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Despite numerous applications of two-dimensional (2D) plasmons for electromagnetic energy manipulation
at the nanoscale, their quantitative refraction and reflection laws (analogs of Fresnel formulas in optics) have
not yet been established. This fact can be traced to the strong nonlocality of equations governing the 2D
plasmon propagation. Here, we tackle this difficulty by direct solution of the plasmon scattering problem with the
Wiener-Hopf technique. We obtain the reflection and transmission coefficients for 2D plasmons at the discon-
tinuity of 2D conductivity at arbitrary incidence angle, for both gated and nongated 2D systems. At a certain
incidence angle, the absolute reflectivity has a pronounced dip, reaching zero for gated plasmons. The dip is
associated with wave passage causing no dynamic charge accumulation at the boundary. For all incidence angles,
the reflection has a nontrivial phase different from zero and π .
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Quantitative laws of wave reflection from a boundary be-
tween dissimilar media play a fundamental role in physics.
In electrodynamics, such relations are known as Fresnel’s
formulas [1] and represent an indispensable tool for the design
of any optical element, be it a cavity, polarizer, or antire-
flection coating. Similar laws can be found in the acoustics
of gases, liquids, and solids [2]. In quantum mechanics, the
problem of reflection and transmission at a potential step is a
primary tool to demonstrate the wavelike nature of elementary
particles.

Electromagnetically thin conductive media, be it two-
dimensional (2D) materials, quantum wells, or inversion
layers in semiconductors, support a special type of electro-
magnetic waves known as two-dimensional plasmons [3–5].
At realistic densities of charge carriers, they can be confined
by ∼102 times compared to the free-space electromagnetic
wavelength in vacuum [6]. This fact motivates their applica-
tion for compact light detectors [7–9] and sources [10,11],
as well as for the observation of zero-point electromagnetic
fluctuation phenomena at the macroscale [12].

Given the above motivation, it is surprising that quanti-
tative Fresnel-type laws of 2D plasmon reflection have not
been derived. The complexity of such derivation stems from
the strong nonlocality of the dynamic equations governing
the wave propagation. As a result of nonlocality, wavelike
solutions break down at the interface of two conductive me-
dia. A conventional scheme of reflectance and transmittance
derivation based on matching the field amplitudes at the in-
terface [13] becomes invalid. A number of works dealt with
approximate reflection laws for 2D plasmons using numerical
techniques [14–17] and simulators [18], yet exact expressions
for reflectance and transmittance have not been obtained.

Here, we resolve this complexity by a direct solution of
the scattering integral equation in a piecewise-uniform 2D
medium with the Wiener-Hopf technique. The latter was
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widely applied to the diffraction problems at semi-infinite
objects (wedges [19], waveguide terminations [20], and
others). It was used many years ago in the problem of surface
wave reflection at the normal incidence between metals with
dissimilar surface impedances [21] and, quite recently, to 2D
plasmon scattering at normal incidence [22]. A problem of
inclined incidence is more complicated due to the presence of
two nontrivial field projections, wherein two coupled integral
equations are formed [23]. The Wiener-Hopf method is gener-
ally inapplicable in these situations [24]. The latter complexity
is resolved in the quasistatic (potential) approximation. Such
approximation is successfully used to describe the spectrum
of edge magnetoplasmons [25] and similar waves [26–28].

We obtain a full analytical solution for 2D plasmon reflec-
tion and transmission at the interface between 2D electron
systems (2DES) with different conductivities at arbitrary in-
cidence angle α. In addition to the total internal reflection, we
find a certain angle α∗ at which the reflection is minimized.
The reflection falls completely to zero if the wave propagates
in the presence of the ground plane (gated plasmon). This
phenomenon may look similar to the Brewster effect in optics,
but has a different origin. At this angle α∗, the incident and
transmitted waves cause no accumulation of charge at the
interface; hence, no physical reason for reflection appears.
For nongated plasmons, the reflection coefficient has a non-
trivial phase shift which becomes large in the case of gliding
incidence.

