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Schwinger boson mean-field theory (SBMFT) is a nonperturbative approach which treats ordered and disor-
dered phases of magnetic systems on equal footing. We leverage its versatility to evaluate the spin correlators
which determine thermally induced spin transport the spin Seebeck effect (SSE) in Heisenberg ferromagnets
(FMs) and antiferromagnets (AFMs), at arbitrary temperatures. In SBMFT, the spin current Js is made up of
particle-hole-like excitations which carry integral spin angular momentum. Well below the ordering temperature,
Js is dominated by a magnonic contribution, reproducing the behavior of a dilute-magnon gas. Near the transition
temperature, an additional, paramagneticlike contribution becomes significant. In the AFM, the two contributions
come with opposite signs, resulting in a signature, rapid inversion of the spin Seebeck coefficient as a function
of temperature. Ultimately, at high temperatures, the low-field behavior of the paramagnetic SSE reduces to
Curie-Weiss physics. An analysis based on our theory confirms that in recent experiments on gadolinium gallium
garnet, the low-field spin Seebeck coefficient S(T ) ∝ χ (T ), the spin susceptibility, down to the Curie-Weiss
temperature. At lower temperatures in the disordered phase, our theory shows a deviation of S(T ) relative to
χ (T ) in both FMs and AFMs, which increases with decreasing temperature and arises due to a paramagnetic
liquid phase in our theory. These results demonstrate that the SSE can be a probe of the short-ranged magnetic
correlations in disordered correlated spin systems and spin liquids.
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Introduction. Most works in spintronics based on magnetic
systems are asymptotic expansions or tailored phenomenolog-
ical models which can be loosely divided into three categories:
the strongly ordered regime that is handled by the Holstein-
Primakoff approximation (HPA) and related treatments in
three dimensions (3D), the nonlinear-σ model, or the Landau-
Lifshitz-Gilbert phenomenology; the completely disordered
paramagnetic Curie-Weiss regime; or criticality described by
Landau theory. While the associated theories may work well
in their respective small-parameter regimes, they fail outside
of them. Moreover, phenomenology must be supported by
an underlying fundamental description which contains the
basic physical ingredients. The Schwinger boson transfor-
mation takes SU(N ) generators to a product of N bosonic
operators. The Hamiltonian is then decoupled by a Hubbard-
Stratonovich transformation where the mean-field theory is
the saddle point (SP), and the order n fluctuations about the
SP scale as O(1/N n) [1,2]. This approach, on the other hand,
has no small or large parameter for fixed N ∼ 1, but still has
the ability to qualitatively capture essential physics in regimes
where we do not have an accurate theory.

The spin Seebeck effect (SSE) is generated by thermalized
spin excitations and requires broken symmetry in spin space.
Starting at T � TC(N ), the Curie (Néel) temperatures, in or-
dered magnets, spin Seebeck coefficients theoretically [3–8]
and experimentally [9–11] are generally expected to be en-
hanced by increasing temperature, while the opposite holds
for paramagnets [12–17], with the largest signals near the
transition temperatures [4,14,18,19]. These results suggest
that the optimal regimes for thermoelectric applications may
be distinct from the ones best described by HPA or the

Curie-Weiss law, for example, which are designed to incor-
porate disorder or order, respectively, as minor corrections.
In Schwinger boson mean-field theory (SBMFT), the ferro-
magnetic (FM), antiferromagnetic (AFM), and paramagnetic
(PM) spin Seebeck coefficients reach their maxima around
TC(N ), where they reach the same order of magnitude when
the Zeeman energy h̄γ B ≈ J , the exchange constant. While
the SBMFT spin Seebeck coefficients in FMs and PMs have
the same sign, in AFMs the SSE inverts in sign slightly below
TN due to the competition between antiferromagnetic and
paramagnetic fluctuations.

