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Counting edge modes via dynamics of boundary spin impurities
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We study the dynamics of the one-dimensional Ising model in the presence of a static symmetry-breaking
boundary field via the two-time autocorrelation function of the boundary spin. We find oscillatory correlations
that decay as power laws. We uncover a phase diagram of dynamical responses where, upon tuning the strength
of the boundary field, we observe distinct power laws that directly correspond to changes in the number of
edge modes as the boundary and bulk magnetic field are varied. We suggest how the universal physics can be
demonstrated in current experimental setups, such as Rydberg chains.
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The interplay of many-body interactions and correlations
[1,2] lies at the foundation of emergent phenomena from
condensed matter and atomic and molecular systems to high-
energy physics. The challenge posed by treating interparticle
interactions nonperturbatively in extended systems suggests
that one should search for simpler setups to serve as stepping
stones towards increasingly complex problems. An archetypal
class of such systems is quantum impurity models in strongly
correlated systems. By embedding one or a few degrees of
freedom in a many-body medium, one can often treat strong
impurity-environment couplings exactly [3–7], with the goal
of building understanding and applying it towards even more
complex scenarios. Examples include the Anderson orthog-
onality catastrophe in local quenches of gapless systems
[8–12], interaction-dependent transport in one-dimensional
junctions [13,14], the buildup of entanglement among mag-
netic impurities and their surrounding fermionic or bosonic
environments [15–17], and the formation of polarons in solid
state systems or cold atomic clouds [18–23].

This work aims to examine fresh aspects of a quintessential
impurity model hosting edge modes, namely the one-
dimensional interacting Ising chain with a strong symmetry-
breaking boundary field. The impact of boundary fields on
the critical point of an extended system is a subject of active
interest in both classical and quantum statistical mechanics
[24–30]. Although, at leading order, impurities appear to be
a subdominant correction to bulk properties of a large sys-
tem, renormalization-group-relevant (RG-relevant) boundary
perturbations can actually induce the formation of new phases
with associated critical exponents [31]. In addition to its fun-
damental importance, the response of bulk systems to relevant
boundary perturbations can yield novel edge modes, which in
turn have the potential to be utilized as a resource in quantum
computing. Here, we uncover a dynamical signature of these
important edge phenomena.

Model. We consider a one-dimensional (1D) trans-
verse field Ising model (TFIM) with a local boundary

field,

H = −J
L−1∑
n=1

σ z
nσ z

n+1 − h
L∑

n=1

σ x
n − hbσ

z
1 , (1)

where σ
(z,x)
j are Pauli matrices, J = 1 is the exchange inter-

action, h is the transverse field, and hb is a static boundary
field along the z direction. In the absence of a boundary field
(hb = 0), the TFIM has Z2 symmetry and undergoes a contin-
uous phase transition at h = J , separating the ferromagnetic
phase (h < J ) and paramagnetic phase (h > J ).

Numerical results. Motivated by the search for dynamical
probes of edge modes [25], we now focus on the dynamics of
the boundary spin. Specifically, we calculate the connected
autocorrelation function of the boundary spin’s magnetiza-
tion,

C(t ) = 〈
σ z

1 (0)σ z
1 (t )

〉 − 〈
σ z

1 (0)
〉〈
σ z

1 (t )
〉
, (2)

within the ground state. We find that in the presence of hb, C(t )
decay as a power law, C(t ) ∝ t−α , similar to results in other
integrable models [5,6]. However (as shown later in Fig. 2),
critical lines emerge in which the power α changes sharply. On
the critical lines between these boundary “phases of matter,”
other power laws emerge. The goal of the remainder of this
Research Letter will be to understand these emergent power
laws in the dynamical response.

