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Majorana bound states in a d-wave superconductor planar Josephson junction
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We study phase-controlled planar Josephson junctions comprising a two-dimensional electron gas with strong
spin-orbit coupling and d-wave superconductors, which have an advantage of a high critical temperature. We
show that a region between the two superconductors can be tuned into a topological state by the in-plane Zeeman
field, and can host Majorana bound states. The phase diagram as a function of the Zeeman field, chemical
potential, and the phase difference between superconductors exhibits the appearance of Majorana bound states
for a wide range of parameters. We further investigate the behavior of the topological gap and its dependence on
the type of d-wave pairing, i.e., d , d + is, or d + id ′, and note the difficulties that can arise due to the presence of
gapless excitations in pure d-wave superconductors. On the other hand, the planar Josephson junctions based on
superconductors with d + is and d + id ′ pairings can potentially lead to realizations of Majorana bound states.
Our proposal can be realized in cuprate superconductors, e.g., in a twisted bilayer, combined with the layered
semiconductor Bi2O2Se.
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Majorana bound states (MBS) are non-Abelian anyons that
can be used in realizations of quantum computers relying on
topological protection [1,2]. Anyons are quasiparticles that
are described by the statistics of neither fermions nor bosons
and have exotic properties such as fractional charge [1,2].
Topological protection associated with realizations of non-
Abelian anyons in condensed matter systems can be used to
encode quantum information in a way that is robust against
decoherence [3–5]. The current common platforms to realize
MBS are relying on a proximity effect [6–10] with s-wave
superconductors which have low critical temperatures [3–5].
The topological gap in such realizations is relatively small,
making the system more sensitive to disorder [11,12] and
various imperfections [13,14], and requiring operation at very
low temperatures [15–17].

The d-wave superconductivity is a very common type
of superconductivity in strongly correlated systems such
as cuprates [18]. Such superconductors are associated with
gapless excitations [19] and higher critical temperatures com-
pared to s-wave superconductors. Unfortunately, the presence
of gapless excitations is not compatible with topological
superconductivity. Furthermore, in d-wave superconductors,
gapless excitations lead to the appearance of Andreev bound
states (ABS) [20–23]. To resolve issues associated with gap-
less excitations, one can use d-wave superconductors with
inversion asymmetry and an applied magnetic field [24–28],
or use a twisted bilayer of d-wave superconductors that be-
haves as an effective d + id ′ superconductor [26,29–32]. As
has been demonstrated in Ref. [32], a twisted bilayer of d-
wave superconductors offers a high degree of tunability via
variations in twist angle and also offers the realization of
d + is or d + id ′ pairings within the same system. The planar
Josephson junction (JJ) platform based on s-wave supercon-
ductors allows to realize robust and tunable MBS [33–37].
Recently, there has been substantial interest in various re-

alizations of a planar JJ based on s-wave superconductors
in the context of a superconducting diode effect [38–42]. It
has been demonstrated that the superconducting diode effect
also appears in a JJ based on d-wave superconductors and a
topological insulator [43].

In this Letter, we demonstrate that a planar JJ comprising a
two-dimensional electron gas (2DEG) with strong spin-orbit
coupling and d-wave superconductors can host MBS [see
Fig. 1(a)]. Such systems can be realized using exfoliated cop-
per oxide heterostructures [32,44] combined with a layered
semiconductor, such as Bi2O2Se [31,45]. The presence of
the proximity effect can result in the pairing terms in the
neighboring semiconductor [31]. In the case of pure d-wave
pairing in 2DEG, we observe that MBS coexist with gapless
bulk states which can be detrimental for storing quantum
information. However, for the d + is and d + id ′ pairings
in 2DEG, there exists a bulk gap and MBS arise in the
planar JJ geometry. The d + is pairing leads to realizations
of robust MBS in analogy to JJ based on s-wave supercon-
ductors [34]. For d + id ′ pairing, in addition to MBS, the
chiral edge modes exist at zero energy in the proximitized
2DEG due to nontrivial bulk topology; however, they can be
gapped out inside JJ by properly tuning the Zeeman field, the
relative phase of superconductors, and the chemical potential.
As a result for d + id ′ pairing, one can physically separate
the MBS and the chiral edge modes, as we show in our
study.

