repulsive SSHH model can be transformed into the
attractive SSHH model by performing a partial particle-hole
transformation on one of the two electron species. Therefore,
the phase diagram of the attractive model can be inferred
from that of the repulsive model at 〈n〉 = 1. Importantly, via
the partial particle-hole transformation the magnetic order in
the repulsive SSHH model is transformed into s-wave pairing
correlations and charge order in the attractive SSHH model at
half-filling.

Away from half-filling, the repulsive SSHH model no
longer directly maps to the attractive SSHH model. We first
investigate the effects of the electron-electron coupling U in
a situation of large electron-phonon coupling, g = 1.2, where
the system is firmly in the SSH BOW phase at half-filling. We
will then consider the effect of the electron-phonon coupling
g on the degenerate CDW/s-wave pairing phase which arises
when U is the dominant energy scale.

In Fig. 1, we fix the electron-phonon coupling g = 1.2,
phonon frequency ω0 = 1.0t , vary the chemical potential μ,
and investigate the effects of the electron-electron coupling
U . At μ = 0, the ground state is a gapped q = (π, π ) BOW in
either the x or y direction for all U/t = 0, −4, −8 [Fig. 1(a)].
When |μ| is lower than the critical |μc|, the average density is
pinned at 〈n〉 = 1 and the system stays in a gapped (π, π )
BOW phase. The CDW structure factor SCDW and s-wave
pairing correlation Ps are negligible when compared to the
BOW structure factor SBOW. At finite U and μ = μc, there is
a noticeable increase of s-wave pairing Ps [Fig. 1(c)] [75]. In
addition, 〈n〉 starts to decrease and SBOW falls discontinuously
within a narrow range of �μ in Fig. 1(d). This suggests a
first-order transition from the BOW phase to s-wave pairing
in the attractive SSHH model. As U increases in magnitude,
μc shifts towards μ = 0 and s-wave pairing correlations in-
crease. Interestingly, the BOW structure factor is also slightly
enhanced in the presence of U before the transition. There is
a qualitative change in SCDW at μc as shown in Fig. 1(b). For
this (large) value of electron-phonon coupling, g = 1.2, there
is no CDW order at any filling including 〈n〉 = 1.

Next, we show that the inverse temperature β we use is
large enough to capture the ground state properties and study
the effect of the phonon frequency ω0 on the phase transition.
In Fig. 2, we fix U = −8t , g = 1.2, and show structure factor
data for different β [Figs. 2(a) and 2(c)] and ω0 [Figs. 2(b)
and 2(d)]. For Figs. 2(a) and 2(c), ω0 = 1.0t and β is varied.
There are no qualitative and only minor quantitative changes
in the structure factors and μc as βt increases from 16 to 24.
The transition between BOW and s-wave pairing remains first
order and μc increases very slightly. For Figs. 2(b) and 2(d),
β = 16/t and ω0 is varied. At ω0 = 0.7, we see a similar rapid
decrease in SBOW. The increase in Ps is much less apparent.
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FIG. 1. (a) Average density 〈n〉, (b) CDW structure factor SCDW,
(c) s-wave pairing correlation Ps, and (d) BOW structure factor SBOW

as functions of chemical potential μ. Inset of (a): Graphical represen-
tation of the electron-electron and electron-phonon interactions. Inset
of (d): Graphical representation of the q = (π, π ) BOW. Different
bond colors emphasize the alternation in bond lengths. In all panels,
L = 12, electron-phonon coupling g = 1.2, and phonon frequency
ω0 = 1.0t .

However, we cannot rule out the existence of a small nonzero
pairing order at small ω0. Numerical evidence of s-wave
pairing has always been difficult in electron-phonon models,
especially at lower ω0. In the Holstein model, s-wave pairing
is known to increase with ω0 [22,48,76]. At low ω0, the order
parameter is likely to be small, if it exists. The situation is
similar in the attractive SSHH model. At higher ω0, the lattice
responds more quickly to electronic hopping, and the electron-
phonon fluctuation is suppressed. As a result, Ps is higher. The
critical μc needed to leave half-filling decreases and so does
SBOW within the BOW phase. For all ω0 that support BOW
at half-filling, the BOW phase transitions directly to s-wave
pairing.

