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Time-reversal switching responses in antiferromagnets
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We propose emergent time-reversal switching responses in antiferromagnets, which are triggered by an
accompanying magnetic toroidal monopole, i.e., a time-reversal odd scalar distinct from electric and magnetic
monopoles. We show that simple collinear antiferromagnets exhibit unconventional responses to external electric
and/or magnetic fields once magnetic symmetry accommodates the magnetic toroidal monopole. We specifically
demonstrate that the emergence of the magnetic toroidal monopole in antiferromagnets enables us to control
rotational distortion by an external magnetic field, switch vortex-type antiferromagnetic structure by an external
electric field, and convert right-handedness/left-handedness in chirality by a composite electromagnetic field. We
also present the symmetry conditions to induce the magnetic toroidal monopole and exhibit candidate materials
including noncollinear antiferromagnets in order to stimulate experimental observations.
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Introduction. A monopole is the most fundamental object
in electromagnetism. An electric (magnetic) monopole Q0

(M0) corresponds to an elementary electric (magnetic) charge.
Although the magnetic monopole as an elementary particle
has never been observed so far, extended objects with the same
symmetry have been found in condensed-matter physics in the
context of spin ice [1–3], multiferroics [4,5], and topological
insulators [6–8].

The electric (magnetic) monopole is characterized by a
time-reversal (T ) even scalar (T -odd pseudoscalar) with re-
spect to the space-time inversion. One can also introduce
their counterparts with opposite parities: an electric toroidal
monopole G0 corresponding to the T -even pseudoscalar and
a magnetic toroidal monopole (MTM) T0 corresponding to the
T -odd scalar [9]. Their practical representation can be made
based on the symmetry-adapted multipole basis that consti-
tutes a complete basis set [10]. Recently, the former G0 has
been recognized as a microscopic physical quantity to charac-
terize the chirality [11,12], which becomes the origin of the
cross-correlation phenomena between polar and axial quanti-
ties, such as current-induced magnetization (Edelstein effect)
[13] and electric-field-induced rotational distortion [14]. On
the other hand, the latter MTM has been still an enigmatic
monopole, whose realization and physical nature have been
unclear.

In the present study, we theoretically propose the emergent
MTM in antiferromagnets and elucidate electromagnetic re-
sponses driven by its ordering. We show that the MTM gives
rise to a variety of time-reversal switching responses between
polar (axial) quantities, such as magnetic-field-induced ro-
tational distortion, an electric-field-induced spin vortex, and
electromagnetic-field-induced chirality. Moreover, we show
all the magnetic point groups to accommodate the MTM and
exhibit candidate materials in both collinear and noncollinear
antiferromagnets. We also demonstrate such physical phe-
nomena under the MTM ordering by considering a minimal

collinear antiferromagnetic model, and we propose a possible
optical rotation measurement in Ca2RuO4. Our results provide
a guideline to search for unconventional antiferromagnets
with the MTM.

Magnetic toroidal monopole. A magnetic toroidal multi-
pole is characterized by a T -odd polar tensor, which shows
a spatial parity different from that of a magnetic multipole
[15–19]. Among them, the dipole component, i.e., the mag-
netic toroidal dipole T , which is expressed as a vector product
of the magnetic dipole M (or spin S) and the position vector,
i.e., T ∝ r × M(S) [upper-right panel of Fig. 1], has been
extensively studied, since it leads to the linear magnetoelectric
effect [17,18,20–24] and nonreciprocal transport [25–32]. By
using T , the MTM (T0) is expressed as

T0 = r · T . (1)

The schematic picture of T0 is shown in the middle of Fig. 1.
Although T0 identically vanishes in the single atomic wave
function owing to r ⊥ T [11,19], it survives in a magnetic
cluster like antiferromagnets, as discussed below. Note that T0

is totally independent of the other three monopoles (Q0, M0,
and G0), which have orthogonal matrix elements to T0.

