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Theory of fractionally magnetized quantum ferromagnet
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We present a theory to realize entangled quantum spin states with fractional magnetization. The origin of
magnetization reduction is partly emergent antiferromagnetism, that is, the spin liquefaction of ferromagnetism.
We study a ferromagnetic bilinear coupling region of the spin-S (�1) bilinear-biquadratic spin chain based
on (i) a rigorous eigenstate correspondence between the spin-S model and spin- 1

2 model and (ii) a numerical
exact-diagonalization calculation up to S = 3. As a result, we obtain a fractional magnetized M = 1 − 1/(2S)
phase, where ground states have quantum entanglement-reflecting corresponding spin- 1

2 antiferromagnetic
ground states in a ferromagnetic background. This spin-liquefaction theory of ferromagnets can be generalized
to any-dimensional lattices even under a magnetic field. This fractional ferromagnetism opens another research
field of quantum ferromagnets.
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Entangled quantum states have been attracting not only
researchers in physics but also developers in quantum com-
puter science. In condensed-matter physics, antiferromagnets
involve many interesting topics, including entangled gapped
quantum spin-liquid states [1] in an integer spin-S chain with
a Haldane gap [2], and fractionalized S/2 spins that form an
entangled spin singlet on a bond in the valence-bond-solid
picture of the Affleck-Kennedy-Lieb-Tasaki (AKLT) model
[3]. On the other hand, ferromagnetically ordered states in
quantum systems can be approximated as “classical” states
in the sense that fully polarized local spins have no quantum
entanglement. Is there any ferromagnet with an entangled
quantum state?

A key to realizing an entangled ferromagnetic state is to
partly create an antiferromagnetic quantum state in a ferro-
magnetic classical background, that is, “spin liquefaction” of
a ferromagnet. When the total spin of a partly emergent “spin
liquid” (a phase with nonmagnetic long-range Néel order) is
zero, the coexistent states are fractionally magnetized. In this
Letter, we propose a simple procedure to construct a quan-
tum spin-S Hamiltonian that leads to the property of a phase
transition from fully magnetized ground states to fractionally
magnetized ground states under zero magnetic field. This tran-
sition is accomplished by flat-band one-magnon instability
and magnetization changes from M = 1 to a fraction M < 1.
Note that this is not a magnetization-plateau state under an
external magnetic field but macroscopically degenerate ferro-
magnetic ground states with fractional magnetization under
zero magnetic field, that is, a “fractional ferromagnet.”

The realization of spin liquefaction is supported by a rig-
orous correspondence between a subset of eigenstates in the
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spin-S model and whole eigenstates in the spin- 1
2 antiferro-

magnetic model. In other words, the rigorous correspondence
is “eigensystem embedding.” Thus, it might be interesting
even in the context of quantum many-body scars [4–8]. As
an example, we consider a spin-S (S � 1) bilinear-biquadratic
(BLBQ) chain described by the Hamiltonian

Ĥ (S)
α = cos α

N∑
i=1

Ŝi · Ŝi+1 + sin α

N∑
i=1

(Ŝi · Ŝi+1)2, (1)

with the periodic boundary condition ŜN+1 = Ŝ1. The phase
diagram for the S = 1 case, shown in Fig. 1, has been
massively studied [9] and includes the AKLT point at α =
arctan 1

3 [3], the SU(3) point at α = π
4 [10–12], and the other

high-symmetry points at 5π
4 [13], 3π

2 [14–17], and 7π
4 [18–21].

As explained later, for any S, the rigorous eigenstate corre-
spondence between eigenstates consisting of S and S − 1 spin
states in the BLBQ chain and eigenstates in the spin- 1

2 Heisen-
berg chain (i.e., spin- 1

2 liquefaction) is realized at α = αr and
α = αr + π , where

αr =
{− arctan

(
1

2S(S−2)+1

)
, S � 3/2,

π − arctan
(

1
2S(S−2)+1

)
, S � 2.

