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Drude weight and the many-body quantum metric in one-dimensional Bose systems
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We study the effect of quantum geometry on the many-body ground state of one-dimensional interacting
bosonic systems. We find that the Drude weight is given by the sum of the kinetic energy and a term proportional
to the many-body quantum metric of the ground state. Notably, the many-body quantum metric determines the
upper bound of the Drude weight. We validate our results on the Creutz ladder, a flat-band model, using exact
diagonalization at half and unit densities. Our work sheds light on the importance of the many-body quantum
geometry in one-dimensional interacting bosonic systems.
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The geometrical properties of a physical system’s eigen-
states, defined over a parameter space, are encoded in the
quantum geometric tensor [1–3]. The real and the imaginary
part of such a tensor are respectively the quantum metric (also
known as the Fubini-Study metric) and the Berry curvature.
Recent studies have found that the quantum metric of Bloch
bands plays a role in many phenomena, including the orbital
magnetic susceptibility [4,5], entanglement effects [6], topol-
ogy in two-dimensional (2D) Chern or fractional insulators
[7–10], or the topological charge of inflated Dirac monopoles
[11]. In a single-particle picture, the quantum geometric ten-
sor enters in the semiclassical dynamics of wave packets upon
introducing suitable inhomogeneous potentials [12–15].

In the case of flat-band systems [16,17], the role of
the quantum metric is essential to describe the superfluid
properties of interacting fermions [18–21]. While no
superfluidity in flat bands would naively be expected due
to an infinite effective mass of single particles, even a weak
interaction is able to create mobile pairs [22]. The mobility of
pairs and a finite superfluid weight are given by the minimal
quantum metric of the Bloch states defined in momentum
space [18,21,22]. This mechanism has inspired plenty of
further work in the field of flat-band superconductivity and
beyond, and may be relevant for twisted-bilayer graphene
where nearly flat bands arise [23–30]. Also in bosonic
systems, the quantum metric defined in momentum space
is known to be related to the speed of sound and the
excitation fraction of Bose-Einstein condensates on flat
bands within the Bogoliubov theory [31–34]. Nonetheless,
recent work has highlighted the limitations of the Bogoliubov
theory in assessing the superfluid weight [35], and Popov’s
hydrodynamic theory approaches have been applied [36].

All these previous works relating the superfluid and other
physical properties to the quantum metric have been lim-
ited to the contributions of the quantum metric defined with
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single-particle (noninteracting) eigenfunctions in momentum
space. Such a single-particle quantum metric has been useful
in understanding the superconductivity of fermions and the
Bogoliubov theory of bosons, mostly within the mean-field
but also with exact approaches [37], in specific limits such as
an isolated flat band. It is remarkable that even when a flat-
band system is strongly interacting by definition (interactions
dominate over kinetic energy), mean-field approaches with a
single-particle quantum metric have been relevant, and exact
solutions possible—this boils down to the absence of kinetic
energy. It is thus interesting to ask whether the many-body
quantum metric, which is defined in the parameter space of
the twisted boundary condition [38,39], would be important
for key physical quantities in flat bands and beyond.

In this Letter, we investigate the role of the many-body
quantum metric on the superfluid properties of Bose systems.
We consider one-dimensional interacting lattice models and
discover a relation between the superfluid weight, i.e., the
Drude weight, and the many-body quantum metric. Drude
weight can be used to characterize superfluid transport [40].
We find that the many-body quantum metric enters in the
upper bound of the Drude weight for strongly correlated
bosonic systems. As a concrete example, we consider a one-
dimensional Bose-Hubbard Creutz ladder [41], which hosts
two flat bands, and numerically verify the upper bound of the
Drude weight for half and unit densities. Our results reveal
a connection between the many-body quantum geometry of
strongly correlated ground states and their superfluid behav-
ior. Our predictions can be experimentally tested with current
ultracold gas and circuit-QED setups.