We proceed to the solution of the scattering problem
schematically shown in Fig. 1(a). The plasmon is incident
from the left section, with conductivity σL, at the boundary
with the right section, with conductivity σR, at angle α. It
causes reflected (r) and transmitted (t) waves. All wave char-
acteristics (potential ϕ, current density j) are harmonically
varying in time as e−iωt ; this time-dependent term will be
skipped. The frequency dependence of conductivity σ (ω) can
be arbitrary. The only requirement is that σ has a large positive
imaginary part such that transverse-magnetic 2D plasmons are
well defined.
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FIG. 1. (a) Schematic of the problem: A 2D plasmon (red) is
incident from the left on the conductivity step from σL to σR, causing
a reflected wave (green) and a transmitted wave (blue). Incidence
angle is α; refraction angle is α′. (b) Analytic structure of the Fourier-
transformed scattering equation. The dielectric functions εL/R(qx )
have branch cuts starting at ±iqy and running to ±i∞. They have
simple zeros at wave vectors of the incident, transmitted, and re-
flected waves, qx = {qi, qt , qr}. The “incident” zero is compensated
by the pole of the Fourier-transformed incident potential (shown with
hollow circle).

The governing equation for electric potential �(r) in the
2D plane can be presented symbolically as

�(r) = L[�], (1)

where L[·] is the integro-differential linear operator linking
the potential created by charges in 2DES to the nonuniform
field producing these charges,

L[ f ] = 1

iω

∫
d2r′G(r − r′)∇r′[σ (r′)∇r′ f (r′)]. (2)

Above, G(r) = |r|−1 − |r2 + 4d2|−1/2 is the Green’s function
of the electrostatic problem, d is the distance to the screening
plate (gate), and σ (r) is the distribution of 2D conductivity,
σ (r) = σLθ (−x) + σRθ (x).

To solve the scattering problem, we split the full poten-
tial into the incident and scattered fields, � = ϕi + ϕ. We
choose the incident field as a semibounded plasma wave
ϕi(r) = ϕi exp(iqix + iqyy)θ (−x). After such decomposition,
the governing equation for scattered fields ϕ takes the form

ϕ(r) = {L[ϕi] − ϕi(r)} + L[ϕ]. (3)

We recognize that the term in curly brackets is equivalent to
the “external source” creating the scattered field. From now
on, the solution of the scattering problem for 2D plasmons
will not be much different from the solution of half-plane
diffraction problems under external free-space illumination
that have been extensively studied [19,29–31].

We apply two subsequent Fourier transforms to Eq. (3).
The first one with respect to the y coordinate is trivial. The
emerging wave vector qy will be considered as an indepen-
dent variable of the problem, the conserved y component
of plasmon momentum. Further on, we split the scattered
potential into the “left” and “right” functions, ϕqy (x) =
ϕL(x)θ (−x) + ϕR(x)θ (x), and apply the second Fourier
transform F [ϕ](qx ) = ∫ +∞

−∞ ϕ(x)e−iqxxdx with respect to the
x coordinate. This leads us to the fully Fourier-transformed
scattering problem,

εL(qx )[ϕi(qx ) + ϕL(qx )] + εR(qx )ϕR(qx )

= qx

ω
G(q)[σR − σL]ϕ0, (4)

where we have introduced the effective 2D dielectric functions
of the left and right media,

εα (qx ) = 1 + iσα

ω
q2G(q), α = {L, R}, (5)

and the Fourier-transformed Green’s function of the electro-
static problem, G(q) = 2πq−1(1 − e−2qd ), q = [q2

x + q2
y ]1/2.

The term on the right-hand side containing the value of the
real-space potential at the boundary, ϕqy (0) ≡ ϕ0, has emerged
due to the discontinuous electric field.