Cross-correlation phenomena. Since T0 is a T -parity oppo-
site to an electric charge, it plays a role in converting between
two polar-vector quantities with opposite T parity. Consider-
ing that r is symmetry equivalent to the electric dipole Q, one
can find a correspondence between T0, Q, and T from Eq. (1)
as

T0 ↔ Q · T , (2)

where Q and T correspond to T -even and T -odd polar vec-
tors, respectively. Similarly, noting the relation of T ∝ (Q ×
M), Eq. (1) is rewritten as

T0 ↔ G · M, (3)
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FIG. 1. Conversions among different dipoles in terms of the
magnetic toroidal monopole T0 defined by an inner product of the
position vector r and the magnetic toroidal dipole T . The electric
dipole Q (electric toroidal dipole G) denoted by the orange (green)
arrow can be converted to T (magnetic dipole M) denoted by the red
(blue) arrows via T0, and vice versa. Related representative vectors
are shown in each lower panel.

where G = r × Q represents an electric toroidal dipole cor-
responding to a T -even axial vector [33–38]. Thus, T0 can
also convert between two axial-vector quantities with op-
posite T parities. The conversion properties among dipoles
(Q, M, T , G) via T0 are summarized in Fig. 1; we also show
representative vector quantities in each lower panel.

The above symmetry argument indicates emergent time-
reversal switching responses under the MTM ordering, e.g.,
the free energy is expanded by the electric field E and the
magnetic field H in addition to the conventional term F0 as

F = F0 − α1G · H − α2T · E

−α3Q · (∇ × H ) − α4M · (∇ × E ) + · · · , (4)

where α1–α4 are coefficients, which can be finite only when
the thermal average of T0 is finite. It is noted that T -opposite
H , E, ∇ × H , and ∇ × E become the conjugate fields of G,
T , Q, and M, respectively. Especially, ∇ × H and ∇ × E
correspond to the rotational distortion in terms of the spin
and charge degrees of freedom, respectively, and have the
same symmetry as the electric current and the time derivative
of H . Thus, unusual cross-correlation responses occur in the
presence of T0 under external fields; a homogeneous magnetic
(electric) field gives rise to G (T ) corresponding to the vortex
of Q (M), while an inhomogeneous magnetic (electric) field
with finite rotation or electric current (time derivative of mag-
netic field) leads to the electric polarization (magnetization).
Accordingly, one can experimentally control the rotational
distortion by applying H and switching the vortex-type an-
tiferromagnetic domain by E and the favorite handedness of
the induced chirality G0 by E · H , as demonstrated below.

Symmetry conditions. Let us discuss the symmetry condi-
tion to accommodate the MTM. Since the MTM is equivalent

TABLE I. Classification of point groups accompanying order pa-
rameters of (T0, Mz, Tz, M0). The candidate materials are also listed.
The subscripts m and n in the point group stand for n = 2, 3, 4, and
6 and m = 2 and 3.

Point group T0 Mz Tz M0 Materials

Oh, Td,h, Dnh,md � KMnF3 [39], Ca2RuO4 [40]
Cnh, S4, C3i, Ci � � MnV2O4 [41], Mn3As2 [42]
Cnv � � YMnO3 [43], Er2Cu2O5 [44]
O, T , Dn � � Ho2Ge2O7 [45], Mn3IrGe [46]
Cs � � � Mn4Nb2O9 [47]
Cn, C1 � � � � ScMnO3 [43], Mn2FeMoO6 [48]

to a T -odd scalar without spatial anisotropy, the necessary
symmetry breaking is only the T symmetry with keeping the
original point group symmetry [49]. Among 122 magnetic
point groups, 32 crystallographic point groups without T op-
eration satisfy this condition, as summarized in Table I [50].