The Drude weight and the many-body quantum metric. We
start by considering a generic one-dimensional lattice Hamil-
tonian, defined on a ring of length L with periodic boundary
conditions

Ĥ0 = Ĥkin + ĤV + ĤU = (K̂ + K̂†) + ĤV + ĤU , (1)

where the kinetic part Ĥkin is decomposed into hopping along
the ring in one direction K̂ and that in the opposite direction
K̂†. The terms ĤV and ĤU are the on-site potential term and
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the interparticle interaction term, respectively. By considering
an external flux � that threads the ring we implement the
twisted boundary conditions. The kinetic part Ĥkin acquires
a phase, while the on-site part ĤV and the interacting part
ĤU stay invariant. The Hamiltonian with nonzero flux is then
Ĥ (�) = K̂ei�/L + K̂†e−i�/L + ĤV + ĤU , where θ = �/L is
the phase gradient across the one-dimensional (1D) ring and
is distributed over all the L links.

The superfluid response of the system to such external flux
is given by the Drude weight [42,43]

Dw = πL
∂2E (�)

∂�2

∣∣∣∣
�=0

, (2)

where E (�) represents the ground state energy of Ĥ�. The
discretized version of Eq. (2) for a small flux is

Dw = 2πL
E (�) − E (0)

�2
, (3)

and the energy difference E (�) − E (0) can be evaluated
within perturbation theory. The Hamiltonian (1) expanded up
to the second order in � is Ĥ (�) = Ĥ0 + Ĥpert, where the
small perturbation is

Ĥpert = �

L
Ĵ − 1

2

(
�

L

)2

Ĥkin, (4)

having introduced the current operator Ĵ = i(K̂ −K̂†).
If the many-body ground state |�0〉 is nondegenerate at

� = 0, Ĥ0|�0〉 = E0(0)|�0〉. Applying the second-order per-
turbation theory together with Eq. (3) for the Drude weight,
we get [44,45]

Dw = 2πL

�2

[
�

L
〈�0|Ĵ|�0〉 − �2

2L2
〈�0|Ĥkin|�0〉

−�2

L2

∑
m �=0

〈�m|Ĵ|�0〉〈�0|Ĵ|�m〉
Em(0) − E0(0)

]

= −π

L
〈�0|Ĥkin|�0〉 − 2π

L

∑
m �=0

|〈�m|Ĵ|�0〉|2
Em(0) − E0(0)

, (5)

where we used that 〈�0|Ĵ|�0〉 is zero in the thermodynamic
limit as there is no ground state persistent current, and we have
only kept terms that survive as � goes to zero. Equation (5)
is statistics independent. However, the functional form of the
Drude weight will depend on the statistics via the many-body
states |�0〉.

The second term in Eq. (5), containing the current operator,
can be related to the many-body quantum metric of the Hamil-
tonian in the twist-angle space. Such a many-body quantum
metric is defined from the many-body ground state as [38,39]

g(φ) = Re[〈∂φ�0|(1 − |�0〉〈�0|)|∂φ�0〉], (6)

where φ = �/L. The many-body quantum metric at φ = 0
can be expressed as

g(0) = Re

⎡
⎣∑

m �=0

|〈�m|Ĵ|�0〉|2
[Em(0) − E0(0)]2

⎤
⎦, (7)

having used the following expansion,

|∂φ�0〉 =
∑
m �=0

〈�m|∂φĤ (φ)|�0〉
Em − E0

|�n〉,

together with ∂φĤ (φ) = L∂�Ĥ (�) = Ĵ + O(�). Equa-
tion (7) does not require the knowledge of the eigenstates of
the Hamiltonian in the twist-angle space and can be easily
connected with the second term appearing in the Drude
weight formula in Eq. (5), apart from the denominator being
squared. In our numerical calculations, we use an alternative,
manifestly gauge-invariant, expression of the many-body
quantum metric: By writing |∂φ�0〉= [|�0(φ)〉 − |�0(0)〉]/φ
for small enough φ, it can be expressed as

g(0) = lim
φ→0

[1 − |〈�0(φ)|�0(0)〉|2]/φ2. (8)

Since the many-body quantum metric is defined by a flux
inserted via a global twisted boundary condition, it is not
dependent on the orbital positions such as the single-particle
quantum metric. Thus subtleties related to relation between
the single-particle quantum metric and superfluid weight [21]
do not play a role here.

