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The Grüneisen ratio �, i.e., the singular part of the ratio of thermal expansion to the specific heat, has
been broadly employed to explore both finite T and quantum critical points (QCPs). For a genuine quantum
phase transition (QPT), thermal fluctuations are absent and thus the thermodynamic � cannot be employed. We
propose a quantum analog to � that computes entanglement as a function of a tuning parameter λ and show
that QPTs take place only for systems in which the ground-state energy depends on λ nonlinearly. Furthermore,
we demonstrate the breakdown of the Hellmann-Feynman theorem in the thermodynamic limit at any QCP.
We showcase our approach using the quantum one-dimensional Ising model with a transverse field and Kane’s
quantum computer. The slowing down of the dynamics and thus the “creation of mass” close to any QCP/QPT
is also discussed.
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The investigation of the thermodynamic response close to
a finite-T critical end point is a widely explored branch [1]. A
key physical quantity related to the critical behavior of matter
is the correlation length ξ . As the temperature T and tuning
parameter approach their critical values, ξ → ∞ [1]. This
is because of the emergence of large fluctuations of the or-
der parameter and thus intrinsic entropy accumulation in this
regime [2,3]. Such enhancement of the entropy in the vicinity
of critical points can be used to attain giant caloric effects [3].
Interestingly enough, critical phenomena can be observed in
various fields, including complex biological systems, such as
the brain and the cognition development [4,5], which has pro-
vided a new foundation for modern thermodynamics. Apart
from ξ , an appropriate tool to explore critical phenomena is
the so-called Grüneisen ratio �g [3,6],
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where αg and cg are, respectively, the thermal expansivity and
heat capacity, both at a constant value of a tuning parameter
g; F and S are, respectively, the Boltzmann free energy and
entropy. For the case in which g is pressure, �g quantifies the
barocaloric effect. Stress, magnetic, and electric field can be
used as g, being, respectively, each of them associated with the
elastic-, magnetic-, and electric-Grüneisen parameters [3,7].

*mariano.souza@unesp.br

The peculiar behavior of �g close to finite-T critical points,
namely an enhancement and sign change upon varying g, is
well established in the literature [8,9]. The same holds true
for quantum critical points (QCPs) near absolute zero [2,10].
In this context, it is tempting to ask, “what is the expression
for �g at exactly T = 0 K?” This is the key question we have
addressed in the present Letter. Note that as T → 0 K, both
αg and cg → 0 because of the third law of thermodynamics
[1], being clear that in such a case, �g is undetermined. At
first glance, one could consider that T → 0 K ⇒ �g → ∞
is a mere consequence of the vanishing of the energy scale
associated with the thermal energy [cf. Eq. (1)]. It turns out
that at T = 0 K, Eq. (1) no longer holds true and the classical
concept of caloric effects is no longer applicable. Regarding
QCPs, the behavior of �g has been investigated, in practice,
at ultralow temperatures since typical order parameter fluc-
tuations associated with QCPs are accessible in the T range
of a few mK [2,10]. However, as pointed out previously, the
expression for �g is no longer valid exactly at T = 0 K, thus
preventing the analysis of a genuine QCP.

Here, we propose an analogous expression for �g which
is universal, valid at absolute zero temperature, and might
be relevant for quantum computing. To this end, we start by
considering a generalized Hamiltonian given by

H = H0 + H1(h) + H2(g), (2)

where H0 is the unperturbed Hamiltonian, and H1(h) and
H2(g) are perturbed terms whose eigenenergies Ei depend
on the tuning parameters h and g, e.g., magnetic or electric
fields. Also, our proposal covers the case of h and g being
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two competing energy scales. Since we are dealing with a
quantum system, we propose, in analogy to αg, to consider

the numerator of the first part of Eq. (1) as ∂2E0
∂h∂g , where E0

is the ground-state energy, and for the denominator, we pro-
pose, in analogy to cg, to consider −h d2E0

dh2 , following similar
arguments presented in Ref. [11]. The g and h derivatives
of E0 are related to the Hellmann-Feynman theorem, namely
[dE (ν)/dν] = 〈ψn| dH (ν)

dν
|ψn〉, where ν is a general tuning pa-

rameter and ψn a single-particle wave function [12]. Hence,
upon connecting the dots, a mathematical expression for the
Grüneisen parameter that is valid at T = 0 K reads

