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Skyrmion lattice annihilation by point defects in the multiferroic Cu2OSeO3
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First-principles-based effective Hamiltonian simulations are used to reveal the hidden connection between
various topological defects, namely point defects and skyrmions, in copper oxide selenite (Cu2OSeO3). Using
this approach, we show that (i) Cu2OSeO3 hosts different topological defects with a nonzero local topological
charge in various regions of the magnetic-field–temperature phase diagram (H, T ), (ii) point defects exert
external pressure on skyrmions leading to their gradual annihilation as temperature increases, and (iii) this
annihilation of skyrmions is a result of the melting of the lattice into a glassylike state of spins that connects
with the paramagnetic phase.
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Introduction. Topological defects arise in a wide variety
of condensed matter systems, and due to their nature re-
lated to the topological properties, interest in the field of
spintronics has surged. The potential of devices based on
topological defects, especially skyrmions, has gained the at-
tention of the condensed matter community in the last decade.
A direct result of topological defects’ topological stability
is their robustness in the presence of continuous mechanical
deformations and defects, leading to extensive studies of the
topological solitons in magnetic materials, including vortices,
hedgehogs, and skyrmions. Skyrmions were first proposed by
Skyrme in 1962 in the field of particle physics to describe
a solution of the nonlinear field in dense nuclear matter [1].
After that, the concept of skyrmions has been found in var-
ious condensed matter systems, such as liquid crystals [2],
quantum Hall systems [3], and magnetic materials. Mag-
netic skyrmions are the primary example of topological spin
textures. They are characterized by a topological invariant
called the skyrmion number Qsk , which describes the local
configuration of how the vector field of magnetic dipoles
whirls in the plane. The magnetic skyrmions were expected
to exist within magnetic materials with strong Dzyaloshinskii-
Moriya interaction (DMI) [4,5]. They were first discovered in
the metallic noncentrosymmetric chiral cubic MnSi [6]. This
started the hunt for skyrmions in other B20 crystals such as
FeGe [7] and Fe1−xCoxSi [8], and they were found in both
bulk material and thin films [9]. These spin textures, called
skyrmions, are nontrivial topological configurations that can
be described as circular spin textures with an up spin on
the edge of the circle and a down spin in the center. In be-
tween, there is a smooth transition with topological features.
Furthermore, magnetic skyrmions were found in multifer-
roic copper oxide selenite (Cu2OSeO3) with the cubic space
group P213 as for B20 magnets [10]. Skyrmions in bulk
Cu2OSeO3 and bulk B20 magnets exist in a narrow pocket of
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the magnetic-field–temperature phase diagram; however, iso-
lated skyrmions are hard to stabilize, and thus in Cu2OSeO3

the magnetic skyrmions are arranged in a hexagonal two-
dimensional (2D) lattice called the skyrmion lattice (SkL)
phase.

There are several methods to characterize topological
defects; in the case of 2D solitons such as vortices and
skyrmions, the skyrmion number is defined as [11]

Qsk = 1

4π

∫
R2

m ·
(

∂m
∂x

× ∂m
∂y

)
dxdy, m = M

|M| , (1)

where m is the normalized local magnetization.
This Research Letter aims to quantify the topological prop-

erties of different solitons in Cu2OSeO3 from first principles.
We define the different significant topological quantities and
calculate the charge of every soliton on the phase diagram of
Cu2OSeO3 (skyrmion lattice phase, vortex lattice, and heli-
cal state). We also seek to isolate topological entities such
as hedgehogs and antihedgehogs (point defect in three di-
mensions) and study their interaction with skyrmions. We
numerically access the temperature evolution of the den-
sity n± of topological point defects (sum of the density of
hedgehogs and antihedgehogs) and the spin configurations at
different temperatures and magnetic fields.