Edge states. Previous works on the TFIM with either lon-
gitudinal or transverse boundary field have demonstrated the
existence of edge states via the Jordan-Wigner mapping to free
Majorana fermions [26–30], as well as in other related spin
models [4]. To study the connection between these edge states
and the boundary spin dynamics, we perform a Jordan-Wigner
transformation, given by [32]

σ x
n = iηA,nηB,n, σ z

n = iγ

⎛
⎝

n−1∏
j=1

iηA, jηB, j

⎞
⎠ηA,n, (3)
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FIG. 1. (a) We study magnetization dynamics of the edge spin in
the 1D transverse field Ising model in the presence of boundary field
hb, resulting in power-law relaxation of the boundary autocorrelation
function [Eq. (2)] as a function of hb and transverse field h. (b) Phase
transitions between different power laws correspond to a change in
the number of edge modes. Phases are labeled according to the be-
havior of their edge mode: soft-edge paramagnetic and ferromagnetic
(SEPM and SEFM, respectively) for cases where the edge mode
relaxes slowly as t−3/2, pinned-edge ferromagnetic (PEFM) where
the edge is held fixed by the field, and protected qubit (PQ) plus
Majorana (+M) where a large boundary field creates protected edge
modes.

where an ancilla Majorana γ = γ † is added to the usual
Jordan-Wigner string such that the boundary field also maps
to a Majorana hopping term:

H = −iJ
L−1∑
n=1

ηB,nηA,n+1 − ih
L∑

n=1

ηA,nηB,n − ihbγ ηA,1. (4)

In the absence of hb, Eq. (4) represents the Kitaev chain
[33], which has a topological Majorana zero mode on the
ferromagnetic (FM) side (h < J ). Furthermore, the ancilla
Majorana gives a separate (artificial) zero mode, which nev-
ertheless couples into the Kitaev chain for hb �= 0. In the
ferromagnetic phase, the ancillary zero mode gaps out the
topological zero mode, yielding a gapped fermion. By con-
trast, there is no topological zero mode on the paramagnetic
(PM) side; so the ancillary zero mode remains fixed at E = 0
despite hybridizing with the Kitaev chain [33,34].

At higher hb, a richer edge state structure emerges, as
illustrated in Fig. 1. For instance, at hb = √

1 − h and h < J ,
the edge state merges into the bulk. At hb = √

1 + h, a sec-
ond (gapped) edge state emerges out of the top of the band.
Analytical expressions for the edge mode wave functions and
energies can be found in the Supplemental Material [35]; they
can be exactly solved either for the lattice model or within
the low-energy field theory. The field theory calculation fur-
ther supports the idea that the phase transitions at small hb

and |h − J| � 1 are universal. By contrast, the edge mode
which emerges at hb = √

1 + h does not show up in the Ising

field theory, indicating that it is a nonuniversal lattice effect.
We also note that identical edge states have been found in
previous studies of transverse boundary fields (hσ z

1 → hbxσ
x
1 )

upon interchanging h and J [26]. This comes from the math-
ematical fact that the transverse boundary field maps to an
identical Majorana chain but shifted by one site due to lack
of the ancilla Majorana. However, the role of the transverse
boundary field is nonuniversal in the Ising field theory; hbσ

z
1

is a relevant boundary perturbation with scaling dimension
1/2, while hbxσ

x
1 is marginal [32,36]. Therefore we expect our

predictions of symmetry-breaking boundary dynamics to be
more robust when taken beyond the clean, integrable TFIM.

Crucially, we see that the transition lines where edge modes
are gained or lost are precisely the lines where the exponent α

dictating edge spin decay changes. This connection between
emergent fermionic edge modes and boundary spin dynamics
is highly nontrivial and has not been explored in detail. We
now seek to model the behavior of the boundary spin and
explain the origin of this connection.

Boundary spectral function. To understand the connection
between edge modes and boundary dynamics, consider the
spectral function

C(ω) = 2π
∑
n �=0

∣∣〈ψn|σ z
1 |ψ0〉

∣∣2
δ[ω − (En − E0)], (5)

where |ψ0〉 is the ground state and |ψn〉 are the excited states.
Diagonalizing the Hamiltonian in the fermionic basis,

H =
Nedge∑

=1

ε
(2c†

c
 − 1) +

∑
k

εk (2c†
kck − 1), (6)

we can separate the edge (
) and bulk (k) modes in a semi-
infinite strip. Note that this solution involves combining the
original Majoranas into Dirac fermions ck . This form of H
allows for both gapped edge modes and Majorana zero modes,
for which c
 = γedge with ε
 = 0. One can choose ε � 0 for
all modes, such that |ψ0〉 is the vacuum state of the c fermions.
Then we immediately see that, since σ z