(2)

For S = 1, αr = π
4 corresponds to the SU(3) point. In other

words, αr is a generalization of the S = 1 SU(3) point via
the preservation of partial SU(2) symmetry for the spin- 1

2
liquefaction. Note that, because this correspondence at αr is
for eigenstates, numerical evidence is required to obtain the
ground-state properties. As a result of a numerical calculation
of the BLBQ chain, we find that the ground state of the
S � 2 BLBQ model at αr is equivalent to that of the S = 1

2
antiferromagnetic chain, and the fractionally magnetized state
is stabilized in a finite parameter region for S � 3/2. The
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FIG. 1. Known phase diagram of S = 1 BLBQ chain. The high-
symmetry points αr = π/4 and αc = π/2 are generalized to higher
S in Eqs. (2) and (3). P̂(s)

i j is a projection operator defined later in
Eq. (4).

spin-liquefaction transition from the fully magnetized M = 1
phase around the ferromagnetic Heisenberg point α = π to
the fractionally magnetized M = 1 − 1

2S phase occurs at

αc = π − arctan

(
1

2S(S − 1)

)
(3)

for S � 3/2, as shown schematically in Fig. 2(b). This
spin- 1

2 liquefaction of the spin-S system can be considered
as a generalization of the “entire” spin liquefaction from
the spin- 1

2 ferromagnetic-ordered phase to the antiferromag-
netic quantum-disordered phase of the S = 1

2 Hamiltonian
J

∑N
i=1 ŝi · ŝi+1 at J = 0, as shown in Fig. 2(a).

To explain the theoretical detail, let us start with a spin-
projection Hamiltonian of a spin-S model on any lattice with
general coefficients J (s)

i j defined as Ĥ = ∑
i j

∑2S
s=0 J (s)

i j P̂(s)
i j ,

where P̂(s)
i j is a projection operator onto the subspace with total

spin s ∈ [0, 2S] for two spins at sites i and j. There is a general
relation [22]

P̂(s)
i j =

2S∏
n=0
n �=s

Ŝi · Ŝ j − qn

qs − qn
, (Ŝi · Ŝ j )

n =
2S∑

s=0

qs
nP̂(s)

i j , (4)

with qs = s(s + 1)/2 − S(S + 1). Given
∑2S

s=0 P̂(s)
i j = 1, the

(2S + 1)-dimensional parameter space of J (0)
i j , J (1)

i j , . . . , J (2S)
i j

is reduced to 2S dimensions. By ignoring the positive

energy scale factor, the intrinsic parameter space becomes a
2S-dimensional sphere: For S = 1, a two-dimensional sphere
is a circle parametrized by α, that is, the BLBQ Hamilto-
nian. Moreover, the spin-projection Hamiltonian can simply
express the high-symmetry points of the S = 1 BLBQ chain,
as summarized in Fig. 1, by ignoring the positive energy scale
factor and energy shift. In previous studies for S = 2, 2S = 4
independent parameters are assumed to be J (1)

i j = J (3)
i j = 0

[23–25] and J (0)
i j = J (1)

i j = 0 [26,27].

In this Letter, we consider the condition J (2S)
i j = J (2S−2)

i j for
spin liquefaction, which gives

Ĥ (S)
r =

∑
i j

2S∑
s=0

J (s)
i j P̂(s)

i j

∣∣∣∣∣∣
J (2S)

i j =J (2S−2)
i j

, (5)

where a subset of the eigensystem has a rigorous correspon-
dence with the whole eigensystem in the spin- 1

2 Heisenberg
model Ĥ (1/2) = ∑

i j (J
(2S)
i j − J (2S−1)

i j )ŝi · ŝ j + ε0 with the S =
1
2 operator ŝi and energy shift ε0 = ∑

i j (3J (2S)
i j + J (2S−1)

i j )/4.

In short, for any eigenstate |ψ〉 of Ĥ (1/2), the corresponding
eigenstates of Ĥ (S)

r are rigorously written as |�0〉 = Ĉ|ψ〉
with an intertwiner [28,29] Ĉ = ∏N

i=1(|S〉i〈↑| + |S − 1〉i〈↓|),
which is a mapping operator from the spin- 1

2 Hilbert space
spanned by |↑〉 and |↓〉, to the spin-S Hilbert space spanned
by |S〉, |S − 1〉, . . . , | − S〉. The degeneracy in Ĥ (S)

r is greater
than that in Ĥ (1/2)

r because of a ferromagnetic moment in |�0〉.
The additional degenerate states are |�s〉 = (Ŝ−

tot )
s|�0〉, where

Ŝα
tot = ∑

i Ŝα
i is a total spin operator. This rigorous eigenstate

correspondence is easily proved [30]. Note also that a numer-
ical calculation is required to confirm that a ground state of
Ĥ (S)

r may also be written as |�s〉. For eigenstates, however, the
correspondence is valid for a general lattice in any dimension,
and even under a magnetic field.