In the above analysis, we investigated the effects of the
electron-electron coupling U on the SSH BOW. Next, we
study the effects of the electron-phonon coupling g on the
properties of the attractive Hubbard model, specifically, how g
and doping affect the degenerate CDW/s-wave pairing phase
in the ground state at half-filling, and the superconducting
phase (with a finite-T Kosterlitz-Thouless transition [77]).

In Fig. 3, we plot the average density 〈n〉 [Fig. 3(a)], CDW
structure factor SCDW [Fig. 3(b)], s-wave pairing correlation
Ps [Fig. 3(c)], and BOW structure factor SBOW [Fig. 3(d)] ver-
sus the chemical potential for L = 12, U = −8t , ω0 = 1.0t .

FIG. 2. (a), (b) s-wave pairing correlation Ps and (c), (d) BOW
structure factor SBPW against chemical potential μ. For all results,
L = 12 and electron-phonon coupling g = 1.2. (a), (c) β is varied
and ω0 is fixed. (b), (d) ω0 is varied and β = 16.

FIG. 3. (a) Average density 〈n〉, (b) CDW structure factor SCDW,
(c) s-wave pairing correlation Ps, and (d) BOW structure factor SBOW

against chemical potential μ. For all results, system size L = 12,
electron-electron coupling U = −8t , and phonon frequency ω0 =
1.0t . At g = 0.0, the system is described by the attractive Hubbard
model.
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FIG. 4. (a) CDW structure factor SCDW and (b) s-wave pairing
correlation Ps against electron-phonon coupling g at half-filling.
(c) Finite-size scaling of SCDW and (d) Ps at g = 0.5. For all sub-
plots, phonon frequency ω0 = 1.0 t and electron-electron coupling
U = −8 t .

At g = 0.0, the system is described purely by the attractive
Hubbard model. The degenerate CDW/pairing symmetry is
lifted immediately with finite μ: Away from half-filling, SCDW

falls rapidly [Fig. 3(b)] while Ps is maximized at an interme-
diate density [Fig. 3(c)]. At g = 0.5, we observe a decrease in
both SCDW [Fig. 3(b)] and Ps [Fig. 3(c)]. The effect of g on
the half-filled attractive Hubbard model is further studied in
Figs. 4(a) and 4(b). As g increases, both SCDW and Ps, which
are known to be equal at half-filling, decrease. This suggests
that the SSH electron-phonon interaction works against the
attractive Hubbard interaction at and away from half-filling.
While the attractive Hubbard U and SSH g support different
ground state phases, we find no evidence of an intermedi-
ate phase for the parameters we have studied. At g = 1.2,
the strong SSH electron-phonon interaction dominates and
the half-filled ground state becomes the gapped q = (π, π )
BOW.

In Figs. 4(c) and 4(d), we show the finite-size scaling
of SCDW and Ps at g = 0.5. As the pure attractive Hubbard
model, SCDW extrapolates to a finite value only at half-filling
μ = 0. In Fig. 4(c), an infinitesimal |μ| = 0.1 is enough to
destroy the CDW phase. In Fig. 4(d), Ps extrapolates to a
finite value for a large range of μ. These finite-size scaling
results show that the electron-phonon coupling g does not

qualitatively change the attractive Hubbard ground state for
g < gc. At half-filling, the ground state is either the SSH BOW
or the degenerate attractive Hubbard CDW/s-wave pairing
phase. Away from half-filling, the ground state always ex-
hibits s-wave pairing, albeit moderated by the magnitude of
the electron-phonon coupling g.

Conclusions. In this Letter, we present a DQMC study
of the single-orbital square lattice attractive SSHH model.
Because of the lack of a sign problem, we can study the
interplay between the (SSH) electron-phonon interaction and
electron-electron interactions in the ground state.

At half-filling, we find a first-order quantum phase tran-
sition between the BOW phase and the degenerate CDW/s-
wave pairing phase. At higher g, the ground state remains
in the degenerate CDW/s-wave pairing phase until the BOW
sets in for large enough g. Away from half-filling, the CDW
phase and BOW phase are both unstable. The ground state
is s-wave pairing but the order parameter can be reduced by
larger electron-phonon interactions. In addition, we show the
effects of phonon frequency. As it decreases, phonon fluctu-
ations increase and the electron-phonon mechanism becomes
more robust. As in the case of the Holstein model, this leads
to a reduction in s-wave pairing. Other than pointing out
that its magnitude becomes much smaller at lower phonon
frequencies, we cannot rule out the possibility of its existence.