The solution of (4) is based on the inspection of the analytic
properties of the emerging functions in the plane of the com-
plex qx variable and is given in the Supplemental Material,
Sec. I [32]. The main property is that two functions F+(qx )
and F−(qx ), being analytic in the upper and lower half-planes
and identical in the stripe | Im qx| < δ, should be equal to a
polynomial of complex qx. This polynomial degenerates to
zero if we require finiteness of potentials at infinity. Such
splitting of Eq. (4) is quite straightforward if we know the
decomposition of dielectric function εα (qx ) = ε+

α (qx )ε−
α (qx )

into the functions that are analytic and free of zeros in the
upper (+) and lower (−) half-planes. In any case, it can be
achieved with the general formula

ε±
α (qx ) = exp

{
± 1

2π i

∫ +∞

−∞

ln εα (u)du

u − qx ± i0+

}
. (6)

The direct numerical integration in Eq. (6) is complex due to
the slow convergence at infinity and due to the presence of
dielectric function zeros generating the singularities of ln ε.
Both difficulties can be successfully handled as described in
the Supplemental Material, Sec. II [32].

The result of splitting for the scattering equation (4) reads

[M+(qx ) − M+(qi )]ϕi(qx ) + M+(qx )ϕL(qx ) − i
ϕ0

2
L+(qx )

= −M+(qi )ϕi(qx ) − M−(qx )ϕR(qx ) + i
ϕ0

2
L−(qx ), (7)

M+(qx ) = ε+
L (qx )

ε+
R (qx )

, M−(qx ) = ε+
R (qx )

ε+
− (qx )

, (8)

L±(qx ) = ± M±(qx )

qx ± iqy

± M±(qx ) − M±(±iqy)

qx ∓ iqy

∓ M∓(∓iqy)

qx ± iqy

.

(9)

The left- and right-hand sides of such equation are now an-
alytic in the upper and lower half-planes, respectively. They
are identical in the stripe | Im qx| < Im qi, where Im qi is the
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decay constant of the incident wave (which can approach zero
in the final result). Hence, both sides are identically zero,
which yields the solution for the scattering problem in the
Fourier space,

ϕL(qx ) = M−1
+ (qx )

{
i
ϕ0

2
L+(qx ) − [M+(qx ) − M+(qi )]ϕi(qx )

}
,

(10)

ϕR(qx ) = M−1
− (qx )

{
i
ϕ0

2
L−(qx ) − M+(qi )ϕi(qx )

}
. (11)

A remaining problem is to link the real-space poten-
tial at x = 0, ϕ0, to that in the incident wave, ϕi. This
is achieved by evaluating the inverse transform ϕL(0−) =
π−1 limx→0−

∫ +∞
−∞ ϕL(qx )eiqxxdqx and solving a simple self-

consistency system. This leads to

ϕ0 = 2ϕi
M+(qi )

M+(iqy) + M−(−iqy)
, (12)

and completes the formal solution.
The real-space fields ϕL(x) and ϕR(x) are evaluated by in-

verse Fourier transforms of (10) and (11). The spatial structure
of the fields becomes transparent if we close the integration
path in the expressions for inverse Fourier transforms in the
upper half plane (UHP) (for “right” fields) and in the lower
half plane (LHP) (for “left” fields), as shown in Fig. 1(b). The
contribution to ϕL/R(x) from the integration path enclosing the
branch cuts of the dielectric function emanating at qx = ±iqy

yields the evanescent fields localized near the boundary. These
fields decay at the distance �x ∼ q−1

y from the edge. It is the
presence of evanescent fields which renders the plane-wave
matching procedure for the derivation of the plasmons’ re-
fraction laws inapplicable. The contribution to ϕL/R(x) from
residues at the poles qx = qr and qx = qt yields the amplitudes
or transmitted and reflected plasmons, respectively,

r = M+(qi )

∂M+/∂qx|qx=qr

{
1

qr − qi
− qr

q2
r + q2

y

− iqy

q2
r + q2

y

M2
+(iqy) − 1

M2+(iqy) + 1

}
, (13)

t = 1

∂M−/∂qx|qx=qt

{
M+(qi )

qt − qi
− M+(qt )