The BLBQ chain, Eq. (1), is rewritten as Ĥ (S)
α =∑

i

∑2S
s=0 J (s)

ii+1(α)P̂(s)
ii+1, where J (s)

ii+1(α) = qs cos α + qs
2 sin α

based on Eq. (4) [32]. At the two points α = αr and αr + π ,
given by Eq. (2), the BLBQ chain satisfies the condition
J (2S)

ii+1 (α) = J (2S−2)
ii+1 (α). As a result, a subset of the eigen-

system in H (S)
αr

corresponds to the whole eigensystem in
the spin- 1

2 antiferromagnetic Heisenberg chain. In addition,
Ĥ (S)

α at αr can be considered as a higher-S generalization
of Ĥ (1)

r = −∑
i P̂(1)

ii+1 at αr = π/4 in Fig. 1, which leads us
to the spin- 1

2 SU(2) model. This generalization is not the

FIG. 2. (a) Phase transition from the ferromagnetic phase to antiferromagnetic phase in the S = 1
2 Hamiltonian J

∑N
i=1 ŝi · ŝi+1. (b) Phase

transition at αc from the ferromagnetic M = 1 phase to the fractionally magnetized M = 1 − 1
2S phase in the higher-S BLBQ Hamiltonian Ĥ (S)

α

described by Eq. (1). Rigorous ground-state correspondence with a spin- 1
2 antiferromagnetic chain realized at αr for S � 2.
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FIG. 3. Magnetization M = Stot
NS and the energy gap �E for the spin-S BLBQ N-site chain Hamiltonian Ĥ (S)

α Eq. (1) in the Sz
tot = 0 and

q = 0, π subspace. The phase transition from M = 1 to M = 1 − 1/(2S) occurs at αc corresponding to Eq. (3). (a) S = 3/2 and (b) S = 2.

usual SU(2S + 1) generalization with J (2S)
i j = J (2S−2)

i j = · · · =
J (0)

i j , J (2S+1)
i j = J (2S−1)

i j = · · · = J (1)
i j [10–12,24].

Similarly, as a higher-S generalization of Ĥ (1)
c = ∑

i P̂(0)
i j at

αc in Fig. 1, let us introduce another limitation J (2S)
i j = J (2S−1)

i j
for the spin-projection Hamiltonian

Ĥ (S)
c =

∑
i j

2S∑
s=0

J (s)
i j P̂(s)

i j

∣∣∣∣∣∣
J (2S)

i j =J (2S−1)
i j <J (s)

i j , (s�2S−2)

, (6)

which gives a phase boundary of the ferromagnetic phase
(J (2S)

i j < J (s)
i j ). For the BLBQ chain Ĥ (S)

αc
, at the phase tran-

sition point αc given by Eq. (3), the condition J (2S)
ii+1 (α) =

J (2S−1)
ii+1 (α) < J (s)

ii+1(α) is satisfied. For S = 1
2 , this is a quantum

phase transition between the ferromagnetic and antiferromag-
netic phases via a trivial Hamiltonian Ĥ (1/2)

c = 0, as shown in
Fig. 2(a). In general, it is easy to check that the ferromagnetic
state |0〉 = ∏

i |S〉i and the one-magnon excited state Ŝ−
i |0〉 are

ground states of Ĥ (S)
c with eigenenergy

∑
i j J (2S)

i j : that is, the
one-magnon flat band is degenerate at the ground-state energy.
In addition, other ground states are multisublattice Néel-like
states, defined as |m〉 = (

∏
i∈Lm

Ŝ−
i )|0〉 for any mth sublattice

Lm, where |m〉 has Sz
tot = NS − Nm and Nm = |Lm| is the

number of mth sublattice sites. If a ground state for J (2S−1)
i j <

J (2S)
i j overlaps with |m〉, the ground state has Sz

tot = NS − Nm

and Stot � Sz
tot, which becomes Stot � Sz

tot = N (S − 1
2 ) for the

BLBQ bipartite chain (Nm = N/2). It is naively expected that
the magnetization jumps to M = Stot/(NS) = (S − 1

2 )/S from
M = 1 at αc, whereas numerical evidence is required because
other states can be more stable.

To observe fractional magnetization for the spin-S BLBQ
N-site chain Hamiltonian Ĥ (S)

α [Eq. (1)], we perform an exact
diagonalization with the Lanczos method in the region π/2 <

α < π up to S = 3 by using translational symmetry. Figure 3
shows the magnetization M of the ground state and energy
gap �E of the first excited state in the subspace of Sz

tot = 0

and wave number q = 0 or π for S = 3/2 and S = 2 and N =
8, 10, 12, and 14, which shows clear transitions at αc [Eq. (3)].
The magnetization is fractionalized as M = 1 − 1/(2S) in
a certain region α < αc. Here, M = Stot/(NS) is calculated
from Stot = f (〈Ŝtot · Ŝtot〉) via f (x) = (

√
1 + 4x − 1)/2.