The fundamental feature of the SSH Hamiltonian is the
modulation of the intersite hopping by a phonon displacement
Xi j . A related model in which this electron-phonon interaction
and on-site U is present has been suggested as a description
of the Kondo effect arising from a vibrating magnetic ion
[78–85]. Recent advancements in experimental setups have
opened up the possibility to study different variants of the SSH
model physically [86–90]. These studies have focused on the
topological properties of the static SSH model, which assumes
a frozen phonon structure. Our theoretical work expands fur-
ther by studying the SSH model with full phonon dynamics.
Moving forward, it will be interesting to investigate further the
low U regime, which even in the absence of electron-phonon
coupling is much harder to study [91–93]. Another area that
could benefit from further investigation is the regime of low
phonon frequencies which, due to smaller gaps, require larger
systems and lower temperatures.
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[83] T. Fuse and Y. Ōno, First order bipolaronic transition at fi-
nite temperature in the Holstein model, J. Phys. Soc. Jpn. 79,
093702 (2010).

[84] K. Oshiba and K. Hotta, Electron mass enhancement due
to anharmonic local phonons, J. Phys. Soc. Jpn. 80, SA134
(2011).

[85] T. Fuse and T. Hotta, Effect of phonon-mediated attraction on
the Kondo phenomenon emerging from a vibrating magnetic
ion, JPS Conf. Proc. 3, 016024 (2014).

[86] E. J. Meier, F. A. An, and B. Gadway, Observation of the topo-
logical soliton state in the Su-Schrieffer-Heeger model, Nat.
Commun. 7, 13986 (2016).

[87] M. Leder, C. Grossert, L. Sitta, M. Genske, A. Rosch, and M.
Weitz, Real-space imaging of a topologically protected edge
state with ultracold atoms in an amplitude-chirped optical lat-
tice, Nat. Commun. 7, 13112 (2016).

[88] S. Liu, W. Gao, Q. Zhang, S. Ma, L. Zhang, C. Liu, Y. J. Xiang,
T. J. Cui, and S. Zhang, Topologically protected edge state in
two-dimensional Su-Schrieffer-Heeger circuit, Research 2019,
8609875 (2019).

[89] L.-Y. Zheng, V. Achilleos, O. Richoux, G. Theocharis, and
V. Pagneux, Observation of edge waves in a two-dimensional
Su-Schrieffer-Heeger acoustic network, Phys. Rev. Appl. 12,
034014 (2019).

[90] J.-H. Chen, Z.-Z. Yang, W.-J. Yang, A.-Y. Guan, X.-Y. Zou, and
J.-C. Cheng, Experimental realization of boundary-obstructed
topological insulators using acoustic two-dimensional Su-
Schrieffer-Heeger network, Appl. Phys. Lett. 120, 253508
(2022).

[91] S. R. White, D. J. Scalapino, R. L. Sugar, E. Y. Loh, J. E.
Gubernatis, and R. T. Scalettar, Numerical study of the two-
dimensional Hubbard model, Phys. Rev. B 40, 506 (1989).

[92] T. Pruschke and R. Zitzler, From Slater to Mott–Heisenberg
physics: The antiferromagnetic phase of the Hubbard model,
J. Phys.: Condens. Matter 15, 7867 (2003).

[93] M. Raczkowski, F. F. Assaad, and M. Imada, Local moments
versus itinerant antiferromagnetism: Magnetic phase diagram
and spectral properties of the anisotropic square lattice Hubbard
model, Phys. Rev. B 103, 125137 (2021).

[94] https://www.nscc.sg.

L161103-7

https://doi.org/10.1143/JPSJ.79.093702
https://doi.org/10.1143/JPSJS.80SA.SA134
https://doi.org/10.7566/JPSCP.3.016024
https://doi.org/10.1038/ncomms13986
https://doi.org/10.1038/ncomms13112
https://doi.org/10.34133/2019/8609875
https://doi.org/10.1103/PhysRevApplied.12.034014
https://doi.org/10.1063/5.0090596
https://doi.org/10.1103/PhysRevB.40.506
https://doi.org/10.1088/0953-8984/15/46/006
https://doi.org/10.1103/PhysRevB.103.125137
https://www.nscc.sg