1 = iγ ηA1 is a two-
fermion operator, |ψn〉 is restricted to states with two fermion
excitations above the vacuum, |ψn〉 = c†

αc†
β |ψ0〉, in order for

the matrix element not to vanish. Going back to the expression
of C(t ), we have

C(t ) = 1

2

∑
α �=β

e−2i(εα+εβ )t
∣∣〈ψ0|cαcβσ z

1 |ψ0

∣∣2

︸ ︷︷ ︸
fαβ

, (7)

where α, β iterate over edge and bulk modes.
At late times, we can solve Eq. (7) via a saddle-point

approximation. There are three separate situations to consider.
(1) If α and β are both edge states, which is possible

for Nedge � 2, then one has infinitely long-lived oscillations
proportional to cos[2(εα + εβ )t] as long as the matrix element
fαβ is of order 1, as expected for edge states.

(2) If α is an edge state and β = k is a bulk state, then in
the thermodynamic limit we can replace

∑
k → (L/2π )

∫
dk.

For t 	 1/J , this integral is dominated by the saddle points
of the fast-oscillatory term which, for the bulk TFIM, are at
k = 0 and k = π . As shown [35], this matches the numerically
found exponent t−3/2 if the matrix element scales as fαk ∼ k2.
Such a scaling emerges naturally in the field theory limit
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FIG. 2. (a) Phase diagram representing the edge states in the presence of boundary field hb. (b) and (c) Plots of the autocorrelation function
for h = 0.5 and h = 1.5 with different values of hb taken across the different phases of edge states represented by red and blue lines in the
phase diagram, respectively. Power laws are shown as guides to the eye and match those shown in Fig. 1.

from the bulk modes with open boundary conditions, whose
(Majorana) wave functions are proportional to sin(k) ∼ k at
low momentum. This power-law decay is an envelope for
e−2i(εα+εk=0 )t oscillations due to the edge mode.

(3) If α = k and β = k′ are both bulk states, then the sum
becomes an integral over k and k′. Assuming separability of
fkk′ ∼ k2k′2, we find C(t ) ∼ (t−3/2)2 = t−3, as seen numeri-
cally.

For Nedge = 0, only case 3 is possible, while cases 2 and 3
are possible for Nedge = 1. However, the late-time dynamics
will be dominated by the slowest decaying exponent, leading
to the prediction |C(t )| ∼ t−(3/2)(2−Nedge ) as seen in Fig. 2.

Boundary phases of matter. Having established the exis-
tence of edge states and their connection to the edge spin
dynamics, C(t ), we now discuss the physical meaning of these
power-law decays and provide labels for the boundary “phases
of matter.” Let us start with the low-field limit, hb � 1, for
which the physics near the critical point are universal. In this
regime, there are three phases of matter, which we now discuss
in detail.

(a) Soft-edge paramagnet. The soft-edge paramagnetic
(SEPM) phase (h > J , hb <

√
1 + h) extends from the hb = 0

paramagnet in which a Majorana zero mode persists, causing
slow t−3/2 relaxation of the edge magnetization. Perturbing
away from the critical point at h = J and hb = 0, one can
think of this phase as where the bulk mass gap ∼h − J is more
relevant than the boundary perturbation, which corresponds to
an energy scale Eb ∼ h2

b [32]. Since the symmetry-breaking
field is not important in defining the paramagnetic phase, the
boundary dynamics of the SEPM is smoothly connected to the
conventional paramagnet at hb = 0.

(b) Soft-edge ferromagnet. The soft-edge ferromagnetic
(SEFM) phase (h < J , hb <

√
1 − h) extends up from the

hb = 0 ferromagnet in which the ancilla Majorana couples
to the topological edge Majorana and opens a gap, again
causing slow t−3/2 relaxation of the edge magnetization. In
the spin language, this corresponds to a finite gap between
the symmetry-breaking ground states which is proportional
to the symmetry-breaking field hb. This destruction of spon-
taneous symmetry breaking results in an increase in the edge
spin relaxation from the ferromagnet, for which it must decay
to a constant: |C(t )| ∼ t0 as t → ∞ for hb = 0. From a field
theory perspective, this is the phase where the symmetry-
breaking mass gap ∼J − h is more relevant than the boundary

perturbation. However, unlike the SEPM, the soft-edge ferro-
magnet is not smoothly connected to the hb = 0 ferromagnet
because the symmetry-breaking boundary field fundamentally
changes the symmetry-breaking ferromagnetic phase.

