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The nonequilibrium dynamics of disordered many-body quantum systems after a quantum quench unveils
important insights about the competition between interactions and disorder, yielding, in particular, an interesting
perspective toward the understanding of many-body localization. Still, the experimentally relevant effect of bond
randomness in long-range interacting spin chains on their dynamical properties have so far not been investigated.
In this Letter, we examine the entanglement entropy growth after a global quench in a quantum spin chain
with randomly placed spins and long-range tunable interactions decaying with distance with power α. Using
a dynamical version of the strong disorder renormalization group we find for α > αc that the entanglement
entropy grows logarithmically with time and becomes smaller with larger α as S(t ) = Sp ln(t )/(2α). Here, Sp =
2 ln 2 − 1. We present results of numerical exact diagonalization calculations for system sizes up to N ∼ 16
spins, in good agreement with the analytical results for sufficiently large α > αc ≈ 1.8. For α < αc, we find that
the entanglement entropy grows as a power law with time, S(t ) ∼ tγ (α) with 0 < γ (α) < 1 a decaying function
of the interaction exponent α.
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Introduction. Magnetic resonance experiments in doped
semiconductors [1] motivated Anderson to address the is-
sue of electron localization in disordered systems using a
model of noninteracting electrons [2]. Later, Fleischman and
Anderson [3] argued that short-range (SR) electron-electron
interactions with localized single-particle states would pre-
serve the existence of a localized phase for strong disorder.
Localization in a many-body system was put on more rigorous
footing in Refs. [4,5] using a perturbative approach, where the
concept of many-body localization (MBL) was introduced.
Since then, the study of MBL in disordered interacting sys-
tems has become a flourishing field. For recent reviews, see
Refs. [6,7] and references therein.

In spin chains with random on-site potential and nonran-
dom long range (LR) power-law interactions strong evidence
was found that a many-body localized phase persists, as long
as the interactions fall-off faster than a certain critical power
lawαc(E ) [8–12]. In spin chains with SR bond-disorder and
particle-hole symmetry at finite energy density a logarithmic
divergence of the entanglement entropy (EE) with subsys-
tem size n, S ∼ ln n was found [13,14]. This was argued
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to characterize a so-called quantum critical glass (QCG).
Recently, we found that this logarithmic divergence of the
EE survives, both for the ground state and excited states,
the introduction of random bond LR interactions, provided
that their power-law decay has an exponent which exceeds a
critical value αc(E ) [15,16]. The full characterization of the
dynamical properties of such (marginally) localized phases in
LR-coupled systems with bond disorder remains so far unex-
plored since previous studies focused rather on LR coupled
systems with disordered random potential, even though bond-
disordered LR interactions are ubiquitous in real quantum
systems [2,17,18].

An insightful perspective of delocalization-localization
transitions in random lattice spin models is provided by
the entanglement entropy (EE) dynamics after a quantum
quench. This has been widely used as a probe of many-
body localization for both SR interacting archetypal random
models [19–21], and LR interacting spin chains with random
local magnetic fields [22–26]. For MBL systems with nearest
neighbor interactions, it has been shown [19–21] that the
EE grows logarithmically with time after a quantum quench,
when starting in an unentangled high-energy state S(t ) ∼
ln(t ). This EE growth continues until it reaches a saturation
value, which is determined by the participation ratio of the
initial state to the eigenstates of the subsystem [21]. In spin
chains with LR deterministic interactions and random on-site
potential numerical experiments found evidence for a power-
law growth of EE with time, S(t ) ∼ t1/α for some range of
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α [22,23]. On the other hand, a logarithmic growth of the
EE was obtained for a model of Fermions with LR hoppings,
LR interactions, and sufficiently strong random local fields for
sufficiently large α [27]. More recently, it has been suggested
that at the MBL transition in LR interacting spin models sub-
ject to random magnetic fields the EE grows also with a power
law in time, albeit with a universal exponent δ ≈ 0.33 [28].
An analytical derivation of these results is still lacking, nor
has the EE growth been studied in systems with sole bond
randomness in the LR setup.

The strong disorder renormalization group proce-
dure [7,29–33] has been extended to the RSRG-t scheme [32]
to study the dynamics of EE in XX spin chains with random
nearest-neighbor interactions, which are known to be in the
quantum critical glass phase (QCG) [14], and more recently
of Rényi entropies [34]. An ultra-slow dynamics was found
thereby where the EE scales as S(t ) ∼ ln[ln(t )]. Whether
random LR interactions change the EE dynamics in XX spin
chains remains, however, unexplored.