Moreover, we classify the above 32 point groups into 6
types accompanying the activation of the z-component mag-
netic dipole Mz, the z component of the magnetic toroidal
dipole Tz, and the magnetic monopole M0, as shown in
Table I. When considering the point groups where Mz belongs
to the totally symmetric irreducible representation, i.e., Cnh,
S4, C3i, Ci, Cs, Cn, and C1 (n = 2, 3, 4, and 6), one can
control the MTM domain by using Hz. In the case of Cnv,
Cs, Cn, and C1 with Tz, applying the electric field enables us
to select the MTM domain. For O, T , Dn, Cn, and C1 with
M0, a further cross-correlation response between polar and
axial quantities, e.g., Q ↔ G and Q ↔ M, is expected like
enantiomorphic point groups. Lastly, the point groups, Oh,
Td, Th, Dnh, and Dmd (m = 2, 3), accompany neither Mz, Tz,
nor M0, whose system exhibits a pure MTM and its related
physical responses.

The MTM can be realized by antiferromagnetic phase
transitions satisfying the above symmetry condition. We ex-
hibit candidate antiferromagnetic materials accompanying the
MTM in Table I, which are referred from MAGNDATA [51],
a magnetic structures database. Various materials possess the
MTM irrespective of the lattice and antiferromagnetic struc-
tures, e.g., a collinear magnetic structure under the tetragonal
point group KMnF3 [39] and a noncollinear magnetic struc-
ture under the cubic point group Mn3IrGe [46]. In these
materials, physical phenomena characteristic of the MTM,
such as the magnetic-field-induced rotational distortion and
the electric-field-induced spin vortex, can be expected. We
show several antiferromagnetic structures to accommodate
the MTM under different point groups in the Supplemental
Material [52].

Model calculations. To demonstrate the role of the MTM in
antiferromagnets and its cross-correlation coupling in Eq. (4),
we analyze a minimal s-p model; the physical space spanned
by four orbitals and spin includes all the dipoles (Q, G, M, T ),
which are needed to describe the physical responses in Eq. (4)
[53,54]. It is noted that the following results are not qual-
itatively altered by choosing different orbitals and lattice
structures, once the relevant multipole degrees of freedom,
such as (Q, G, M, T ), are included in the low-energy physical
space. We consider a bilayer lattice structure consisting of
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FIG. 2. (a) Orthorhombic crystal structure with sublattices A–H.
(b) Collinear magnetic ordering accompanying T0, where the blue
and red arrows represent the spin and T , respectively. In panel (b), the
outward and inward red arrows have different lengths. (c) The distri-
bution of T in panel (b) is decomposed into T0 and the quadrupole
component Tv .

a cuboid with eight sublattices A–H under the space group
Pmmm (D1

2h), as shown in Fig. 2(a); we set the unit of lattice
constants as a = a′ = b = b′ = 0.5 and c = 1 (c is the bond
length between sublattices A and E) without loss of generality.
The Hamiltonian is given by

H =
∑

kγασ
γ ′α′σ ′

c†
kγασ

(δσσ ′Ht + δγ γ ′HSOC + δαα′HM)ckγ ′α′σ ′,
(5)

where c(†)
kγασ

represents the annihilation (creation) operator of
electrons at the wave vector k; sublattice γ = A–H; orbital
α = s, px, py, and pz; and spin σ . In Eq. (5) Ht includes the
nearest-neighbor hopping for the intra- and interunit cuboid.
We adopt the Slater-Koster parameter for the intracuboid hop-
pings: for the x-bond direction, t x for the hopping between
s orbitals (α, α′ = s), t x

p for that between (px, py) orbitals
(α, α′ = px, py), t x

z for that between pz orbitals (α, α′ = pz),
and t x

sp for that between different s-(px, py) orbitals (α = s
and α′ = px and py and vice versa). We regard t x = −1 as the
energy unit of the model and set t x

p = 0.7, t x
z = 0.2, and t x

sp =
0.3. Similarly, we set the intracuboid hoppings along the y and
z directions by multiplying 0.9 and 0.5 by that along the x di-
rection. In addition, we set the intercuboid hoppings along the
x and y directions by multiplying 0.8 by intracuboid ones. It is
noted that the choice of the hopping parameters does not affect
the following results qualitatively. HSOC in Eq. (6) means the
atomic spin-orbit coupling for three p orbitals with λ = 0.5.