We now assume that the system has a many-body energy
gap ε so that Em − E0 > ε for any m �= 0. We can then obtain
a bound for the second term Eq. (5) as [46]

2π

L

∑
m �=0

|〈�m|Ĵ|�0〉|2
Em(0) − E0(0)

>
2π

L
g(0)ε, (9)

which leads to the following upper bound for the Drude
weight,

Dw < −π

L
〈�0|Ĥkin|�0〉 − 2π

L
g ε. (10)

This formula is the central result of our work. We note
that generally 〈�0|Ĥkin|�0〉 < 0 and thus the first term is
positive. The many-body quantum metric g, defined as in
Eq. (6) for φ → 0, is a non-negative quantity, and thus the
many-body quantum metric tends to reduce the upper bound
of the Drude weight. This is in contrast to the role of the
single-particle quantum metric defined in momentum space
appearing in mean-field descriptions of interacting fermions
[18] and bosons [31,32], where the quantum metric tends to
enhance the superfluid density.

The Creutz ladder. We now apply our result to the Creutz
ladder model, a one-dimensional chain with two orbitals per
unit cell on which bosons can hop and interact [see Fig. 1(a)].
The orbitals α = A, B are cross-linked in such a way that a π

flux is acquired on the plaquette [41]. The Hamiltonian with
on-site repulsive interactions is [47–49]

Ĥ =
L∑

j=1

(it â†
j â j−1 − it b̂†

j b̂ j−1 + t â†
j b̂ j−1 + t b̂†

j â j−1 + H.c.)

+ U
L∑

j=1

â†
j â

†
j â j â j + U

L∑
j=1

b̂†
j b̂

†
j b̂ j b̂ j . (11)

The operator â†
j (b̂†

j) creates a particle on the A (B) orbital at
site j, and the periodic boundary condition is implemented by
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FIG. 1. (a) The Creutz ladder with L = 4 unit cells. Dashed links
indicate complex hopping it following the direction of the arrow;
solid links indicate hopping t . The flat-band state of Eq. (12) is de-
fined on the plaquette highlighted in gray. (b) The energy dispersion
of the noninteracting Creutz ladder, with the two flat bands separated
by an energy gap 
g. (c), (d) The model projected on the lowest flat
band in Eq. (14) is defined on L sites, indicated by the black squares.
The ground state has a charge-density-wave order for (c) half density
and (d) unit density, which are schematically drawn with purple
circles denoting bosons.

identifying â0 = âL and b̂0 = b̂L. In the noninteracting limit
(U = 0), the Creutz ladder has two flat bands at E = ±2t ,
separated by a band gap 
g = 4t [see Fig. 1(b)].

The twisted periodic boundary conditions are applied to
Eq. (11) such that the forward hopping terms acquire a phase
ei�/L. In the following, the unit cell size is fixed a = 1. The
lowest flat-band state has the form

Ŵ †
j |0〉 = 1

2 (â†
j + ib̂†

j − iei�/Lâ†
j+1 − ei�/Lb̂†

j+1)|0〉. (12)

Such a state is obtained from the Wannier functions of the
lowest flat band within the twisted periodic boundary condi-
tions [50]. The operator Ŵ †

j defines the creation of a boson
in the lowest flat band in a state localized around the jth
and ( j + 1)th unit cells. By neglecting the upper-band con-
tributions, we can express the original operators â†

i and b̂†
i

in terms of the lowest flat-band operators using the following
transformation [51],

â†
i = 1

2 (Ŵ †
i + ie−i�/LŴ †

i−1),

b̂†
i = 1

2 (−iŴ †
i − e−i�/LŴ †

i−1), (13)

which we use to project the original Hamiltonian in Eq. (11)
on the flat-band states [48]

Ĥ (�)proj =
L∑

j=1

[
U

4
Ŵ †

j Ŵ †
j ŴjŴj + U

2
Ŵ †

j Ŵ †
j−1ŴjŴj−1

−U

8
(e−2i�/LŴ †

j Ŵ †
j Ŵj−1Ŵj−1 + H.c.)