To fill the gaps identified above, we will focus on the effect
of LR bond randomness on the entanglement dynamics in XX
spin chains, with the goal being to derive the growth of entan-
glement dynamics after a global quench, both analytically and
numerically. To this end, we first introduce the model we will
consider. Next, we will briefly review how the SDRG can be
applied to these LR-coupled random spin chains [15,16]. We
next present the RSRG-t scheme and show how to extend it to
this LR-coupled model. We then present our main results, an
analytical prediction for the EE growth, and numerical exact
diagonalization results as function of time and exponent α.
We then provide a detailed comparison of the results of both
approaches and give our conclusions.

Model. In this Letter, we introduce an extension of the
dynamical strong disorder renormalization group (SDRG),
also known as RSRG-t [32,35,36] and apply it, together with
numerical exact diagonalization (ED), to investigate the dy-
namics of the EE after a global quantum quench in a LR
interacting XX spin chain with positional disorder, as defined
by the Hamiltonian

H =
∑
i< j

Ji j
(
Sx

i Sx
j + Sy

i Sy
j

)
, (1)

of N interacting S = 1/2− spins, randomly placed at positions
ri on a lattice of length L and lattice spacing a with density
n = N/L. The couplings between all pairs of sites i, j, are
taken to be antiferromagnetic and long-ranged, decaying with
a power law

Ji j = J0|(ri − r j )/a|−α. (2)

We consider open boundary conditions.
The entanglement properties of this model were previously

investigated for both the ground state and generic excited
eigenstates by means of SDRG and ED in Refs. [15,16]. It was
found that its ground state is correctly captured by a random
singlet phase, with a distribution of couplings which flows to
a strong disorder fixed point (SDFP), as characterized by a
finite dynamical exponent which was found to be related to
the interaction power by z = 2α [15,37]. More recently, the
eigenstates in the middle of the many-body spectrum of this

model were studied [16]. A delocalized regime was found for
α � αc, characterized by an algebraic subvolume enhance-
ment of the entanglement entropy with subsystem size n, S ∼
nγ (α), where γ (α) < 1, which is equal to 1 only in the limit
of infinite range coupling α = 0. For α � αc ≈ 1 the eigen-
states in the middle of the band were found to be marginally
localized with a logarithmic scaling of the entanglement en-
tropy with subsystem size Sn ∼ ln(n), characteristic of a QCG
phase.

SDRG. Let us recall how to apply the SDRG to the model
Eq. (1) [15,37]. Since the pair (i, j) with largest coupling
Ji, j forms a singlet, we take the expectation value of the
Hamiltonian in that particular singlet state. Within second-
order perturbation theory in the couplings with all other spins
this yields the renormalization rule for the couplings between
all remaining spin pairs (l, m) in the LR antiferromagnetic
(AFM) coupled XX model as [15,37]

(
Jx

lm

)′ = Jx
lm −

(
Jx

li − Jx
l j

)(
Jx

im − Jx
jm

)
Jx

i j

. (3)

In the SR spin chain the distribution of renormalized cou-
plings gets wider at every RG step with a width W that
diverges as the RG scale � is lowered, driven to the infinite
randomness fixed point (IRFP) [7,29–33]. For LR couplings,
however, the width W is found to saturate to the finite value
W = � = 2α for the XX model. This characterizes the strong
disorder fixed point (SDFP) [37]. For large number of spins
N � 1, the resulting distribution function of renormalized
couplings J converges at small RG scale � to [31]

P(J,�) = 1

���

(
�

J

)1−1/��

, (4)

where �� → W = 2α for � → 0.

RSRG-t. The time-dependent real-space renormalization
group (RSRG-t) is an extension of the SDRG to nonequi-
librium setups. RSRG-t is designed to capture the effective
dynamics via iterative elimination of all degrees of freedom
which oscillate at a particular RG step with highest frequency
�. Thereby, the RG decimation does not project the spin pairs
into singlet states, as in the SDRG case, but rather generates
effective degrees of freedom which define the large-time dy-
namics of the system [32,35]. Via successive elimination of
these fastest oscillating pair of spins on sites i and j, coupled
by Ji j = �, with � = max{Ji j}, which dominates the short
time dynamics, RSRG-t yields an effective time-independent
Hamiltonian which captures the longer time dynamics Heff. In
the presence of strong disorder, the frequency of the eigen-
modes of the largest term in the Hamiltonian, is much larger
than those of the undecimated spins. Hence, the sites i and j
are seen by the remaining degrees of freedom as in a time-
averaged state. The remaining degrees of freedom can then be
treated perturbatively. In Ref. [36] the equivalence between
this approach and the RSRG-X, the extension of the SDRG
to excited eigenstates [38], was outlined and derived in the
framework of Floquet high-frequency expansion.