Model and symmetry analysis. We consider the planar JJ
geometry with an in-plane Zeeman field (due to a magnetic
field or induced by proximity with a ferromagnet), and mostly
assume the limit of large superconductors. When necessary,
we use periodic boundaries along the y axis in Fig. 1(a). The
phase difference of the left and right d-wave superconductors
can be controlled by applying current or magnetic flux. The
Bogoliubov–de Gennes (BdG) Hamiltonian of the system,
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FIG. 1. (a) Schematic diagram of the planar Josephson junction
heterostructure. The 2DEG is covered by d-wave superconductors,
except for a junction of width WJ between the two superconductors.
In (b) the probability function (|ψ |2) of MBS at μ = 1.32t and
hJ = 0.6t is plotted. (c) The energy gap as a function of the Zeeman
field hJ in the junction and μ. (d) The topological invariants Q (Z2)
and W (Z) as a function of of the Zeeman field hJ in the junction
and μ. The colors show the value of the W invariant. The black
lines separate the regions with Q = −1 and 1. The W invariant only
changes between odd (even) values for Q = −1 (1) regions. We used
the parameters Ly = 400ac, WJ = 5ac, WL = WR = 20ac, �0 = 0.3t ,
�′

0 = 0.0, hSC = 0, and the phase difference �φ = π .

written in the Nambu basis (ψ↑, ψ↓, ψ
†
↓,−ψ

†
↑), reads

H =
(

p2

2m∗ − μ + αSO

h̄
(σ × p)z + m∗

2
α2

SO

)
τz

+ h(x)σy + τx Re �(k, x) − τy Im �(k, x). (1)

Here, α is the Rashba spin-orbit coupling strength, h(x) de-
scribes the Zeeman energy, e.g., for an external magnetic field
h(x) = g(x)μBB/2, where g(x) is the position-dependent g
factor. We denote the Zeeman energy in the superconducting
regions by hSC and in the junction by hJ , m∗ is the effective
electron mass, and �(k, x) is the proximity-induced pairing
in 2DEG, which reads

�(k, x) = 2eiφ(x)[�̃(x)(cos ky − eiβ cos kx )

+ �̃′(x)2i sin kx sin ky]. (2)

Here, β determines the pairing type, e.g., β = 0 corresponds
to dx2−y2 pairing and β = π/4 corresponds to d + is pair-
ing [32]. The term �̃′ is necessary to realize d + id ′ pairing.
The terms �̃(x) and �̃′(x) are only nonzero in the regions
covered by superconductors where �̃(x) = �0, �̃′(x) = �′

0,
φ(x) = φL for the region covered by the left superconductor,
and φ(x) = φR for the region covered by the right supercon-
ductor. We apply the Zeeman field in the y direction.

The symmetries, such as the time-reversal symmetry, the
particle-hole symmetry, and the chiral symmetry, determine
the type of topological superconductivity realizable in our
system. The Hamiltonian (1) breaks time-reversal symmetry

when the Zeeman field is present. For the case of d pairing (or
d + id ′ pairing when �′ �= 0) in the presence of the Zeeman
field, we can still define an effective time-reversal symmetry
as T̃ = MxT where T = iσyK is the usual time-reversal sym-
metry and Mx is the mirror with respect to the y-z plane. For
T̃ , we have a relation T̃ 2 = 1, which in combination with the
particle-hole symmetry, P = σyτyK , and the chiral symmetry
(the PT̃ symmetry operator), C̃ = Mxτy, places such a system
in the BDI symmetry class with a Z topological invariant. In
our analysis, we also calculate a Z2 Pfaffian invariant which
is determined by the parity of Z and characterizes systems in
the D symmetry class. The D symmetry class is realized in
Fig. 1 when the mirror symmetry with respect to the y-z plane
is broken or for d + is pairing.