(c) Pinned-edge ferromagnet. In the pinned-edge ferro-
magnetic (PEFM) phase (h < J ,

√
1 − h < hb <

√
1 + h), all

edge modes have merged into the bulk, resulting in fast t−3

relaxation of the edge magnetization. In the spin language,
this corresponds to a case where one of the original symmetry-
breaking ground states, namely |⇓〉, has merged into the bulk
continuum, meaning that single itinerant domain wall excita-
tions become less costly than a global flip of the Ising spins.
In this case, the bulk (and edge) is pinned to a single ground
state, removing any meaningful notion of symmetry breaking
at the boundary [37]. Field theoretically, this is the phase
where the boundary perturbation becomes the dominant scale,
being more relevant than the mass gap ∼J − h. This phase
of matter bears resemblance to the fixed-boundary-condition
case of boundary conformal field theory (CFT) [32], but with
the important caveat that the bulk is weakly gapped in a
symmetry-breaking fashion.

Note that bulk two-time connected correlation functions
are unaffected by small hb throughout, as they only involve ex-
citation to the bulk continuum and not between the degenerate
ground states. Therefore the gap is similar to the one induced
by other symmetry-breaking perturbations, which are well
known to have no effect on connected correlations in the bulk.
The bulk-boundary autocorrelations will show signatures of
the boundary transition, since they involve finite overlap
with the emergent edge mode. However, the bulk-boundary
autocorrelation will involve a nontrivial string operator and
so will be harder to calculate. This will be left for future
work.

A useful analogy for thinking of these low-field phases
of matter is that the pinned-edge ferromagnet is the bound-
ary dynamical critical fan emerging from the bulk critical
point. The shape of the fan is dictated by critical exponents
from the boundary CFT [38]. Unlike a conventional thermal
critical fan, however, there are phase transitions between the
boundary dynamics in the different phases, rather than
crossovers [39].

The high-field phases of matter for hb >
√

1 + h are not
universal, in the sense that they come from high-momentum
lattice physics that is not present in the Ising field theory; they
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are nevertheless robust within the lattice model. The key point
in both phases is that a fermionic edge state emerges out of
the top of the single particle band. For hb → ∞, this can be
thought of as the edge qubit, which is in a large magnetic
field, hbσ

z
1 . The question is then how this edge qubit is dressed

by excitations of the bulk continuum. For hb >
√

1 + h, the
edge spin hybridizes with the bulk but remains stable. For
hb <

√
1 + h, bulk domain walls hybridize with the edge

qubit and destabilize it. Therefore we refer to these phases
of matter as the protected qubit (PQ, h < J) and protected
qubit plus Majorana (PQ+M, h > J) phases to reflect the fact
that the edge Majorana remains stable for h > J as well. It is
particularly notable that the edge correlation function behaves
asymptotically to oscillate with finite amplitude (|C(t )| ∼ t0)
within the PQ+M phase, reflecting the fact that both a fermion
and Majorana edge mode coexist, both of which are excited by
the σ z

1 operator.
Experimental realizations. Recent experimental advances

have made it possible to simulate spin systems in a well-
controlled manner. A particularly well-developed platform
to explore the physics studied here is with kinetically con-
strained spin models as realized in tilted Mott insulators of
bosons [40] or, more recently, one- and two-dimensional ar-
rays of Rydberg atoms [40–44]. In Rydberg atoms, the ground
state |g〉 and Rydberg state |r〉 of the atom can be mapped
to a spin 1/2 by considering |g〉 = |↑〉 and |r〉 = |↓〉. Adding
strong dipole-dipole interactions between the Rydberg atoms
gives the Hamiltonian