HM in the third term in Eq. (6) denotes the mean-field term
to describe the antiferromagnetic ordering. We consider the
collinear antiferromagnetic ordering in Fig. 2(b), where HM

is explicitly given by

HM = − hδγ γ ′ p(γ )σz. (6)

Here, p(γ ) = +1(−1) for sublattices A, B, E, and F (C, D,
G, and H), and σz represents the z-component Pauli matrix
in spin space. We set the amplitude of the antiferromag-
netic molecular field as h = 2 and consider the low-electron
filling per site ne = (1/N )〈∑kγασ c†

kγασ
ckγασ 〉 = 0.2, where

N = 8 × 16002 is the total sites and ne = 8 (four orbitals
times two spins) represents the full filling.

The eight-sublattice collinear magnetic structure in
Fig. 2(b) satisfies the symmetry condition to accommodate

the MTM; inversion, three twofold rotations, and three mirror
symmetries under the space group Pmmm remain and only the
time-reversal symmetry is broken. Indeed, by closely looking
into the collinear spin configuration denoted by the blue ar-
rows in Fig. 2(b) on each plaquette of the cuboid, T , which is
defined by the vector product of spins and the position vector
measured from the center of each plaquette, becomes nonzero
for the sides: the outward x component of T emerges on the
plaquettes ADHE and CBFG and the inward y component
emerges on the plaquettes ACGE and DBFH, as shown by
the red arrows in Fig. 2(b). Since the xz and yz planes are
inequivalent in the orthorhombic structure, the amplitudes of
the x and y components of T are different from each other. The
distribution of T in Fig. 2(b) is decomposed into the linear
combination of T0 and the quadrupole component Tv = xTx −
yTy as shown in Fig. 2(c), which means a net component of T0

in the unit cuboid. In this way, the collinear antiferromagnetic
structure in Fig. 2(b) accompanies the MTM. Similar collinear
magnetic structures have been identified in materials such as
Fe2PO5 [55], XCrO3 (X = Sc, In, Tl, and La) [56,57], and
Y FeO3 (Y = Ce, Nd, and Dy) [58–60]; these materials are the
potential candidates hosting the MTM.

Using the model in Eq. (6), we demonstrate the cross-
correlation phenomena originating from the effective coupling
in Eq. (4). First, we discuss the magnetic-field-induced ro-
tational distortion by introducing the Zeeman Hamiltonian
HZ coupled to spin as HZ = −Hx

∑
kγασσ ′ c†

kγασ
σ x

σσ ′ckγασ ′ .
Since the microscopic degree of freedom corresponding to
the rotational distortion is G, we calculate its expectation
values in the atomic and cluster forms, 〈G(a)

x 〉 and 〈G(c)
x 〉,

against the applied magnetic field Hx [10]. Here, G(a)
x is the

atomic-scale definition using (l × σ)x (l is the orbital an-
gular momentum) and G(c)

x is the cluster definition formed
by the vortex of the local electric dipoles shown by the or-
ange arrows in Fig. 3(a); see the Supplemental Material [52]
for the detailed expressions. As shown in the left-hand side
of Fig. 3(a), both quantities become nonzero for Hx �= 0;
their sign is reversed by reversing the magnetic-field direc-
tion. This response coming from the interband process is
nondissipative within the linear response, which occurs in
both metals and insulators. We also discuss the order pa-
rameter dependence and the magnetic-field-induced rotational
distortion for noncollinear spin textures in the Supplemental
Material [52].