Topological superconductivity and MBS. Our symmetry
analysis suggests a possibility for topological superconductiv-
ity in the quasi-one-dimensional region between superconduc-
tors in Fig. 1(a). A sufficiently large but finite system along the
y axis can be used for realizing MBS. We use the tight-binding
version of the BdG Hamiltonian (1) on a two-dimensional
square lattice given by

HTB =
∑

〈i j,mn〉
[−t c†

i, jcm,n + itSO c†
i, j (σ × ri j,mn)zcm,n]

+
∑
i, j

[(
4t − μ + t2

SO

)
c†

i, jci, j + h c†
i, jσy ci, j

]

+
∑
i, j

eiφ/2�̃[c†
i, j±1,↑c†

i, j,↓ − eiβc†
i±1, j,↑c†

i, j,↓]

+
∑
i, j

eiφ/2�̃′[c†
i±1, j±1,↑c†

i, j,↓ − c†
i±1, j∓1,↑c†

i, j,↓]

+ H.c., (3)

where in our calculations we use the lattice spacing ac = 10
nm, tSO = 0.3t , and t = h̄2

2m∗a2
c
, and m∗ = 0.14me [45], with

me being the electron rest mass. We study the phase diagram
as a function of the Zeeman field, chemical potential, and the
phases of superconductors. To describe a system with periodic
boundaries along the y axis, we use the momentum repre-
sentation along the y axis of the tight-binding Hamiltonian,
HTB(ky). To calculate the BDI class Z topological invariant,
we employ the eigenbasis of the chiral symmetry in which C̃
is diagonal [34,46] with 1 in the upper left block and −1 in
the lower right block. In this basis,

H̃TB(ky) =
(

0 A(ky)

A†(ky) 0

)
, (4)

where for a gapped Hamiltonian A(ky) defines a complex
function z(ky) = Det[A(ky)]/|Det[A(ky)]| and a winding num-

ber W = (−i/2π )
∫ ky=2π

ky=0 dz(ky)/z(ky). To calculate the D
class Z2 topological invariant, we use the expression Q =
sgn[Pf(Hky=πσyτy)/Pf(Hky=0σyτy)]. The two topological num-
bers are related by the equation (−1)W = Q [46].

Planar JJ with d-wave pairing. We first study the planar JJ
in Fig. 1(a) with pure d-wave pairing by varying the chemical
potential, the phase difference (�φ = φR − φL), and the Zee-
man field. We use parameters WJ = 5ac, WL = WR = 20ac,
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�0 = 0.3t , hSC = 0, β = 0, and �′
0 = 0.0. The nontrivial

topological regions in parameter space, as determined by Q,
are reminiscent of the planar JJ based on the s-wave supercon-
ductor, which suggests the same mechanism for the formation
of MBS and the relevance of the Andreev reflection [34].
In Fig. 1(b), we show the energy gap of the system as a
function of μ and hJ . The gap shows rapid changes, exhibiting
numerous lines with zero gap, which suggests that this is
a finite-size effect associated with the gapless excitations in
the bulk of 2DEG. Further simulations with increased system
sizes show an increase in the number of lines with zero gap.
According to Fig. 1(c), the gap closes along the lines that
seem to be associated with changes in the two topological
invariants, W or Q, which are calculated from HTB(ky). From
a decrease of the gap for larger system sizes, we conclude
that in the region with Q = −1 MBS will coexist with gapless
excitations in the planar JJ based on the d-wave pairing. Even
though the topological invariant Q shows a large continuous
region with Q = −1 and a well-localized MBS can be realized
as shown in Fig. 1(b), MBS may still hybridize with the gap-
less excitations. This behavior can be detrimental for quantum
coherence associated with MBS. Nevertheless, we expect that
the signature of the Q = −1 region can be seen in stud-
ies of the Josephson current and the superconducting diode
effect.