In most of the M = (S − 1
2 )/S phases in Fig. 3, wave

vector q of the ground state depends on the system size
N because q = 0 (π ) for even (odd) N/2, while q = 0 for
α > αc. This even-odd effect of N/2 is consistent with that
in the spin- 1

2 Heisenberg chain [33]. In detail, in the vicinity
of α � αc for large system size N � 14, a state with M =
1 − 1/(2S) + 1/(NS) has slightly lower energy than that with
M = 1 − 1/(2S), and the two states are almost degenerate,
which reflects doubly degenerate q = 0 and q = π modes in
the thermodynamic limit (N → ∞) [30].

At the rigorous point αr , magnetization of the ground
states becomes M = 1 − 1/(2S) only for S � 2 while M �=
1 − 1/(2S) for S � 3/2. A main difference is whether the
bilinear term in Eq. (1) is ferromagnetic (S � 2) or antifer-
romagnetic (S � 3/2). Since the eigenstate correspondence
is rigorous for any S, the eigenstate of spin- 1

2 liquefaction
for S � 3/2 can become stable under a magnetic field. For
S = 1, the magnetization is M = 0 at αr = π/4, which is the
critical point between the trimer and the Haldane phase [34],
as shown in Fig. 1. However, a magnetic field induces a phase
transition to the magnetized Haldane phase [35], which is
known to have exact correspondence to the spin- 1

2 model [36].
For general S, a rigorous correspondence between the ground
state of the BLBQ model and that of the spin- 1

2 antiferromag-
netic model can be realized under an external magnetic field.
For S = 3/2, magnetic-field-induced spin liquefaction occurs
at αr = arctan(2) � 0.35π . However, this is left as a future
problem.

The transition point αc is at least the phase boundary of
the fully magnetized ferromagnetic phase M = 1. The proof is
simple because ground states and one-magnon excitation are
written exactly [37]. As an exact result, the one-magnon band
becomes flat at αc, as is already known from spin-wave theory
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FIG. 4. Energy gap �E in the Sz
tot = N (S − 1

2 ) sector as a function of phase-twist angle θ and bond alternation δ at α0 = αc − 2π × 0.04
(αr < α0 � αc) and system size N = 8 for (a) S = 3/2 and (b) S = 2.

[38]. Note that the continuous one-magnon excitation is not
depicted in Fig. 3 because the energy gap �E is restricted in
the sector q = 0 and π .

To confirm the thermodynamic limit under the existence
of a finite-size gap, we adopt the twisted boundary condition
[39] or quantized Berry phase [40], introducing Ĥα,δ,θ with a
bond alternation δ and boundary twist angle θ by using the
δ-dependent coefficient J (s)

i,i+1(α, δ) = [1 + (−1)δi]J (s)
i,i+1(α)

and the θ -dependent boundary condition Ŝ±
N+1 = e±iθ Ŝ±

1 and
Ŝz

N+1 = Ŝz
1. The energy gap �E in the sector for Sz

tot = N (S −
1
2 ) opens due to the finite system size N = 8 even in the
uniform case (δ = 0), while the finite gap closes under the
twisted boundary condition (θ = π ) only at δ = 0, as shown
in Fig. 4 at α0 = αc − 2π × 0.04 (αr < α0 � αc).

The result of Fig. 4 is identical to that of dimer singlets in
a spin- 1

2 dimerized Heisenberg chain. In the dimerized limit
(δ = 1), the unique ground state in the subspace for Sz

tot =
N (S − 1

2 ) is given as a direct-product state of the two-site

dimer
∏N/2

i=1 (Ŝ−
2i − Ŝ−

2i+1)|0〉 for α < αc exactly [41]. Twist-
angle θ dependence appears as Ŝ−

N − Ŝ−
N+1 = Ŝ−

N − e−iθ Ŝ−
1 in

the boundary dimer, while in the other dimerized limit (δ =
−1) the ground state

∏N/2
i=1 (Ŝ−

2i−1 − Ŝ−
2i )|0〉 does not depend on

θ due to the absence of the boundary dimer. This difference
of θ dependence results in the difference in Berry phase γ .
The change in the quantized value γ = 0, π is accompanied
by the Dirac cone shown in Fig. 4. The twofold degenerate
states at the Dirac point (θ = π ) adiabatically connect to two
states separated by the finite-size gap at the periodic boundary
condition (θ = 0). These two states have q = 0 and π for the
uniform case δ = 0 depending on the even-odd parity of N/2.
The scenario of the finite-size effect directly corresponds to
the S = 1