H = h̄
∑

i

σ x
i −

∑
i

�σ z
i +

∑
i �= j

Vi j
(
1 + σ z

i

)(
1 + σ z

j

)
, (8)

where  is the Rabi frequency of an external drive and �

is its detuning frequency, both of which in principle can be
controlled locally. The interactions Vi j can be made suffi-
ciently strong that no nearest neighbors can simultaneously
be in the Rydberg state, a limit known as the PXP model,
for which one finds an antiferromagnetic ground state that
breaks Z2 symmetry at large . This model is in the 1D
Ising universality class, can be prepared in its ground state
deep within the phases, can be locally controlled, and has
the nice property that a boundary σ z field acts precisely as
the symmetry-breaking field required above. This suggests
that some of our universal predictions, such as the different
power laws [3–7] deep within the boundary phases at low
hb and near the criticality |h − J| � 1, might be realizable
experimentally. A notable concern that may cut off this power
law is the finite lifetime of the Rydberg excitations, but recent
experiments showing coherent dynamics out to relatively long
time scales [45] give hope that this regime may be accessible
in the nonintegrable Rydberg model. It is worth noting that
sharp changes in power laws across transition lines in Fig. 1
are accompanied by kink discontinuities in the frequency of
the damped oscillations [cf. Eq. (7)], which provides another
route to locating the transitions experimentally.

Finally, we propose two routes to measure the relevant
dynamics. First, C(t ) can be measured directly using the
Hadamard test by directly coupling the boundary spin to an

ancilla qubit such that the boundary autocorrelation function
maps to coherence of the ancilla [46]. Second, one could in-
stead measure σ z

1 , time evolve, and then measure again, which
is within the operational capabilities of Rydberg tweezer
arrays.

Conclusion. In conclusion, we have uncovered an unex-
pected dynamical signature of emergent edge states in the
transverse field Ising model with a symmetry-breaking bound-
ary field. Despite sharing a common origin with well-studied
effects such as dynamics in boundary conformal field theories
(bCFTs) [32,47–51] or boundary phase transitions (e.g., wet-
ting transitions) [28,30], these edge dynamics have a distinct
signature. We show that the dynamics are universal at low
boundary field and near criticality. Explicitly, for a system
with quantum phase transition in the (1+1)D Ising universal-
ity class, adding a symmetry-breaking boundary perturbation
will give a phase diagram equivalent to Fig. 1 in the regime
near criticality. Power-law relaxation of the order parameter
field at the boundary will match the Ising model, as will the
shape of the phase transition line (hb ∼ |h − hc|1/2). While the
high-boundary-field regime is not universal, similar phases to
those in Fig. 1 are nevertheless likely to emerge in similar
lattice models due to their simple physical origin. An ex-
perimentally relevant example where we propose to test this
universality further is in the PXP model of Rydberg atoms,
whose ground state realizes an effective antiferromagnetic-to-
paramagnetic transition.

Based on universality arguments for this transition, we
expect similar boundary phase transitions to occur in a
much wider class of systems, including critical points in
other universality classes. Furthermore, interesting nonuni-
tary dynamics may appear when the boundary spin is driven
by white noise exhibiting an intriguing interplay between
the many-body Zeno effect and the physics of edge modes
[47,52,53]. Our current research efforts are focused in this
direction.
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(London) 568, 207 (2019).

[42] R. Samajdar, W. W. Ho, H. Pichler, M. D. Lukin, and S.
Sachdev, Proc. Natl. Acad. Sci. USA 118, e2015785118 (2021).

[43] E. Guardado-Sanchez, P. T. Brown, D. Mitra, T. Devakul, D. A.
Huse, P. Schauß, and W. S. Bakr, Phys. Rev. X 8, 021069
(2018).

[44] P. Schauss, Quantum Sci. Technol. 3, 023001 (2018).
[45] D. Bluvstein, A. Omran, H. Levine, A. Keesling, G. Semeghini,

S. Ebadi, T. T. Wang, A. A. Michailidis, N. Maskara, W. W. Ho,
S. Choi, M. Serbyn, M. Greiner, V. Vuletić, and M. D. Lukin,
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