Planar JJ with d + is pairing. Since d-wave supercon-
ductors have directional pairing resulting in dx2−y2 and dxy

components in a general reference frame, the orientation of
the superconductor lattices can be used to control the pairing
potential in twisted bilayer d-wave superconductors realizable
in mechanically exfoliated copper oxide heterostructures. It
has been shown [32] that by having a twisted bilayer of d-
wave superconductors, d + is, and d + id ′ pairings can be
realized. In Fig. 2, we consider a system with d + is pairing
and use the parameters hSC = 0, �0 = 0.3t , �′

0 = 0.0, WJ =
5ac, WL = WR = 40ac. We take β = π/4 predicted by the
BCS mean-field calculations [32]. In Fig. 2(a), we calculate
the phase diagram for Q as a function of hJ and φ. The large
diamond-shaped region, also typical for the planar JJ based
on the s-wave superconductor [34], defines parameters for
which MBS can be realized. In Fig. 2(b), we plot the gap.
The gap closes at a line of quantum phase transition between
the Q = −1 and Q = 1 regions. In Figs. 2(c) and 2(d), we
perform similar calculations as a function of μ and hJ with
fixed φ = π . Results in Fig. 2 predict robust MBS in the
planar JJ with d + is pairing for a wide range of parameters.
We also observe in Fig. 3 that the region with Q = −1 persists
even when the Zeeman energy is present in the superconduct-
ing regions. Figure 3(a) shows the phase diagram for Q as
a function of μ and hJ = hSC = h. A relatively large region
corresponding to Q = −1 in Fig. 3(a) can lead to realizations
of robust MBS due to a sizable topological gap shown in
Fig. 3(b). In Figs. 3(c) and 3(d), we show that increasing
the ratio hSC/hJ expands the range of φ where MBS can be
realized for certain parameters. The imaginary is pairing com-
ponent is responsible for the gap opening here, which would
also protect MBS from quasiparticle poisoning. Based on the
BCS mean-field calculations the is component is tan(π/8) of
the dx2−y2 component. This would still be significantly larger
than the gap in the conventional s-wave superconductors.

FIG. 2. Phase diagrams for d + is pairing (β = π/4). (a) The Q
topological number (Z2) as a function of hJ and �φ for μ = 1t .
(b) The energy gap Egap as a function of hJ and �φ for μ = 1t .
[The dark blue line extending from left to right has a small gap,
which is why no corresponding topological phase change exists in
(a).] (c) Phase diagram of the Q topological number as a function
of hJ and μ for the phase difference �φ = π . (d) The energy gap
Egap as a function of hJ and μ for the phase difference �φ = π .
We used the parameters hSC = 0, �0 = 0.3t , �′

0 = 0.0, WJ = 5ac,
WL = WR = 40ac.

Planar JJ with d + id ′ pairing. We consider d + id ′ pairing
in Fig. 4. The phase diagram for Q and W as a function of
μ and hJ in Fig. 4(a) looks somewhat similar to the case of
d-wave pairing in Fig. 1(d). The id ′ component of the pairing

FIG. 3. The Zeeman field is applied to the whole system. (a) The
Q topological invariant as a function of h and μ where hJ = hSC = h
for the phase difference �φ = π . The blue color shows the topo-
logical region (Q = −1). (b) The energy gap Egap as a function
of h and μ where hJ = hSC = h for the phase difference �φ = π .
(c), (d) The Q topological number and the energy gap as a func-
tion of the ratio hSC/hJ and φ for μ = 1t . We used the parameters
�0 = 0.3t , �′

0 = 0.0, β = π/4, hJ = 0.2t , WJ = 5ac, and WL =
WR = 40ac.