Methods. We use first-principles density functional the-
ory (DFT) calculations with the Vienna ab initio simulation
package (VASP) [12] to parametrize our effective Hamil-
tonian model. The pseudopotentials adopt the projector
augmented-wave method, with the generalized gradient ap-
proximation [13] used as the exchange-correlation functional,
and the U correction was added for the copper ions to account
for the strong correlation properties of 3d electrons [14,15].
Monte Carlo simulations were performed to study the be-
havior at finite temperatures, which relies on the Metropolis
algorithm [16,17] inside an 84 × 84 × 84 cubic supercell
with periodic boundary conditions and contains ∼107 spins.
We used 5 × 105 sweeps to equilibrate the system and then
5 × 105 sweeps to get the various statistical averages. The
calculations begin at a high temperature from a random
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configuration, and the temperature is then decreased in small
steps to get well-converged results. We note that the ef-
fective Hamiltonian employed to simulate the properties of

Cu2OSeO3 [18] yields the same characteristic phase diagram
reported in previous experimental studies [10,19]. The energy
of the magnetic effective Hamiltonian is written as

Etotal({S}) =
∑
i< j

[
JFM
w Si · S j + JAFM

s Si · S j + JFM
s Si · S j + JAFM

w Si · S j + JAFM
O Si · S j

] +
∑
i< j

[
DFM

w · Si × S j + DAFM
s · Si × S j

+ DFM
s · Si × S j + DAFM

w · Si × S j + DAFM
O · Si × S j

] +
∑

i

gS
μB

h̄
Si · Bext, (2)

where Js (Jw) are the different ferromagnetic and antifer-
romagnetic strong (weak) Heisenberg interactions in our
system, with D being the equivalent Dzyaloshinskii-Moriya
interaction (DMI) vector, and JO is the only superexchange
interaction (long-range coupling mediated by the bridging oxo
ligand) with its corresponding DMI vector DO. The values
of the different interactions are the same as in our previous
study [18].

Topological quantities. Following the approach by Berg
and Lüscher [20] (see also Ref. [21]), we define the skyrmion
number in the case of lattice systems. For a plane of four spins,
the topological charge is given by the sum over the ensemble
of oriented triangles �i jk . We calculate first the local charge
q� of the triangle �i jk with respect to the chosen orientation.
The skyrmion number can be extracted from the local charge
by summing on the whole space (in the case of 2D solitons
as skyrmions and vortices, we sum over the 2D surface), and
the lattice-based formula for the skyrmion number is (see
Supplemental Material [22] for details)

Qsk = 1

4π

∑
�=〈i jk〉

q�. (3)

In order to quantify 3D point defects (hedgehogs and
antihedgehogs) with charge Q±, we use the procedure of
Motrunich and Vishwanath [23]. The hedgehog (antihedge-
hog) topological charge Q+ (Q−) enclosed by the unit cube
containing six squares can be written as follows:

Q± = 1

2π

6∑
�=1

F�, (4)

where F� is the flux of a cube face. This charge is guaranteed
to be an integer from the definition and ensures that the net
topological charge (the supercell sum of topological charges
associated with unit cells) always equals zero in the consid-
ered system with periodic boundary conditions (details of the
derivation of the charge can be found in the Supplemental
Material [22]).

Results. We first analyze the topological skyrmion num-
ber for the zero-field case, where we have a helical state at
lower temperatures and then a transition to the fluctuation-
disordered (FD) phase that exists in the temperature range
37.5–42.25 K [18]. We find, as shown in Fig. 1(a), that the
helical state is, as expected, topologically trivial and is charac-
terized with Qsk = 0. This, in particular, means that the DMI
itself does not create the net topological charge, and it needs
the magnetic field to break the symmetry in agreement with
the work of Hou et al. [24]. However, as we enter the FD

region of temperatures, the strong spin fluctuations make the
skyrmion number fluctuate around the trivial state.

We analyze the skyrmion number for (111) planes in an
applied magnetic field Bext = 40 mT along the (111) di-
rection. We find that the skyrmion number stays zero for
lower temperatures where the trivial conical phase is stable. It

×

FIG. 1. (a) Dashed line, skyrmion number Qsk along the conical-
SkL-FD-paramagnetic transition; solid line, skyrmion number Qsk

along the helical-FD-paramagnetic transition. (b) Density of the cells
with point defects n± as a function of temperature, where pc is the
percolation threshold of a Rubik’s cube environment and TA is the
point defects’ activation temperature.