The liquid-gas crossover in Heisenberg FMs and AFMs
appears as a continuous transition in SBMFT, and occurs at
their Curie-Weiss temperatures �CW, with frustration param-
eter f ≡ |�CW|/TC(N ) � 1 in 3D. The liquid phase of the
Heisenberg model in SBMFT is a simple setting for study-
ing correlations effects in disordered spin systems, in 3D, as
shown here, and also 2D [20–24]. For example, by evaluat-
ing the spin correlators involved in thermally induced spin
transport across the paramagnetic phase, we show how spin
Seebeck experiments can probe the properties of interacting
spin liquids. SBMFT may play an important role for under-
standing spin transport measurements that can be used to
manifest the magnetic properties of spin liquids [25,26]. This
would complement indirect measurements such as the thermal
conductivity and can support the limited information extracted
from NMR and magnetic susceptibility measurements [27].
Along these lines, we introduce the parameter p(T ) ≡ ∂BS/χ ,
the ratio of the SSE to the spin susceptibility, which is T
independent when a magnet is completely disordered and
becomes T dependent when short-ranged spin correlations are
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significant to spin transport. p(T ) is then an indicator for spin
correlations in the paramagnetic regime.

Mean-field theory. The Schwinger boson transformation
replaces the spin operators by a product of bosonic creation
and annihilation operators, S+ = a†

↑a↓, S− = a†
↓a↑, Sz =∑

σ σa†
σ aσ /2, with the spin length fixed on each site by the

constraint S = ∑
σ a†

σ aσ /2. The SU(2)-preserving mean-field
decomposition of the nearest-neighbor Heisenberg Hamilto-
nian on a bipartite lattice, written in terms of Schwinger
bosons (SBs) aσ and bσ for sublattices A and B, respectively,
is

HSU(2)
mf = − 2J

∑
〈i j〉

[αF †
i j F − (1 − α)A†

i jA] + H.c.

− μA
∑

i∈A,σ

a†
iσ aiσ − μB

∑
i∈B,σ

b†
iσ biσ . (1a)

Here, summing over 〈i j〉 avoids double counting, Fi j =∑
σ a†

iσ b jσ /2 is a “ferromagnetic” contribution, and Ai j =∑
σ σaiσ b jσ /2 is an “antiferromagnetic” contribution [28].
These quartic terms are approximated in our mean-field

(MF) decomposition by the product of a quadratic term and
the mean fields F = 〈Fi j〉 and A = 〈Ai j〉, and in the same
spirit the spin length constraints are implemented via two
aggregate Lagrange multipliers μA(B). This decomposition
applies to isotropic lattice models where there is a single F
and single A parameter. Note that while the exact constraint
fixes the sum of the SB species’ number operators on each
site, μA(B) instead fix the expectation value of this operator
sum on each sublattice. α is a parameter that is free to vary in
the exact Hamiltonian, but parametrizes separate mean-field
Hamiltonians [2,28]. To fix α, we match the poles of the
dynamic susceptibilities to the Holstein-Primakoff result at
T = 0, giving the usual [1] α = 1 for the FM and α = 0 for
the AFM, and for simplicity fix these values for α at all T .
In total, the bipartite FM (uniaxial AFM below spin flop)
has three mean-field parameters: F (A), μ ≡ (μA + μB )/2,
and δμ ≡ (μA − μB )/2. For the most general (Hartree-Fock-
Bogoliubov) U(1)-preserving mean-field decomposition, see
the Supplemental Material (SM) [29].

When T � TC(N ), thermal equilibrium described by the
Holstein-Primakoff picture is characterized by a dilute
magnon gas with a single band for each sublattice [30], which
slightly depolarizes the spin ordering. In SBMFT, there are
twice as many bands as in HPA, and each SB band carries
half-integer spin. At a glance, the two pictures may seem ir-
reconcilable. However, at TC in FMs the lowest-energy modes
of one SB spin species (in the axially symmetric case, for
example) reach zero energy and form a Bose-Einstein con-
densate, resulting in long-ranged ordering along that species’
spin polarization. At TN in AFMs, long-ranged staggering
ordering arises from condensation of one spin species on
sublattice A, and the opposite spin species on sublattice B.
Magnons in SBMFT are then spinful excitations associated
with transitions from the condensates to the thermal cloud,
as shown in Fig. 1. Thus, the SB bands on each sublattice
which carry spin opposite to the local order mimic the magnon
bands in Holstein-Primakoff. As we will see, these magnonic
excitations will dominate spin transport at T � TC(N ).