L140506-3



VAKILI, ALI, ELEKHTIAR, AND KOVALEV PHYSICAL REVIEW B 108, L140506 (2023)

FIG. 4. (a) The topological invariant W as a function of hJ and
μ for �φ = π . The black line shows the outlines of Q = −1 and
Q = 1 regions. (b) The gap Egap of a JJ with periodic boundaries
as a function of hJ and μ for �φ = π . (c) The topological number
W as a function of hJ and �φ for μ = 1t . (d) The gap Egap of a JJ
with periodic boundaries as a function of hJ and �φ for μ = 1t . We
used the parameters WJ = 5ac, WL = WR = 20ac. (e), (f) Modified JJ
structure and |ψ |2 of the lowest eigenvalue corresponding to MBS.
The phases of four superconducting regions are set to φ1 = φ2 =
π/2, φ3 = φ4 = −π/2. Dimensions used: WU = WD = WC = 50ac,
WS = 600ac, WJ = 5ac. Other parameters used: hJ = 0.4t , hSC = 0,
μ = 2t , �0 = 0.3t , �′

0 = 0.06t , θ = arctan(1/9) ≈ π/9.

potential breaks the time-reversal symmetry and removes the
gapless states in the bulk of 2DEG. At the same time, the
topology of the bulk of the proximitized 2DEG corresponds
to the even Chern number and results in the chiral edge
modes [47] in the system in Fig. 1(a). A finite-size effect
associated with the gapless excitations of the chiral edge
modes of 2DEG results in gap closings and changes in W
shown in Fig. 4(a), where a periodic boundary along the y
axis in Fig. 1(a) has been used. In Fig. 4(c), we show the
phase diagram for W as a function of φ and hJ , where one
can identify a diamond-shaped region with Q = −1. Results
in Figs. 4(a) and 4(c) suggest that MBS will coexist with the
chiral edge modes in system in Fig. 1(a). If not separated
spatially, the chiral edge modes can hybridize with MBS. In
Figs. 4(b) and 4(d), we study the gap inside of the planar JJ
in Fig. 1(a) with the periodic boundary along the y axis where
the outer edge modes have been removed. With the periodic

condition applied, the only possible chiral edge modes are
along the JJ which would result in gapless states. Since the
JJ is taken to be narrow, it is possible for the chiral modes
to have a hybridization. Figures 4(b) and 4(d) show that the
planar JJ with the Zeeman term can gap out the edge modes
running along the JJ for a large range of parameters. Using
Figs. 4(b) and 4(d), we suggest a setup in Fig. 4(e) with
an angled JJ that allows to separate the edge modes from
MBS by using four superconducting regions. Using parame-
ters hJ = 0.4t , hSC = 0, μ = 2t , �0 = 0.3t , �′

0 = 0.06t , and
the phases of four superconducting regions φ1 = φ2 = π/2,
φ3 = φ4 = −π/2 for the setup in Fig. 4(e), we are able to
realize robust MBS, as shown in Fig. 4(f) by plotting the |ψ |2
of the lowest eigenvalue of the system.

Conclusions. We have studied the planar JJ comprising a
2DEG with strong spin-orbit coupling and d-wave supercon-
ductors. The proximity effect can induce the superconducting
pairing potential in 2DEG with the same symmetry as the host
superconductor. Here, we have considered different types of
d-wave superconductors with a high critical temperature and
a large intrinsic gap. Apart from superconductors with pure
d-wave pairing, we have also considered a twisted bilayer
d + is, and d + id ′ superconductors realizable in mechani-
cally exfoliated copper oxide heterostructures [32]. In the case
of d-wave pairing, we have demonstrated that the planar JJ
can lead to MBS for a wide range of parameters, in analogy
to realizations based on s-wave superconductors; however,
the presence of gapless excitations in the bulk of 2DEG may
hinder the quantum coherence. Nevertheless, we expect inter-
esting manifestations in the superconducting diode effect [43].
In the case of d + is pairing, we have demonstrated realiza-
tions of robust MBS for a wide range of parameters. In the
case of d + id ′ pairing there are no gapless states in the bulk
of 2DEG; however, the even Chern number associated with
the bulk leads to the appearance of gapless chiral edge modes,
which can hybridize with MBS. To realize MBS with d + id ′
pairing, we have proposed a modified JJ in which the chiral
edge modes are gapped and do not hybridize with MBS. It
would be interesting to consider generalizations of our ideas
to 2DEG with cubic Rashba interactions [48,49].