L140401-2



SKYRMION LATTICE ANNIHILATION BY POINT … PHYSICAL REVIEW B 108, L140401 (2023)

FIG. 2. The pairwise potential between point defects W (r) for
various temperatures (Tc = 42.25 K), where we observe the changing
nature from an attractive potential for T < Tc to a repulsive potential
for T � Tc.

increases steeply to the maximum as we enter the skyrmion
lattice phase and then decreases smoothly with a slower rate
and small fluctuations due to the FD regime [19]. In the para-
magnetic phase (T > Tc = 42.25 K), we have fluctuation of
the skyrmion number around the value of zero; such behavior
was previously found in ultrathin films of Pd/Fe/Ir(111) [25].
Let us now define the density n± of topological defects as
the ratio of cells containing hedgehogs or antihedgehogs to
the supercell volume L3 with L = 84. Figure 1(b) shows the
thermal evolution of the density of hedgehog-antihedgehog
pairs. The density n± is found to decrease smoothly with
decreasing temperature until an activation temperature TA

where the density is precisely zero. It is striking to realize
that the critical temperature Tc is the inflection temperature
of the hedgehogs’ density, which also coincides with the
site-percolation threshold of a Rubik’s cube neighborhood
pc. The site-percolation threshold pc is that of a regular
lattice with a neighborhood extending to the third-nearest
neighbors (Rubik’s-cube-like) pc = 0.0976 [26]. This thresh-
old can be seen as the critical probability above which we
have the appearance of a single cluster of topological defects
spanning over the whole supercell (“infinite cluster”). This
behavior of point defects was previously found in relaxor
ferroelectric Pb(Sc0.5Nb0.5)O3 (PSN) and Ba(Zr0.5Ti0.5)O3

(BZT) systems [27] and in Heisenberg ferromagnets [28,29].
The nonvanishing value of the point defects’ density under
Tc indicates the coexistence of hedgehog-antihedgehog pairs
alongside the skyrmion lattice phase in the case of an ap-
plied 40 mT magnetic field. This means that if the density
of hedgehog-antihedgehog pairs n± > pc, the appearance of
a long-range spin configuration is hindered by the infinite
cluster of topological point defects.

We compute the radial distribution function g(r), used
to extract the mean-force potential between defects W (r) =
−kBT ln (g(r)) as well as using the K-means clustering
method to explore the evolution of point defect clusters. Fig-
ure 2 shows the evolution of the mean-force potential between
defects W (r) as a function of temperature. We observe that

FIG. 3. (a) Point defects’ (black stars) distribution in a (111)
plane in the presence of the skyrmion lattice phase (Bext = 40 mT
and T = 37 K) where point defects are clustered in the space be-
tween skyrmions (in red). (b) The interaction potential between
skyrmions and point defects Vs-h(r) for various temperatures (Tc =
42.25 K) as calculated from the radial distribution function, where
Vs-h(r) has a glassylike behavior until Vs-h(r) = 0 for T � Tc due the
total vanishing of skyrmions.

point defects repel each other for high temperatures and can-
not easily be close to each other lest they overlap the nearest
hedgehogs. As the temperature decreases below Tc, the pair-
wise potential W (r) becomes slightly attractive, and clusters
begin to form. The radial distribution function obtained at
these temperatures significantly differs from that obtained
at T � 50 K, implying that the point defects’ behavior (as
individual particles) is also very different. At this density of
point defects, the depletion forces can be described by the
Asakura and Oosawa model [30,31], which predicts a mono-
tonically attractive potential. In this temperature range, point
defects are in the subpercolation regime, where n± < pc and
point defects form separated structured clusters as depicted
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FIG. 4. Schematic representation of the process of skyrmion annihilation by the point defects (black stars) showing the gradual destruction
of the skyrmion as a result of the increasing applied pressure of hedgehog-antihedgehog pairs, which is due to the increasing density of
point defects in the space between skyrmions as temperatures increase, leading to total destruction of the skyrmion phase as we enter the
paramagnetic phase.

in Fig. 3(a). In other words, point defects become trapped in
a cage formed by their neighbors, similar to a glassy state of
particles. The pairwise potential becomes even more attractive
as we reduce temperatures and get closer to the activation
temperature TA.