FIG. 1. Schematic depiction of the magnonic (1) and paramag-
neticlike (2) contributions to Js. Each color specifies a combination of
the bands’ lower-indexed spin polarization and upper-indexed pseu-
dospin. In SBMFT for FMs (AFMs), at T � TC(N ), Bose-Einstein
condensation occurs at the lowest-energy modes with momentum kc.
At T > TC(N ) a self-consistent gap −μ opens up.

The SU(2)-preserving mean-field theory (MFT) yields a
first-order Curie transition on cubic Bravais lattices, but is
second order on the diamond lattice, possibly due to its higher-
order connectivity [31]. The FM mean-field Hamiltonian plus
applied field on the diamond lattice, setting δμ = 0, after
Fourier transforming and casting in terms of sublattice pseu-
dospin, ψkσ = (akσ , bkσ ), is

HFM
mf =

∑
kσ

ψ
†
kσ

[−(μ + bσ/2) + ηk · τ]ψkσ , (2)

where b ≡ h̄γ B, ηk = JF (−Re γk, Im γk, 0), γk =
Z−1 ∑

δ eik·δ is the structure factor, δ is the vector between
nearest neighbors on sublattice A to B, and τ is the vector of
Pauli matrices. There are four bands with energies

ε±
kσ

= JZF (1 ± |γk|) − (μ + bσ/2), (3)

where a factor of JZF was absorbed into the definition of μ.
The eigenvectors are v±

kσ
= (1,∓|γk|/γk)/

√
2. If μ reaches

−b/2, the lowest-energy branch ε−
k↑ has zero-energy modes

that condense, resulting in long-ranged spin ordering along
the +ẑ axis in the language of SBs [1,32]. The lower-energy
ε− bands are shown in Fig. 1, and shown along with the
high-energy ε+ bands in Supplemental Material Fig. 3 [29].
At arbitrary temperatures, the self-consistent mean-field equa-
tions for F and S give the solutions to F (T ) and either the
condensate density nc(T ) or μ(T ) according to

F = −(4N )−1
∑
kσλ

nλ
kσ λ|γk|, S = (4N )−1

∑
kσλ

nλ
kσ , (4)

where nλ
kσ is the Bose-Einstein distribution function for en-

ergy ελ
kσ , and N is the number of sites per sublattice. In

order to solve Eqs. (4) at T < TC , the sums are converted to
integrals with the contributions from the condensate density
separated explicitly: For an arbitrary function z and a single
condensation point at momentum kc,

∑
k zk/N ≈ z(kc)nc +

V
∫

BZ d3kz(k)/(2π )3, where nc ≡ Nc/N and V is the unit cell
volume.

On the other hand, we find the Néel transition is second
order on all cubic Bravais lattices, so we take the simple
cubic lattice for simplicity. The AFM mean-field Hamiltonian
with easy-axis anisotropy constant K plus collinear applied
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field is

HAFM
mf =

∑
kσ

ψ
†
kσ

[ζσ − (δμ + bσ/2)τz]ψkσ

+
∑
kσ

(
iσψ

ᵀ
kσ

ηk · τψ−kσ /2 + H.c.
)
, (5)

where we consider b � √
JK , the spin-flop field; here, ζσ =

−μ − KLzσ/2 for mean staggered spin polarization Lz =
(Sz

A − Sz
B )/2, ηk = JA(Im γk, Re γk, 0), and ψᵀ is the vector

transpose. Diagonalizing the Hamiltonian via a Bogoliubov
transformation for each σ yields four bands (see SM [29]), so
we get energies

ε+
kσ

= −δμ − bσ/2 + εkσ , ε−
kσ

= δμ − bσ/2 + εkσ ,

εkσ ≡
√

ζσ (2JZA + ζσ ) + (JZA)2
(
1 − γ 2

k

)
, (6)

where, as for the FM, we shifted μ by a factor of JZA, and
σ = −σ . Here, the ansatz δμ = −b/2 was found by matching
the field splitting of ε+

k↓ and ε−
k↑ to that of the usual AFM

magnon modes from HPA. This is a self-consistent solution
for T < TN , and then δμ = 0 for T � TN . Analogously to the
FM, BEC occurs when the lowest-energy modes of ε+