Let us now apply this RSRG-t procedure to the Hamilto-
nian Eq. (1). In second-order perturbation theory we find that
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the couplings are renormalized as

(Jlm)r = Jlm − Jil Jjm + JimJjl

Ji j
(P1 + P2)

+ (Jli + Jl j )(Jim + Jjm)

Ji j
P3

− (Jli − Jl j )(Jim − Jjm)

Ji j
P4, (5)

where we define the projectors associated to spins (i, j)
as Pμ = |μ〉〈μ|, with μ = 1, 2, 3, 4 and |1〉 = |↑↑〉, |2〉 =
|↓↓〉, |3〉 = 2−1/2(|↑ ↓〉 + |↓↑〉), |4〉 = 2−1/2(|↑ ↓〉 − |↓↑〉)
[36]. These RG rules correspond to the ones for the RSRG-
X on the same model [16]. This is not surprising since the
derivation of the effective Hamiltonian is equivalent [36].

Entanglement entropy growth after quantum quench. The
entanglement dynamics is monitored by means of the EE
S(t ) = −Tr[ρA ln(ρA)], where ρA = TrB(ρ) is the reduced
density matrix of the the subsystem (A) when tracing over
its complement (B). The fixed-point distribution of the cou-
plings generated by the RSRG-t allows us to calculate the
entanglement entropy growth with time t . Given an arbitrary
bipartition of an infinite spin chain, the entanglement between
the two parts of the bipartition is dominated by the oscillating
pairs connecting the two parts of the system which formed at
an RG scale � ∼ 1

t . In Ref. [16] we showed that for α � αc

the SDFP distribution Eq. (4) is obtained within the RSRG-X
flow for excited eigenstates. To derive S(t ) it is thus sufficient
to derive the number of singlets and entangled triplets n� that
formed at RG time � ∼ 1/t . This is found to be determined
by the differential equation [39]

dn� = P(J = �,�)d�. (6)

For � → 0 the SDFP distribution Eq. (4), yields n� =
1/(2α) ln(�). Since the only entanglement-generating mech-
anism is the decimation of pairs whose spins reside on
opposite sides of the interface, one finally obtains with � ∼
1/t ,

S(t ) = Sp
1

2α
ln(t ). (7)

where Sp is the time-averaged entanglement contribution of a
decimated pair of spins, which is found to be Sp = 2 ln 2 − 1
when the initial state is the Néel state [32], where only the
singlet and the entangled triplet states are populated within the
RSRG-t flow, which contribute to the entanglement entropy
equally. For other initial states, the logarithmic growth of the
EE Eq. (7) is expected to still hold for α > αc, albeit with a
different prefactor Sp.

Remarkably, we find that the obtained logarithmic EE
growth, Eq. (7), is faster than the one obtained for the nearest-
neighbor XX spin chain with random bonds after a global
quench S(t ) ∼ ln[ln(t )] [32]. A logarithmic increase with
time was found previously in conventional MBL with SR in-
teracting systems and random potential [19,20]. For Fermions
with long-range hoppings and random local fields a logarith-
mic growth is obtained for α � αc ≈ 2 [27]. For spin chains
with long-range (deterministic) interactions in the presence
of random magnetic fields [22,23] for α � 1 indications of
a power-law increase with time S(t ) ∼ t1/(α) were obtained in

the MBL phase. Note, however, that for large α � 1 and for
the considered time range and system sizes in Refs. [22,23],
this EE scaling S(t ) ∼ exp[1/(α) ln t] is hardly distinguish-
able from our result Eq. (7) S(t ) ∼ (1/α) ln t .

For α < αc the fixed-point of the coupling distribution is
unknown. However, the excited eigenstates of this model were
found to follow a subvolume law, with an algebraic growth of
their EE with subsystem size n, S ∼ nβ(α) with 0 < β(α) < 1
a decreasing function of α for α < 1 with β(α = 0) = 1 [16].
There, we traced the fact that it does not increase linearally
with n, the volume law expected for extended states to the
existence of localized regions, mostly dimers [16]. Repeating
the argumentation above for this system with subvolume law,
the half-chain EE at large time t is then expected to scale as
S(t ) ∼ tγ (α), where γ (α) � 1 is a decreasing function of α <

αc. Moreover we can derive the scaling of the saturation value
for the half-chain EE with the number of spins N and find

S(t → ∞) = ln 2(N/2)γ (α). (8)