[
2qt

q2
t + q2

y

− iqy

q2
t + q2

y

M2
−(−iqy) − 1

M2−(−iqy) + 1

]}
. (14)

Equations (13) and (14) represent the central result of this pa-
per. To check its correctness, we note that for small separation
between the gate and 2DES, qd 	 1, the dielectric function
εG
α (qx ) has a very simple analytic structure. Namely, εG

α (qx ) =
1 − (q2

x + q2
y )/q2

pα , where q2
pα = iω/4πdσα , α = {L, R}, is

the absolute value of the plasmon wave vector. The factor-
ization of such dielectric function is immediately achieved,

εG
α (qx ) =

√
q2

pα − q2
y − qx

qpα

√
q2

pα − q2
y + qx

qpα
. (15)

FIG. 2. Computed reflectances |r| and reflection phases argr for
a two-dimensional plasmon incident from the medium with high
conductivity to the medium with low conductivity (ImσL > ImσR,
qpL < qpR). Solid lines represent the result for nongated plasmons,
while dashed lines correspond to gated 2D plasmons.

Introducing (15) into (13), we get very simple refraction laws
for gated plasmons,

rG =
q2

pL

√
q2

pR − q2
y − q2

pR

√
q2

pL − q2
y

q2
pL

√
q2

pR − q2
y + q2

pR

√
q2

pL − q2
y

. (16)

The same result is obtained in a simpler fashion by matching
the potential and current across the boundary. The matching
approach is correct for strong gate screening, where electro-
statics become local. Hence, the identity of the Wiener-Hopf
result with the wave matching result in the gated case serves
as a check for this complex method. On the other hand, the
matching approach does not apply to the nongated plasmons,
and we have to deal with full Wiener-Hopf expressions for
reflection (13) and transmission (14).

The computed reflection coefficient, according to Eq. (13),
is shown in Figs. 2 and 3, for both the absolute value and
phase. Expressing the parameters of the left and right 2DES
sections through the respective absolute values of plasmon
wave vector qpL and qpR, we can present the result in unified
fashion for nongated and gated plasmons. These are shown
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FIG. 3. Computed reflectances |r| and reflection phases argr for
a two-dimensional plasmon incident from the medium with low
conductivity to the medium with high conductivity (ImσL < ImσR,
qpL > qpR). Solid lines represent the result for nongated plasmons,
while dashed lines correspond to gated 2D plasmons.

with solid and dashed lines, respectively. It is possible to
show that absolute reflectance falls to zero for gated plas-
mons at the incidence angle α∗, satisfying the Brewster-type
condition,

tan α∗ = qpR

qpL
. (17)

For nongated plasmons, the reflectance (13) has a dip not
reaching zero, but becoming more pronounced for smaller
“contrast” of left and right sections. A similar dip was ob-
served in electromagnetic simulations [18].

It is tempting to associate a dip in transmission with
the Brewster effect in conventional optics. In that case, the
reflected wave vector should be codirectional with the light-
induced dipole moment in the medium no. 2, but the dipole
intensity in such direction turns to zero. Such explanation
does not apply in the case of 2D plasmons, which have an
electric vector parallel to the propagation direction. The dipole
emission intensity is thus always nonzero in the direction of
the 2D plasmon reflection. Finally, the concept of canonical
dipole radiation does not apply to 2D plasmons treated in the
nonretarded approximation, c → ∞.

A careful analysis shows that the induced charges at the
boundary of two 2DES sections do not appear at all at the

nonreflection angle α∗. More precisely, the magnitudes of
surface currents j in the incident and transmitted wave are fine
tuned to cause no linear charge accumulation at the boundary.
As a result, no physical stimulus appears for the reflection. To
prove this viewpoint, we rewrite the no-reflection conduction
(17) via conductivity and wave vector

σLqi = σRqt . (18)

This is precisely the condition of current continuity jx =
−σ (x)ϕ′(x) between the incident and transmitted waves. In-
voking the charge continuity equation, −iωρ + (∇ · j) = 0,
we observe that continuity of the current implies the absence
of line charge.