↑ and
ε−
↓ become gapless at μ = −KLz/2, so that ζσ = KLz(1 −

σ )/2 [33], resulting in long-ranged staggered ordering. The
modes are depicted in Fig. 1. The equations for T < TN are
obtained by eliminating nc(T ) to give two independent equa-
tions for A(T ) and Lz(T ), which in the limit K � J (e.g., in
Cr2O3, K ≈ 7 × 10−2J [34]) are

A = S + CA − (4N )−1
∑
kσ

(n+
kσ

+ n−
kσ

)
√

1 − γ 2
k , (7a)

Lz = S − Cz − (2N )−1
∑

k

(n+
k↓ + n−

k↑)/
√

1 − γ 2
k , (7b)

where CA = 1/2 − (2N )−1 ∑
k

√
1 − γ 2

k ≈ 0.13, Cz = 1/2 −
(N )−1 ∑

k 1/
√

1 − γ 2
k ≈ 0.25, the contributions from the

zero-energy modes vanish in Eq. (7a), and Eq. (7b) only
contains finite-energy modes. At T > TN , Lz = 0 and μ(T )
is no longer fixed so the mean-field equations are

A = (2N )−1
∑
kσ

(nkσ + 1/2)
√

(−μ + JZA)2/ε2
kσ

− 1, (8a)

S = −1/2 + (2N )−1
∑
kσ

(nkσ + 1/2)(−μ + JZA)/εkσ ,

(8b)

where we took n+
kσ

≈ n−
kσ

≡ nkσ (valid when K � J).
Finally, we compare the SBMFT magnonic excitations to

the HPA dispersions in the strongly ordered phases. In the
diamond-lattice FM, the lowest-energy modes of the ε−

↑ band
condense and the two ε±

↓ bands match the magnon bands
from HPA, which reproduces the usual Bloch T 3/2 law for
demagnetization at T � TC [35]. In the simple-cubic-lattice
AFM, the lowest-energy modes of the ε+

↑ and ε−
↓ bands con-

dense at TN forming staggered ordering while the ε+
↓ and ε−

↑
bands qualitatively match the magnon bands from HPA. They
are ε+

k↓, ε−
k↑ = ±b + εk, where εk =

√
ε2

0 + (JZA)2(1 − γ 2
k )

FIG. 2. Mean-field solutions for the S = 1/2 FM on the diamond
lattice and the S = 3/2 AFM on the simple cubic lattice. For the FM
(AFM), (a) shows F (A), (b) shows Sz (Lz), and (c) shows −μ in
units of μC(N ) = −TC(N ) ln(1/S + 1). Triangular markers denote the
positions of the liquid-gas crossover.

with ε2
0 = εK (εK + 2JZA) and εK = KLz. At T � TN , the

dispersive term (JZA)2(1 − γ 2
k ) with A/S = 1 + CA/S dif-

fers by a constant factor from the HPA value, and the gap
ε0 is proportional to εK = K (S − 1/2) in HPA while it is
εK = K (S − 1/2 + Cz ) in SBMFT. The complete numerical
solutions of the MFT for B = 0 with S = 1/2 for the FM,
where nc ∝ Sz, and S = 3/2 for the AFM, where nc ∝ Lz, are
plotted in Fig. 2 (TC = 0.633J and TN = 5.12J in units where
the Boltzmann constant kB = 1).