Next, let us consider the electric-field-induced spin vor-
tex (the time-reversal counterpart of the previous example),
where T is induced along the external electric-field direction.
We introduce the local s-px hybridized Hamiltonian as HE =
−Ex

∑
kγ σ (c†

kγ sσ ckγ pxσ
+ H.c.) corresponding to the coupling

between the electric dipole moment and the applied electric
field. Figure 3(b) shows the Ex dependence of the atomic
contribution of T , 〈T (a)

x 〉, and the cluster one, 〈T (c)
x 〉; T (a)

x is
represented by the local imaginary s-px hybridization and T (c)

x
is represented by the spin vortex, as shown in the right-hand
side of Fig. 3(b) [52]. Similarly to Fig. 3(a), both 〈T (a)

x 〉 and
〈T (c)

x 〉 become nonzero for Ex �= 0, and their sign is reversed
when the sign of Ex is changed. Thus, the spin vortex can
be switched by applying the electric field under the MTM
ordering. This response also arises from the nondissipative
interband process within the linear response.
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FIG. 3. (a) Magnetic field Hx dependence of the electric toroidal dipole 〈Gx〉. (b) Electric field Ex dependence of the magnetic toroidal
dipole 〈Tx〉. (c) Hx dependence of the electric toroidal monopole 〈G0〉 in the presence of Ex = 0.2. The right-hand side of each panel shows the
schematic pictures corresponding to the left-hand side. The green sphere represents 〈G0〉.

Furthermore, we find that the system acquires the chiral-
ity, i.e., a finite expectation value of G0, when both static
Hx and Ex are applied simultaneously. We show the behav-
iors of atomic-scale and cluster electric toroidal monopoles,
〈G(a)

0 〉 and 〈G(c)
0 〉, in Fig. 3(c), which are the microscopic

measure of chirality; the former is described by the atomic
spin-dependent imaginary s-p hybridization and the latter is
described by the source of the G flux in the cuboid [52]. As
shown in Fig. 3(c), the result indicates 〈G(a)

0 〉 and 〈G(c)
0 〉 are

induced by Hx, Ex �= 0, and their sign is reversed when the
direction of either Hx or Ex is reversed. This result is consistent
with the symmetry of the system in the presence of Hx and
Ex; there are no inversion and mirror symmetries. It is noted
that 〈G(a,c)

0 〉 = 0 in the paramagnetic Pmmm system without
T0 under a nonconjugate field of G0, Hx and Ex, since the
time-reversal parity of HxEx is opposed to that of G0. In other
words, the induction of 〈G0〉 by the composite field HxEx is
one of the characteristic features of the MTM ordering.

Conclusion. We proposed the time-reversal odd-scalar-
order parameter, i.e., the MTM (T0), in antiferromagnets.
We found that the MTM becomes a source of various
time-reversal switching responses, such as the magnetic-field-
induced rotational distortion, the electric-field-induced spin
vortex, and electromagnetic-field-induced chirality, which are
qualitatively different from other known multipole order-
ings like the magnetic monopole and the magnetic toroidal
dipole. Furthermore, we showed the symmetry condition of
the MTM as well as the candidate materials. Finally, we
demonstrated the minimal model to host the MTM in collinear
antiferromagnets.

In order to stimulate findings of cross-correlation physical
phenomena driven by the MTM, we propose an experi-
mental setup in a candidate noncollinear antiferromagnet,
Ca2RuO4, which accompanies a pure MTM in Table I
[52], by focusing on the optical rotation inherent in chi-
rality. Since the sign of 〈G0〉, i.e., handedness of chirality,
is determined by the relative directions of electric and
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FIG. 4. Optical rotation in the antiferromagnet Ca2RuO4 with
T0 under the static electromagnetic field. k is the incident wave
vector. The opposite rotations occur for the parallel and antiparallel
applications of E and H .

magnetic fields, as shown in Fig. 3(c), one can expect the
switching of right- and left-handed rotations by reversing one
of the fields, as schematically shown in Fig. 4. In addition,
the other cross-correlation phenomena proposed above, such
as rotational distortion by an external magnetic field and in-
duction of the vortex-type antiferromagnetic structure by an
external electric field, are also expected.
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