�0 K = −
(

∂2E0
∂h∂g

)
h
(

∂2E0
∂h2

) , (3)

whose dim is [g]−1. Although the second and cross deriva-
tives of E0 with respect to the tuning parameters have been
employed to investigate quantum phase transitions (see, e.g.,
Ref. [13]), to the best of our knowledge, a proper discussion
about its genesis, i.e., its correspondence with the Grüneisen
parameter, was still lacking. In a real physical system, it is
natural to expect that E0 might be more sensitive with respect
to either h or g depending on the particular physical aspects of
the investigated system. Upon considering that E0 is changed
as a result of the variation of h and/or g, the quantum entropy
of the system is affected. More precisely, changing E0 leads
to a variation of the von Neumann entropy SN = −Tr(ρ ln ρ)
[14], where ρ = ∑

j p j |ψ j〉〈ψ j | is the density matrix and p j

is the probability of each state |ψ j〉. This can be demonstrated
upon making use of the average energy of the system 〈H〉 in a
state |ψ〉 in terms of ρ, i.e., 〈H〉 = Tr(ρH ) [15]. Considering
that the system lies in the ground state, its average energy is
E0 and thus its variation due to a change of h and g means
that ρ is also changed. As a consequence, if ρ is varied, SN

is varied as well. Hence, we write �0 K in terms of SN [see
Eq. (1)], namely
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. (4)

In our case, we have considered SN as the global entangle-
ment, which is defined as SN = −(∂E0/∂h), in direct analogy
to the thermodynamic case [1]. Since SN quantifies the en-
tanglement of a quantum system [16], the definition of �0 K in
Eq. (4) can be regarded as an entanglement compass to explore
QCPs upon varying h and g.

The detection of genuine quantum phase transitions
(QPTs) and QCPs is key in the context of quantum computing,
since close to both QPTs and QCPs, the system’s states are
highly entangled [17]. This is corroborated by the so-called
concurrence, which quantifies the degree of entanglement be-
tween two qubits [16–18]. Hence, �0 K can also compute the
concurrence between two qubits upon varying h and/or g [cf.
Eq. (4)]. In Ref. [17], the field switching of the entanglement
for the canonical one-dimensional (1D) Ising model under
a transverse field (IMTF) is discussed, demonstrating that
close to the QCP the entanglement is strongly magnetic field
dependent. Hence, we consider that �0 K is the appropriate
physical quantity to quantify the latter. It turns out that apply-
ing �0 K [Eq. (3)] to the S = 3/2 Hamiltonian with a spin-orbit

interaction for the case of a Brillouin-like paramagnet [19,20],
a hydrogen atom under an external magnetic field [21], a
Kondo lattice [22], and Majorana nanowires [23] leads to
�0 K → ∞ for h, g → 0, which is the trivial case, i.e., no
critical features show up for finite h or g. Also, their cross
and second derivatives of E0 with respect to h and g do not
present any divergence, which suggests that QCPs/QPTs are
absent for these systems.

Regarding the case in which E0 is nonlinear with respect
to the tuning parameter, �0 K can be employed to probe QCPs
and QPTs. This is the case of the 1D IMTF, whose Hamilto-
nian is given by [24,25]

H = −B
∑

i

Sx
i − J

∑
i

Sz
i Sz

i+1, (5)

where B is the modulus of the transverse magnetic field, Sx
i is

the spin operator at the i site along the x axis, J is the exchange
coupling constant between nearest-neighbor magnetic mo-
ments, and Sz

i and Sz
i+1 are the spin operators along the z axis at

sites i and i + 1, respectively. Before computing �0 K, E0 must
be obtained for this case. At this point, it is worth mentioning
that �, but not �0 K, was already computed for this case in the
vicinity of the QCP showing a divergentlike behavior when
the magnetic energy matched J , i.e., for λ = J/B = 1 [26]. To
compute E0 for Eq. (5), a textbook Jordan-Wigner transforma-
tion can be employed and the Hamiltonian is diagonalized, so
that [27]

H = B
∑

k


kη
†
kηk − B

2

∑
k


k, (6)

where 
k = 2
√

1 + λ2 − 2λ cos (k) and η
†
k and ηk are, respec-

tively, the creation and annihilation operators, being then E0

per site given by E0 = −(B/π )
∑

k 
k [25], which in turn can
be rewritten in terms of an elliptical integral in the thermody-
namic limit [28],

E0 = − B

π

∫ π

0

kdk = −
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[ − 4λ
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]
π
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λ2+2λ+1

(λ−1)2

,

(7)

where Ell[−4λ/(λ − 1)2] is the so-called complete elliptic
integral of the second kind [29]. Hence, upon choosing h = B
and g = J , �0 K can be computed exactly. It turns out that
for the 1D IMTF both E0 derivatives in the numerator and
denominator of Eq. (3) are exactly the same, which is in con-
trast with the thermodynamic case [cf. Eq. (1)]. This is merely
a consequence of the fact that E0 has the same dependence
on J and B. Figure 1 depicts the B and J derivatives of E0