Spin transport. The net interfacial spin current between a
magnetic insulator at T1 and a metal at T2 may be computed
by treating the interfacial exchange Hamiltonian perturba-
tively with respect to the bulk. If we consider a ferromagnetic
Bravais lattice with interfacial Hamiltonian in momentum
space Hint = (V/N )

∑
k,k′,q,q′ a†

k↑ak′↓c†
q↓cq′↑ + H.c., we get

via Fermi’s golden rule (FGR) for the interfacial spin current
density (in units of energy per area),

Js = g↑↓
2SN2

∑
k,k′

εkk′↑↓[n1(εk↑) − n1(εk′↓)]

× [n1(εkk′↑↓) − n2(εkk′↑↓)], (9)

where εkk′↑↓ ≡ εk↑ − εk′↓, and g↑↓ ≡ 4πSD2V 2/A [36] is in
units of inverse area where D is the metal’s density of states
at the Fermi level in units of (energy · volume)−1 and A is
the area per site of the interface. Equation (9) shows that Js

is made up of particle-hole-like excitations which carry spin
angular momentum. In the bipartite FM and AFMs, the SBs
on each sublattice split into mixtures of the two pseudospin
SBs (for the full expressions for Js there, see the Supple-
mental Material [29]). Finally, the spin Seebeck coefficient
for Js(T1, T2) is defined as S (T ) ≡ Js(T + δT, T − δT )/δT
in the limit δT � T of linear response.

In the ordered phases, the condensates grow macroscop-
ically large. In the thermodynamic limit, they must be
separated from the integrals over the BZ. The contribution
to the FM spin Seebeck coefficient on diamond due to the
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condensate density nc ∝ Sz is

SFM = g↑↓
2s

Sz
∫

d3k
(2π )3

∂T (ε+
k↓n+

k↓ + ε−
k↓n−

k↓), (10)

where s ≡ S/V , and ε±
k↓ are the magnon energies. For the

AFM, we consider an interface which is compensated in
aggregate but comprises separate islands where the metal
couples directly to either one of the two sublattices, and
negligibly to the other [7,37]. In this scenario, the AFM
spin current is Js = JA

s + JB
s , where JA

s is generated by the
coupling HA

int = (V/N )
∑

k,k′,q,q′ a†
k↑ak′↓c†

q↓cq′↑ + H.c. and JB
s

by HB
int = (V/N )

∑
k,k′,q,q′ b†

k↑bk′↓c†
q↓cq′↑ + H.c.. The contri-

bution to the AFM spin Seebeck coefficient due to the
condensate density nc ∝ Lz is

SAFM = g↑↓
2s

Lz
∫

d3k
(2π )3

2JZA

ε+
k↓ + ε−

k↑
∂T (ε+

k↓n+
k↓ − ε−

k↑n−
k↑).

(11)
The AFM SSE has contributions at the two magnon en-

ergies, ε+
k↓ and ε−

k↑, which come with opposite signs since
they carry oppositely oriented spin angular momentum. Equa-
tion (11) at T � TN reproduces the semiclassical Néel spin
current derived in Ref. [8].

At larger temperatures, Js also contains a contribution from
scattering between bands in the thermal cloud, as shown in
Fig. 1. This contribution is relatively smaller at T � TC(N )

and becomes the paramagnetic spin current at T > TC(N ). In
order to carry out the two sets of integrals numerically in SPM,
we approximate the band structure with the low-energy, long-
wavelength dispersion: ε±

kσ
≈ JFk2 − (μ + bσ/2) for the FM

and ε±
kσ

≈ ±(1 − σ )b/2 + √
ζ 2
σ − 2Z (JAk)2 for the AFM.

The SBMFT spin Seebeck coefficients are compared to those
computed in the same fashion using the Holstein-Primakoff
transformation [36]. The Holstein-Primakoff result is obtained
by Taylor expanding the transformed spin operators to first or-
der in 1/S, denoted as the Holstein-Primakoff approximation
(HPA). In the HPA, the Heisenberg Hamiltonian is quartic
in the magnon field operators, but we approximate it by a
Hartree-Fock mean-field decomposition which contains only
quadratic terms. The magnon correlators in the spin current
are then reduced to quadratic correlators via Wick’s theorem.
The results are plotted as a function of temperature in Fig. 3.