The cuprate-based superconductors have shown critical
temperatures of up to 133 K [50]. One direct advantage of
using cuprate-based superconductors is that MBS can exist at
higher temperatures compared to realizations based on pure s-
wave superconductors. Another advantage stems from a much
larger intrinsic gap which should result in a larger proximity-
induced topological gap and better protection against disorder
and thermal excitations [44,51,52]. Our results should help in
identifying different platforms for realizations of robust and
easily tunable MBS with better protection against decoher-
ence.
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A. Matos-Abiague, I. Žutić, and J. Shabani, Phase signature of

L140506-5

https://doi.org/10.1146/annurev-conmatphys-030212-184337
https://doi.org/10.1103/RevModPhys.87.137
https://doi.org/10.1103/PhysRevB.76.045302
https://doi.org/10.1103/PhysRevB.99.174511
https://doi.org/10.1016/j.mattod.2018.05.003
https://doi.org/10.1063/5.0097008
https://doi.org/10.1103/PhysRevLett.110.186803
https://doi.org/10.1038/s41467-019-13133-1
https://doi.org/10.1103/PhysRevB.85.174533
https://doi.org/10.1103/PhysRevB.90.085302
http://arxiv.org/abs/arXiv:2103.12217
https://doi.org/10.1103/PhysRevB.107.245423
https://doi.org/10.1088/0256-307X/40/4/047302
https://doi.org/10.1016/j.physrep.2003.07.002
https://doi.org/10.1088/1361-6633/aa6ac7
https://doi.org/10.1103/PhysRevLett.83.5571
https://doi.org/10.1103/PhysRevB.63.212508
https://doi.org/10.1103/PhysRevB.63.144531
https://doi.org/10.1143/JPSJ.81.011013
https://doi.org/10.1103/PhysRevB.91.235143
https://doi.org/10.1103/PhysRevB.97.064501
https://doi.org/10.1103/PhysRevB.98.245413
https://doi.org/10.1103/PhysRevB.99.024505
https://doi.org/10.1016/j.physe.2022.115143
https://doi.org/10.1103/PhysRevB.101.174510
https://doi.org/10.1103/PhysRevLett.128.137002
https://doi.org/10.1103/PhysRevB.106.205424
https://doi.org/10.1038/s41567-020-01142-7
https://doi.org/10.1103/PhysRevLett.118.107701
https://doi.org/10.1103/PhysRevX.7.021032
https://doi.org/10.1038/s41586-019-1068-8
https://doi.org/10.1103/PhysRevB.99.220506
https://doi.org/10.1038/s41467-022-29463-6
https://doi.org/10.1038/s41586-020-2590-4
https://doi.org/10.1038/s41467-019-14094-1


VAKILI, ALI, ELEKHTIAR, AND KOVALEV PHYSICAL REVIEW B 108, L140506 (2023)

topological transition in Josephson junctions, Phys. Rev. Lett.
126, 036802 (2021).

[41] C. Baumgartner, L. Fuchs, A. Costa, S. Reinhardt, S.
Gronin, G. C. Gardner, T. Lindemann, M. J. Manfra,
P. E. F. Junior, D. Kochan, J. Fabian, N. Paradiso, and C.
Strunk, Supercurrent rectification and magnetochiral effects
in symmetric Josephson junctions, Nat. Nanotechnol. 17, 39
(2022).

[42] M. Amundsen, J. Linder, J. W. A. Robinson, I. Žutić, and N.
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