Exact diagonalization results. To check the validity of these
analytical results, we use numerical exact diagonalization and
examine the half-chain EE dynamics after a quench starting
from a Néel state |ψ0〉 = |↑↓↑↓↑ · · · 〉. Results are shown in
Fig. 1 for different values of α. We consider two different
system sizes N = 12 and N = 16 to trace finite-size effects.
The density of spins is fixed to N/L = 0.1. Averaging was
done over up to 1000 disorder realizations. We see that, for
α > 1.8, the EE for large times after a transient agrees with
a logarithmic enhancement with time as it was obtained via
RSRG-t. The prefactor is found to be a decaying function
of α, consistent with our analytical prediction Eq. (7). For
α = 1.9, 2, 3, 4 Eq. (7) is in good agreement with ED. The
analytical derivation is expected to become more precise with
increasing α � 1 where the corrections to the SDFP become
smaller. Indeed, the standard deviation of the EE shows a
strong decrease for larger times t, and decreases with larger
number of spins N, which may be taken as confirmation of
the convergence to a fixed point law at large times after the
quench. We also observe oscillations, even after ensemble
averaging, with an amplitude which increases with α and
with a period only weakly depending on α. We have not
found an explanation for such oscillations within our RSRG-t
derivation.

For α � 1.8 the EE is found to saturate more quickly,
faster the smaller α. We observe a transient region where
it grows faster than logarithmically, as a power-law in time
S(t ) ∼ tγ (α), where γ (α) is found to be a decreasing function
of α � αc. The dependence of the saturation value S(t → ∞)
on the number of spins N is in quantitative agreement with the
scaling obtained by applying the RSRG-X result of Ref. [16],
Eq. (8). Remarkably, for α = αc ≈ 1.8, the exponent γ (α) =
0.34 is similar to the observed universal exponent for MBL
systems with random fields and long-range interactions at
criticality [28].

Conclusion. Extending the strong disorder renormaliza-
tion group (SDRG) to study quench dynamics, we find that
the entanglement entropy (EE) grows with the time after a
quench, starting from a nonentangled state for α > αc loga-
rithmically with a prefactor, which is inversely proportional
to α, Eq. (7), in good agreement with the results obtained by
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FIG. 1. (a) Half-chain EE as function of time for different values
of α > αc ≈ 1.8 obtained via ED and compared with the analyti-
cal RSRG-t result Eq. (7) for N = 12, N = 16 spins, with density
N/L = 0.1, coupling J0 = 1 and up to 1000 disorder realizations.
(b) Half chain EE as a function of time for α � αc. After an
initial transient time, the EE is found to grow as S(t ) ∼ tγ (α) in-
dicated by the solid black lines, reaching a limiting value S(t →
∞), Eq. (8). For α = 0.2, 0.4, 0.6, 0.8, 1.5, 1.8 (grey lines), we find
γ = 0.92, 0.9, 0.88, 0.86, 0.45, and 0.34, respectively. The shaded
regions show the standard deviation of the EE. We note the observa-
tion of oscillations, even after ensemble averaging, with an amplitude
which increases with α and a period only weakly depending on α.

ED, Fig. 1. This logarithmic scaling with time differs from
the one observed in SR XX spin chains with random bonds,

where the EE grows logarithmically slower, as S(t ) ∼ ln ln(t ).
The faster logarithmic growth of EE after a quench which we
found here for exclusive bond randomness in LR couplings
and in absence of magnetic fields could be a characteristic
of quantum critical glasses with LR interactions. Indeed such
logarithmic scaling of the EE with time was also observed
in LR hopping fermions with random potential [27]. In spin
chains with LR deterministic couplings and random on-site
magnetic fields [22,23] indications of rather a power-law time
dependence were found for α � 1, but in the time and α range
studied there by ED, there could be agreement with our result
for the random bonded LR spin chains, Eq. (7), as well, but
still needs to be checked. For α < αc delocalized eigenstates
were found to exist previously [16], yielding to a power-law
increase of the EE with subsystem size. Building on these
results we derived the scaling for the large time saturation
value of the half-chain EE, Eq. (8) with the number of spins
N as (N/2)γ with 0 < γ (α) < 1 a decreasing function of α,
in good agreement with our numerical exact diagonalization
results, Fig. 1.

In conclusion, the entanglement dynamics is found to
reveal different results for short-range [20] and long-range
interacting random spin systems [22,23], while the EE scal-
ing with subsystem size [15] and the energy-level spacing
statistics [16] reveal similar results for random bond SR- and
LR-coupled spin chains. Exploring the phase diagram of long-
range interacting spin chains subject to both random on-site
potentials and random bonds would help provide a more com-
plete picture of this quantum entanglement dynamics. Recent
advances in experimental setups allow to study XX spins with
interactions that fall off as 1/r3, which was demonstrated
by coupling Rydberg states with opposite parity [18,40,41].
Within this setup and exploiting the particle fluctuation and
correlation technique [42,43] its nonequilibrium dynamics
could thus be studied for α = 3.0. Chains of trapped ions
with power-law interactions, decaying as 1/rα , with tunable
0 < α < 1.5 have also been realized recently [44–46], and
may thereby open an experimental route to detect the quantum
phase transition between phases with logarithmic and power-
law growth of entanglement entropy.
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