]
. (14)

This Hamiltonian defines a one-dimensional effective lattice
model with L sites [Figs. 1(c) and 1(d)]. The twisted boundary
conditions are reflected into the pair hopping term with a
phase θ = 2�/L, equal to twice the one carried by the sin-
gle particle. In fact, only pairs of particles can move, while
the single particles are localized and interact via the on-
site and nearest-neighbor effective interactions. The projected

Hamiltonian in Eq. (14) is valid when U � 
g and there is a
negligible occupation of the upper flat band. Notice that all
terms in Eq. (14) are proportional to U , which defines the
relevant energy scale of the system. In the following, we will
refer to the filling density of particles n = Nb/Ns, where Nb is
the number of bosons and Ns = 2L is the number of sites of
the full model.

For half density n = 1/2, previous works found that the
ground state has a charge-density-wave (CDW) order by ex-
amining the projected model in Eq. (14) for � = 0 [47,48].
We performed the exact diagonalization of the projected
model, and confirm that the ground state is the CDW for any
value of � as we show in Fig. 1(c) and Supplemental Material
[46]. We also find that the energy E (�) is π periodic (instead
of 2π ) with the flux E (�) = E (� + π ), an indication that the
motion is carried by pairs of bosons [49]. When L is even, we
also find that the ground state is twofold degenerate, where
the degeneracy is lifted by finite-size effects, in agreement
with Ref. [47]. When L is odd, the ground state for finite L
is instead L-fold degenerate, due to a single unpaired particle
that can be distributed in the empty sites of the CDW [52].

In the n = 1 unit density case at any flux �, the ground
state is again twofold degenerate due to a CDW order of two
pairs of bosons [see Fig. 1(d)]. As in the half-density case, for
odd L the CDW order cannot be hosted in a commensurate
way (see Supplemental Material [46]). For this reason in the
following we will consider only L even both for half and unit
density.

To estimate the Drude weight of the Creutz ladder, we
expand the projected Hamiltonian in the low-flux limit, paying
attention that the flux is θ = 2�/L in the pair hopping term
upon using Eqs. (4), (5), and (10). The first term of the Drude
weight in Eq. (10) denotes the kinetic energy of pairs of
bosons in the projected model. According to Eq. (14), when
� = 0, a pair of bosons hop with an amplitude of −U/8 times
the bosonic enhancement factor of 2. Its dispersion relation is
then (−U/2) cos(k), where k is the quasimomentum of a pair.
The kinetic energy is thus bounded from below by

〈�0|Ĥkin|�0〉 � −U

2

Nb

2
, (15)

where Nb/2 is the number of pairs of bosons.
To evaluate the second term of the Drude weight bound in

Eq. (10), we find that the first excitations are at ε = U/4 (see
Supplemental Material [46]). Notice that upon using Eqs. (4),
(5), and (10) with the flux θ = 2�/L carried by the pairs, the
Dsmall

w gets an extra factor of 4 with respect to the result with
the flux θ = �/L carried by the single particle. We then obtain
the following upper bound for the Drude weight,

Dsmall
w < πU

(
2n − 2gproj(0)

L

)
, (16)

where we introduced the many-body quantum metric gproj

of the projected Hamiltonian. We note that gproj can be in
general different from the many-body quantum metric of the
full Hamiltonian g, as it is constructed from the states in a
reduced (projected) space in the isolated flat-band limit.

The Drude weight and the bound in (16) are linear with the
interaction U , as long as U � 
g and the projected Hamilto-
nian approach is valid. The Drude weight, as calculated from
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FIG. 2. Drude weight of the projected Creutz ladder in units of
U as a function of L for filling density n = 1/2 in (a) and n = 1 in
(b). The solid line is the Drude weight calculated using Eq. (3) within
exact diagonalization of the projected Hamiltonian given in Eq. (14);
the upper bound calculated from Eq. (16) is indicated by the dashed
line.

Eq. (3), is plotted in units of U as a function of L for filling
density n = 1/2 in Fig. 2(a) and for filling density n = 1
in Fig. 2(b). We thus numerically confirm that the formula
Eq. (16) indeed provides an upper bound.