Interestingly, the reflection dip for nongated plasmons
never reaches zero. This fact is linked to the emergence of
evanescent fields near the interface. As a result, some charge
accumulation in the boundary layer should appear for non-
gated plasmons, even despite the fulfillment of the current
matching condition (18). The latter condition applies only to
the plane-wave part of the solution, and does not include the
evanescent fields.

The second important property of nongated plasmon re-
flection, illustrated in Fig. 2(b), is the nontrivial reflection
phase shift. It is different from zero and π , and grows mono-
tonically with increasing the angle of incidence. The case of
gated plasmons, shown in the same figure with dashed lines,
demonstrates a simpler behavior. The phase shift changes
here stepwise between zero and π at the nonreflection an-
gle α∗. The latter situation is analogous to the reflection of
p-polarized waves near the Brewster angle, though the origin
of nonreflectance here is completely different.

The minimization of reflection for nongated plasmons, and
its full absence for gated plasmons, also persists for incidence
from the medium with low conductivity to the medium with
high conductivity. As illustrated in Fig. 3, plotted for this
case, the reflectance dip occurs at angles slightly below the
angle of total internal reflection, αtir . The variation of both
the amplitude and phase of reflection is remarkably abrupt
between α∗ and αtir . These strong variations would result
in pronounced Goos-Hanchen shifts for the reflected waves
[33]. In our particular 2D setup, Goos-Hanchen shift can be
interpreted as the excitation of leaky interedge plasmons [34].
From a practical viewpoint, abrupt phase variations can be
used for sensing applications, wherein the identified object
modifies the properties of 2D conductivity [35].

The obtained solution of the scattering problem is generic
and applies to arbitrary 2DES once their complex conductivity
σ at the incident wave frequency ω is known. The functional
dependence σ (ω) is not limited to the Drude model and, if
necessary, may be invoked from quantum models [36] or from
experiment [37,38]. The inclusion of nonlocal conduction
effects is more challenging, yet is formally possible within
the hydrodynamic approach to electron transport [39]. Within
such an approach, it is possible to study the effects of elec-
tron diffusion, viscosity [39], and dc bias current [40] on the
plasmon reflection at the boundary. The effect of dc current
is particularly interesting as it can lead to amplified wave re-
flection [41]. Such extensions require considerable analytical
effort. Yet, we anticipate that the resulting expressions for r
and t would be expressed via two split functions, ε±(qx ), and
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the complexity of their numerical evaluation would amount to
a single one-dimensional integration.

Once the reflection coefficients of 2D plasmons at a single
boundary are known, more complex 2D optical elements can
be computed and designed. As an example, the reflection and
transmission by a stripe in 2DES with conductivity contrast
can be computed using the quasi-optical approach. Such stripe
can be considered as a 2D analog of a Fabry-Perot cavity
(notch filter for 2D waves) and also as a waveguide for 2D
plasmons. The spectrum of plasmons in such a waveguide
qy(ω) can be inferred from the poles of the transmission
amplitude. We can foresee that guided mode spectra for 2D
plasmons would differ from the analogous spectra for 3D
electromagnetic waves due to the nontrivial reflection phase
shift. Applications of 2D plasmonic waveguides can be sug-
gested for ultracompact on-chip signal transmitters [42], while

2D cavities formed by stripes with alternating doping are
already applied for ultralong-wavelength radiation detection,
emission, and modulation [11,43,44]. Further extensions of
our computational method can be applied to cavities formed
by the gating of 2DES [45–47].

The obtained reflection and transmission coefficients can
also be applied for the design of 2D optical structures with
curved boundaries, once the curvature radius exceeds the
wavelength. A curved boundary in 2DES can act as a lens for
2D plasmons. Again, the focal distance of such a lens would
have a nontrivial dependence on the refractive index due to the
plasmon phase shift at a single boundary.

This work was supported by the Russian Science Founda-
tion (Grant No. 21-72-10163).
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