as a function of λ. Remarkably, for λ = 1, ∂2E0
∂J∂B and −B ∂2E0

∂B2

→ ∞, a fingerprint of a QCP governing the change from a
ferromagnetic to a quantum paramagnetic phase [26]. Also,
the result of SN as a function of λ is depicted in Fig. 1. An
enhancement in SN is observed for λ = 1 analogously to the
thermodynamic case of a phase transition, which in turn can
be discussed in terms of either a first or second order one
[1]. It is notorious that for λ = 1, SN is very sensitive to
subtle changes of the tuning parameter. Hence, the system’s
entanglement in that region is enhanced analogously to the
case of caloric effects close to finite-T critical points [3]. It is
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FIG. 1. Cross (∂E0
2/∂J∂B) and second −B(∂2E0/∂B2) deriva-

tives of the ground-state energy E0 (black line) and the von Neumann
entropy SN as a function of λ = J/B. The gray region indicates the
λ range where both E0 derivatives and SN vary more expressively
with λ. The spin configurations depict the ferromagnetic phase for
λ < 1 and the quantum paramagnet close to λ = 1. Inset: SN vs λ for
large values of λ, i.e., for SN → 1, the so-called Greenberger-Horne-
Zeilinger-like state is achieved [30]. The white bullet depicted in SN

vs λ both in the main panel and inset indicates SN → ∞ for λ = 1.

clear that in both cases the adiabatic character is crucial [31],
considering that real applications to quantum computing take
place at finite T . Note that we propose that upon considering
the tuning parameter dependence of E0, SN can be computed
straightforwardly by making the first derivative of E0 with
respect to the tuning parameter, i.e., a reduced density matrix
is not needed in our case to compute global entanglement as
it is done in the frame of the Meyer-Wallach approach [32].
This is corroborated by the fact that our result for SN vs λ

is in perfect agreement with the literature results employing
the Meyer-Wallach approach to compute global entanglement
in the thermodynamic limit (cf. Fig. 1 of Ref. [30]). The
enhancement of (∂SN/∂λ) in the immediate vicinity of the
QCP for the 1D IMTF was already reported [30]. However,
our proposal of �0 K universalizes the behavior of SN in terms
of E0 changes due to the tuning of either h or g for any
quantum system, including the 2D and 3D versions of the
IMTF [30]. Such an enhancement of (∂SN/∂λ) close to the
QCP is associated with a violation of the Hellmann-Feynman
theorem [12], which in turn reflects the emergence of low-
energy spin-wave excitations for λ � 1 [33]. As it is known in
the literature, SN scales logarithmically with N at the QCP and
diverges for an infinite chain (N → ∞) [17,34], enhancing
(∂SN/∂λ) in the vicinity of the QCP and diverging right at the
QCP. Hence, we recognize that SN = −(∂E0/∂λ) is connected
to the Hellmann-Feynman theorem. The divergence of the
first derivative of E0 with respect to λ, i.e., SN , at the QCP
indicates a breakdown of the Hellmann-Feynman theorem for
an infinite chain. Such a breakdown is not expected to take
place for finite chains (cf. Refs. [17,34]). Figure 2 depicts
our proposal of a controlled tuning of SN for the 1D IMTF.
For B → 0 (λ → ∞) ⇒ SN → 1 (cf. the inset of Fig. 1),
and thus (∂SN/∂λ) → 0, meaning that SN is insensitive to B

FIG. 2. Schematic representation of the here-proposed optimiza-
tion of quantum information processing for the 1D IMTF. (a) For
B → 0 ⇒ λ → ∞, the ferromagnetic phase state is the Greenberger-
Horne-Zeilinger-like state (GHZ) [30], i.e., a superposition of ↑ and
↓ states. The von Neumann entropy SN is insensitive to λ changes.
(b) Upon applying the transverse field, the system is brought to the
quantum paramagnetic phase, i.e., λ → 1, where the system state
is defined as the product of each eigenstate and |+〉 = 1/

√
2(|↑〉

+| ↓〉) [35], which corresponds to the simplest entangled state. In
this regime, SN dramatically changes upon varying λ. For a real
system, one has to properly set the initial state [(a)] before applying
a transverse B to achieve the here-discussed optimal conditions for
quantum computing.

variations in this regime, corresponding to the Greenberger-
Horne-Zeilinger-like (GHZ) state [30]. For B → J (λ → 1),
a quantum paramagnetic phase is established, meaning SN is
dramatically affected by small changes of B. Hence, it is clear
that in the quantum paramagnetic phase, i.e., in the regime
λ � 1, the system’s entanglement can be easily manipulated
upon varying the tuning parameter, which is B in the case of
the 1D IMTF.