In strongly disordered spin systems, spin correlations de-
cay on the scale of the lattice spacing. In SBMFT, this
corresponds to JF, JA � T , and is described by the gaseous
phase of the theory. In the gaseous phase at b � T , we get
∂BSPM = χg↑↓ where χ ≡ ∂BSz/S is the normalized spin sus-
ceptibility. As T decreases below �CW in the SBMFT, this
treatment has a continuous liquid-gas phase transition and
spin correlations start to become significant. When JF or
JA ∼ T , ∂BSPM deviates from χ . Based on this analysis of the
Heisenberg model in SBMFT, we introduce a new parameter
p(T ) ≡ ∂BS/χ , whose temperature dependence is an indica-
tor for short-ranged spin correlations as shown in Fig. 4 (for
comparison purposes, χ is also computed in the same fashion
as SPM discussed above).

Discussion. Experimentally, extracting p(T ) ≡ ∂BS/χ

(Fig. 4) is complicated since the measured spin See-
beck voltage, V (B, T ) = S (B, T ) f (T ), contains additional

FIG. 3. The spin Seebeck coefficients for the S = 1/2 FM on
the diamond lattice and the negative field derivative −∂bS (with
b = h̄γ B) for the S = 3/2 AFM on the simple cubic lattice computed
in the limit B → 0 using SBMFT and HPA.

temperature-dependent factors in f (T ), such as the interfacial
thermal conductivity and metallic resistivity [8,17]. How-
ever, we can analyze how the magnetic field profile, of the
measured V (B, T ) and theoretical S (B, T ), evolve with tem-
perature. We illustrate this by comparing our theory for the
SSE at T � TC(N ) to experiments in gadolinium gallium gar-
net (GGG) [13,14]. This approach involves comparing salient
features in the magnetic field dependence at separate tempera-
tures, such as the slope at low fields [8]. Here, we identify the
field position of the peak in the SSE as a quantity which con-
tains information about S (B, T ), but is independent of f (T ).
The peak data points are extracted from SSE field sweeps,
and our theoretical values rely solely on the magnet’s Curie-
Weiss temperature. When we use an independently measured
value for �CW from the static susceptibility in GGG [38],
we find that our theory quantitatively reproduces the exper-
imental SSE peak positions down to T � 2 K ≈ �CW, as
shown in Fig. 5 (these are the lowest-temperature data cur-
rently available; for the complete field dependencies, see the

FIG. 4. Field derivative of the paramagnetic SSE relative to the
spin susceptibility in FMs and AFMs. Coming from above along the
temperature axis, ∂BS/g↑↓ begins to deviate from χ at the liquid-gas
crossovers denoted by triangular markers.
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FIG. 5. The magnetic field where the SSE is maximized is plot-
ted (data plotted as solid circles at T = 2, 3, 4T = 2, 3, 4 K from
Ref. [14] and T = 5 K from Ref. [13]), which depends only on
the spin Seebeck coefficient. The theory contains a single, constant
undetermined parameter: the Curie-Weiss temperature �CW, after we
took S = 7/2 for GGG.

Supplemental Material [29]). Based on this analysis we can
conclude that, at T > �CW, the SSE is dominated by contribu-
tions from short-ranged spin transport. At lower temperatures,

a similar type of analysis could be used to investigate the
emerging effects of short-ranged spin correlations in spin
transport.

The sign change of the AFM spin Seebeck coefficient, as
a function of temperature, below spin flop, at T ∗ ≈ 0.85TN

(Fig. 3) is another feature that is insensitive to f (T ), because
it is unlikely to change sign in the same region of T . The fact
that SBMFT finds T ∗ lies appreciably to the left of the tran-
sition temperature is consistent with a Landau theory for the
Néel transition, which has the paramagnetic sign [39]. While
a bulk thermal gradient can drive an interfacial spin accumula-
tion with the same sign as Eq. (11) [5], this accumulation may
be reduced and possibly invert in sign when umklapp scatter-
ing becomes significant. It can reduce the magnon momentum
scattering length and occurs when the temperature becomes
comparable to the energy of magnons at the Brillouin zone
boundary. This occurs for the lower-energy magnon branch
before the higher-energy branch, possibly leading to a lower
value for T ∗. To give a more quantitative estimate for T ∗, a
bulk spin transport theory for SBs must then be developed.
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