Interestingly, since the total topological charge is con-
strained to be zero in systems with periodic boundary
conditions, the decrease of n± upon cooling can only happen
by annihilation among defects of opposite topological charge,
i.e., between hedgehogs with charge Q+ and antihedgehogs
with charge Q−. For the dependence of n± on temperature in
Fig. 1(b), we find that for T > TA, the density can be very well
approximated by

n± = n0
± + (n∞

± − n0
±) exp

(
− A

T − TA

)
. (5)

This leads to the Vogel-Fulcher-Tammann-law-like equa-
tion for relaxation time τ associated with the annihila-
tion process between hedgehogs and antihedgehogs, τ ∼
τ0 exp( A

T −TA
) [32], which is the same equation used to model

viscosity near the glass transition as in the glassy state behav-
ior evoked in the previous paragraph.

An important question about the role of topological defects
is whether the observed proliferation of point defects, as T
increases, is accompanied by an unbinding of defect pairs.
For that, we calculated the number of total bonds as a func-
tion of temperature and the number of bonds at the minimal
distance as a function of temperature. It is thus essential
to develop criteria by which a given system is in a bound
or unbound hedgehog state. The ratio of the bonds at the
minimum distance to the total bonds will give an idea about
the binding-unbinding mechanism of hedgehog-antihedgehog
pairs occurring in Cu2OSeO3. In our case, we observe a
decreasing ratio with increasing temperatures, which means
that the pairs tend to unbind, rendering the gas of defects
into a plasmalike state of hedgehogs and antihedgehogs. This
unbinding mechanism is also shown in Fig. 2 by the pairwise
potential W (r) changing in nature from attractive to repulsive
as we pass from T < Tc to T > Tc. Although the nature of the
total pairwise potential stays the same in the absence (at 0 mT)
and in the presence (at 40 mT) of the skyrmion lattice phase,
being attractive in T < Tc and repulsive in T > Tc, the exis-
tence of the skyrmions adds an additional component to the
pairwise potential, which can be interpreted as the interaction
potential between skyrmions and point defects Vs-h(r). This
potential can be extracted by comparing the pairwise potential

of point defects in the presence and absence of skyrmions.

Vs-h(r) = W (r)Bext=40 mT − W (r)Bext=0 mT. (6)

Figure 3(b) shows the evolution of the interaction potential
between skyrmions and point defects (hedgehogs and anti-
hedgehogs) and exhibits the behavior of the periodic structure
(solidlike) melting into a liquidlike potential as the temper-
ature increases, until we have no interaction above Tc due
to total annihilation of skyrmions. To understand the effect
of point defect clusters on the skyrmion lattice, we analyzed
how the point defects are scattered on the (111) plane in the
presence of skyrmions. As seen previously, in a magnetic field
of 40 mT applied along the (111) direction, a skyrmion lattice
phase emerges near Tc. In the presence of skyrmions, the
point defects are arranged in clusters in the space between
skyrmions, which can be related to Vs-h being attractive in
these distances (between skyrmions) as shown in Fig. 3(a),
leading to applied pressure by point defects on skyrmions. As
the temperature increases, the point defects’ density grows.
The point defects exert increasing pressure as the temperature
rises, leading to annihilation of the skyrmion lattice phase.
This process of skyrmion annihilation by the point defects is
schematically depicted in Fig. 4. We observe that the applied
pressure gradually reduces the total skyrmion charge until the
complete annihilation of the skyrmion lattice phase. The po-
tential Vs-h in Fig. 3(b) shows the behavior of a gradual melting
of the skyrmion lattice phase as a result of the pressure of point
defects; hence there is a gradual decrease in the skyrmion
number Qsk as temperatures increase toward Tc as previously
seen in Fig. 1(a). The impact of point defects on the anni-
hilation of skyrmions during the helical-to-skyrmion-lattice
or conical-to-skyrmion-lattice transition was previously seen
in a study by Birch et al. [33], where they demonstrated
that Bloch points, a specific type of three-dimensional point
defect, facilitated the creation and annihilation of skyrmions
under a magnetic field in (Cu1−xZnx )2OSeO3.

In contrast, our study investigates the role of point defects
in eliminating the skyrmion lattice phase as the temperature
rises and Cu2OSeO3 transitions to the paramagnetic phase. In
essence, our findings reveal the influence of the proliferation
of three-dimensional point defects on the annihilation of or-
dered phases, particularly the melting and annihilation of the
skyrmion lattice phase as a result of the pressure applied by
point defects.
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