We now briefly discuss the large interaction limit, for
which there are non-negligible upper-band contributions to
the flat-band projection Eq. (13). In the limit U � 
g, we
need to use the full Hamiltonian in Eq. (11) with twisted
periodic boundary conditions to derive the Drude weight in
Eq. (5).

For half density, the relevant energy gap is the band gap
ε = 
g = 4t , since now the excitations of the ground state in
a completely filled lower band involve states where at least
one particle is in the higher band, rather than two pairs occu-
pying the same site. The kinetic energy in the ground state is
bounded by

〈�0|Ĥkin|�0〉 � −2tNb.

The bound in Eq. (10) then becomes

Dlarge
w < 4πt

(
n − 2g(0)

L

)
. (17)

The many-body quantum metric g is now defined for the full
Hamiltonian in Eq. (11) with twisted boundary conditions
using Eq. (6). In Fig. 3 the Drude weight for the half density
is shown as a function of the interaction strength; we numeri-
cally confirm both the upper bound for the Drude weight given
by the inequality (17) for large interactions as well as the one
for small interactions, Eq. (16).

For unit density at large interactions, the Mott insulator
phase becomes the ground state. The Drude weight then ap-
proaches zero at large interactions and the upper bound (17)
tends to overestimate the Drude weight (see Supplemental
Material [46] for more details).

Discussion and conclusions. We have studied relations
between the Drude weight and the many-body quantum
metric of one-dimensional bosonic systems. The role of the

0 2 4 6 8 10
U/t

0

1

2

3

4

5

D
w

L = 8, Nb = 8

Dw

Dsmall
w

Dlarge
w

0 2 4 6 8 10
U/t

L = 10, Nb = 10

Dw

Dsmall
w

Dlarge
w

(a) (b)

FIG. 3. Drude weight of the full (nonprojected) Creutz ladder
as a function of U for half filling n = 1/2. The solid line is the
Drude weight calculated using Eq. (3) from the exact diagonalization
of the full Hamiltonian Eq. (11) with twisted boundary conditions
for (a) L = 8 and (b) L = 10. The bound calculated from Eq. (17)
for U > 2t is indicated by the dashed line. For comparison, the
bound calculated from Eq. (16) is also indicated with a dotted line
for U < t .

many-body quantum metric, which is defined in the parameter
space of the twist angles, turned out to be opposite to the role
of the single-particle quantum metric defined in momentum
space: Here, we find the former to reduce an upper bound
while previous works related the latter to enhancement of
the superfluid density. A large many-body quantum metric
means that the eigenstates of the interacting system deviate
strongly when a flux is inserted, thus intuitively leading to
a small response, i.e., smaller superfluid weight. In contrast,
in the mean-field and exact treatments of superfluid fermions
[18,21,22,37], the single-particle quantum metric does not
describe the actual state of the interacting system, however,
its large value means strong delocalization and overlap of
the single-particle Wannier functions that allow effective
pair hopping in the system. It would be intriguing to study
the role of the many-body quantum metric in fermionic
systems in more detail. However, since the bound (10) is
independent of particle statistics, we can already at this point
make the intriguing conclusion that the superconductivity of
fermionic (Cooper) pairs is upper bounded by the many-body
quantum metric.

The bound (10) is independent of spatial dimensions too.
It is of great interest to extend the analysis to two or higher
dimensions. In two dimensions, an inequality connecting the
many-body quantum metric and the many-body Chern num-
ber is known. With that inequality, one may be able to find the
upper bound of the Drude weight in terms of the many-body
Chern number, which is relevant, for example, in studying
fractional quantum Hall effects.

Our work shows that many-body quantum geometry
can play an important role in understanding the transport
properties of interacting systems, inspiring further theoret-
ical and experimental studies. The Creutz ladder has been
experimentally realized in ultracold atomic gases [53,54]
through resonantly modulated optical lattices. A similar tech-
nique is also applicable in circuit QED and other quantum
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engineered systems to realize all-bands-flat physics [55–57].
There are also proposals to measure the many-body quantum
metric by applying oscillating forces and detecting the excita-
tions of the system [39,58]. The fundamental relation between
the Drude weight and the many-body quantum metric that we
predicted can be tested in such experimental platforms.
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