It turns out that entanglement is a key ingredient for quan-
tum computing [36]. Hence, the here-proposed �0 K can be
considered as an entanglement compass [37], having direct
implications for Kane’s quantum computer. The latter is based
on the Hamiltonian for two interacting nucleus-electron 31P
atoms embedded in a Si matrix, namely [38],

H = H (B) + A1σ
1n · σ 2e + A2σ

2n · σ 2e + J ′σ 1e · σ 2e, (8)

where H (B) is the Zeeman interaction, A1 and A2 are, respec-
tively, the hyperfine coupling constants between the first and
second 31P nuclear and electronic magnetic moments, and J ′
the coupling constant between electronic magnetic moments.
Upon considering A1 = A2 = A, the energy E difference be-
tween states |10 − 01〉 and |10 + 01〉 is given by [38]

E = hνJ ′ = 2A2

(
1

μBB − 2J ′ − 1

μBB

)
, (9)

where νJ ′ is the nuclear spin exchange frequency and μB

the Bohr magneton. Thus, Eq. (3) can be employed straight-
forwardly to compute �0 K for Kane’s quantum computer
considering h = J ′ and g = B. Figure 3 shows that, analo-
gously to the case of the 1D IMTF, when μBB = 2J ′, SN is
dramatically enhanced, which in turn means that Kane’s quan-
tum computer achieves a condition in which the information
processing capacity is increased. Also, upon analyzing the
results depicted in Fig. 3, it is remarkable that both derivatives,
namely −J ′(∂2E/∂J ′2) and (∂2E/∂J ′∂B), are not exactly the
same. This is because the J ′ and B dependencies of E are
distinct [cf. Eq. (9)]. A sign change of both derivatives can
be observed for J ′ = 0.5 due to the distinct configurations
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FIG. 3. Cross (∂E 2/∂J ′∂B) and second −J ′(∂2E/∂J ′2) deriva-
tives of Eq. (9) for Kane’s quantum computer using B = 1 T. See
details in the main text.

between magnetic moments. It is clear that Kane’s quantum
computer is a bipartite system, i.e., two qubits are considered
[38]. Hence, we can extend our analysis to the so-called mul-
tipartite systems, where n qubits are considered and ρn = 1

2n In

[39], where In is the identity operator. The latter describes ρ

for a chain of n qubits, making it possible to calculate SN for
any multipartite system where ρn is known. By computing
SN for a multipartite system, the derivatives incorporated in
the here-proposed �0 K can be employed to tune the system
to a range of enhanced SN where the information processing
capacity can be optimized. The process of entanglement
typically involves manipulating bipartite systems aiming to
maximize the entangled state. However, as the number of
qubits increases, maintaining and increasing entanglement in
multipartite systems becomes increasingly challenging due to
the fragility of entanglement, which can be easily disrupted
by environmental noise and other sources of interference.
Hence, our proposal for increasing SN upon tuning the system
close to QCPs/QPTs by varying specific tuning parameters
might be relevant for the field of quantum computing. Such a
method could simplify the process of entanglement control,
potentially leading to more efficient and reliable quantum
algorithms, as well as to more robust quantum hardware.

Besides the discussions regarding �0 K as an entanglement
compass, we now discuss the slowing down of the system
dynamics and the “creation of mass” close to any QCP/QPT.

Following Anderson’s statement in his seminal paper that “the
plasma frequency is equivalent to the mass” [40], and based
on our previous work [8], we propose that symmetry breaking
and fluctuations of the order parameter on the verge of any
critical point/phase transition are inherently associated with
the slowing down of the system’s dynamics, which gives rise
to low-energy excitation modes and emulates mass. This can
be found, for instance, in the magnetic and electronic Griffiths
phases [8,41]. In other words, as a direct consequence of the
phases competition in the critical regime, the appearance of
“mass” leads to a slowing down of the system’s dynamic,
which in turn is reflected in an enhancement of both relaxation
time [8] and effective mass [42,43]. Such fascinating phenom-
ena can be explored using �0 K and � [8,44].

In summary, we have proposed another form of the
Grüneisen parameter that is valid at absolute zero temperature.
The here-proposed �0 K can be considered as an entanglement
compass to explore QPTs/QCPs upon varying the tuning pa-
rameters. Considering that �0 K quantifies the entanglement
as a function of the tuning parameters, it can be employed
to optimize information processing, in particular in the im-
mediate vicinity of QCPs/QPTs. We have employed the 1D
IMTF and Kane’s quantum computer as workhorses to show-
case our proposal. Furthermore, we have demonstrated that
genuine QPTs/QCPs take place only when E0 is nonlinear
with respect to the control parameter, which is key in quantum
computing regarding both bipartite and multipartite systems.
Also, we propose that in the thermodynamic limit a break-
down of the Hellmann-Feynmann theorem takes place at any
QCP and we anticipate that this should also occur for the
Bose-Einstein condensation [44]. It is challenging to put the
present concepts in practice in real systems. Yet, the “creation
of mass” in the vicinity of critical points/phase transitions was
discussed [45].
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