2 case, which is for the dimer-singlet state |↑↓〉 −
|↓↑〉 = (Ŝ−

i − Ŝ−
i+1)|↑↑〉 = (Ŝ−

i − Ŝ−
i+1)|0〉i,i+1 existing in the

Sz
tot = N (S − 1

2 ) = 0 subspace; the finite-size gap disappears
in the thermodynamic limit [42]. The Dirac point is observed
in most of the M = (S − 1

2 )/S phases. However, an interesting
discrepancy from the S = 1

2 case occurs in the vicinity of
α � αc, where an additional Dirac cone appears at θ = 0 and
δ = ±δc.

Apart from our numerical results on the chain, the general
theory can be applied to previous studies on other lattices.

On a square lattice [43], magnetic-field-induced spin- 1
2 liq-

uefaction of the S = 1 BLBQ model is realized. Moreover, on
a S = 1 BLBQ triangular lattice [44], exact correspondence
at αr = π/4 exists for M � 2/3; for example, the M = 2/3-
plateau state must be regarded as the 1/3-plateau state of the
spin- 1

2 model and the ↑↑↓ state with spin- 1
2 fully polarized in

the ↑↑↑ background.
Generalizing Ĥ (S)

c for the spin- 1
2 liquefaction, it is naively

expected that the spin-s liquefaction point is given by J (2S)
i j =

J (2S−1)
i j = · · · = J (2S−2s)

i j < J (m)
i j (m < 2S − 2s) and perturba-

tion from the point toward the other 2s + 1 parameter space
generates several phases, including the ferromagnetic phase
(M = 1) and a fractionally magnetized phase (M = 1 − s

S ).
In summary, we present herein the theory of entangled frac-

tionally magnetized quantum states providing the viewpoint
of spin liquefaction on a d-dimensional lattice. In the general
discussion, the entangled states turn out to be antiferromag-
netic entangled states in a ferromagnetic background. To
address this fractional ferromagnet, the ferromagnetic region
of the spin-S BLBQ chain was studied numerically. The frac-
tional magnetization was revealed to have M = 1 − 1/(2S)
even under zero magnetic field; for example, M = 2/3 for
S = 3/2, and M = 3/4 for S = 2. Numerous future problems
remain. From a theoretical viewpoint, further calculations
(using other numerical or analytical techniques) in the one-
dimensional S � 3/2 BLBQ model are required to clarify
the magnetization curve as a function of external magnetic
field, the boundary edge-spin problem (especially under open
boundary conditions), the excitation spectrum as a function
of q, and the entanglement entropy and spectrum. A more
generic theoretical task is to establish the origin of the inter-
action in real materials or by optical-lattice experiments.

The spin- 1
2 liquefaction at αr opens up further discus-

sion, for example, a comparison with ferrimagnetism [45].
In a ferrimagnet, spin-s and the S Hamiltonian break one-
site translation symmetry because s �= S, whereas a fractional
ferromagnet holds that symmetry. The difference can induce
anomalous low-energy excitations in the BLBQ model. In
particular, the fractional ferromagnet at αr exhibits linear
magnon excitation, which reflects the twofold degeneracy
of Néel-like states in the uniform Hamiltonian (i.e., the
des Cloizeaux–Pearson mode [42]), and its existence is
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guaranteed owing to the rigorous correspondence to the spin- 1
2

antiferromagnetic chain.
As mentioned above, fractional ferromagnets are not

conventional ferrimagnets. In addition, the fractional ferro-
magnetic state is not the classical ferromagnetic state near
the quantum critical point [46]. Even after spontaneous mag-
netization, the ground state of a fractional ferromagnet has
quantum entanglement corresponding to the spin- 1

2 antiferro-
magnetic state. For the quantum entanglement in a fractional
ferromagnet, the external magnetic field has the potential to
be a tool to manipulate an entangled quantum state, which
can be useful in the context of quantum computer science.
From the viewpoint of condensed-matter physics, the key
word “quantum magnet” has been used and accepted for

antiferromagnets. Given that the present theory abolishes the
prejudice that ferromagnetism is classical, quantum magnets
will also be used for fractional ferromagnets.

To summarize, this Letter develops another frontier of
quantum spin states (i.e., “quantum ferromagnet”), which
opens the field not only in fundamental physics but also in
quantum computer science.
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2i − Ŝ−
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