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General scattering and electronic states in a quantum-wire network of moiré systems
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We investigate electronic states in a two-dimensional network consisting of interacting quantum wires, a model
adopted for twisted bilayer systems. We construct general operators which describe various scattering processes
in the system. In a twisted bilayer structure, the moiré periodicity allows for generalized umklapp scatterings,
leading to a class of correlated states at certain fractional fillings. We identify scattering processes which can
lead to an insulating gapped bulk with gapless chiral edge modes at fractional fillings, resembling the quantum
anomalous Hall effect recently observed in twisted bilayer graphene. Finally, we demonstrate that the description
can be useful in predicting spectroscopic and transport features to detect and characterize the chiral edge modes
in the moiré-induced correlated states.
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Moiré bilayer structures provide a platform for strongly
correlated systems, where unconventional states of matter
emerge [1–4] as a consequence of flat energy bands [5]. Since
the discovery of correlated insulating states and superconduc-
tivity in twisted bilayer graphene (TBG) [6,7], various exotic
states or features have been observed [8], including nematic-
ity [9–12], pressure-enhanced superconductivity [13], strange
metal [14,15], cascade of transitions [16,17], orbital mag-
netism [18,19], independent superconducting and correlated
insulating states [20–22], fragile correlated states against twist
angle disorder [23], entropy-driven phase transition [24,25],
unconventional superconductivity [26], and spin-orbit-driven
ferromagnetism [27].

In addition to features that resemble existing strongly
correlated systems such as cuprates and iron-based supercon-
ductors, there are observations suggesting the existence of
topological phases. Specifically, nonlocal transport demon-
strated the presence of chiral edge modes at 3/4 filling in
TBG [28], accompanied by the quantization of Hall resistance
at zero magnetic fields [29]. More recent studies revealed
a series of quantum anomalous Hall or Chern insulators
with Chern numbers C = ±1,±2, and ±3 at ±3/4,±1/2,
and ±1/4 fillings, respectively [30–32]. Furthermore, there
is experimental indication of a many-body origin for the
topological phases [27,30–36]. The observations on vari-
ous electronic states motivated theoretical studies on TBG
[37–53] and the development of moiré electronics, including
structures beyond bilayers [54–63] and materials other than
graphene [64–69].

A major theoretical challenge in strongly correlated moiré
systems involves incorporating many-body effects with nu-
merous atoms due to the large moiré unit cell. It is thus
crucial to identify the relevant degrees of freedom to construct
an effective model for efficient quantitative analysis. Re-
markably, correlated phenomena in TBG can be investigated

in the context of (Tomonaga-)Luttinger liquids, which inher-
ently includes electron-electron interactions [70–72]. Specif-
ically, in the presence of an interlayer potential difference,
one-dimensional channels emerge at domain walls between
AB- and BA-stacking regions [73–75] and form a trian-
gular quantum-wire network illustrated in Fig. 1; we also
note spectroscopic [9–11,76,77] and transport [78] features
of the domain-wall network [79]. These findings motivated
theoretical studies on network models based on Luttinger
liquids [80–84], reminiscent of earlier works on (crossed)
sliding Luttinger liquids proposed for cuprates [85–88] and

FIG. 1. Moiré pattern and quantum-wire network of the TBG.
When two graphene monolayers (orange) are stacked with a mis-
alignment, there appears a moiré pattern with the wavelength λ =
a0/[2 sin(θ/2)], monolayer lattice constant a0, and the angle θ be-
tween the layers. The moiré pattern results in three sets of parallel
quantum wires, plotted in distinct colors and labeled by j, with the
interwire distance d = √

3λ/2.
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the coupled-wire constructions of various quantum Hall states
[89–99]. From a different perspective, moiré systems provide
mesoscopic realizations of coupled-wire systems originally
proposed for entirely distinct systems [85–88].

In this work, we extend the network models [80–84] to
explore the possibility of topological phases in moiré sys-
tems. We construct operators describing general scattering
processes based on conservation laws and investigate the
resulting electronic states. In moiré structures, the periodic
potential allows for generalized umklapp scatterings, which
lead to correlated states at fractional fillings. Remarkably, we
identify processes that lead to a gapped bulk with gapless
modes along the edges, resembling the observed Chern in-
sulators in TBG [28–35]. Furthermore, we demonstrate that
this description can be useful by making concrete predic-
tions for spectroscopic and transport features. In addition to
TBG, our mechanism can apply to other nanoscale systems
forming arrays of one-dimensional channels, such as twisted
moiré bilayers formed by WTe2 [100] or topological insula-
tors [101,102], as well as strain-engineered graphene [103].

Bosonization. We introduce the fermion field ψ
( j)
�mσ with the

array index j ∈ {1, 2, 3}, wire index m ∈ [1, N⊥] within each
array, the index � ∈ {R ≡ +, L ≡ −} labeling the moving di-
rection, and spin σ ∈ {↑≡ +,↓≡ −}; see Fig. 2. The fermion
field can be bosonized as

ψ
( j)
�mσ (x) = U j

�mσ√
2πa

ei�kF x

× e
−i√

2

[
�φ

j
cm (x)−θ

j
cm (x)+�σφ

j
sm (x)−σθ

j
sm (x)

]
, (1)

with the Klein factor U j
�mσ , short-distance cutoff a, local co-

ordinate x, Fermi wave vector kF (identical for all wires), and
the index ξ ∈ {c ≡ +, s ≡ −} for the charge/spin sector of
the boson fields φ

j
ξm and θ

j
ξm, satisfying

[
φ

j
ξm(x), θ j′

ξ ′m′ (x′)
] = i

π

2
sgn(x′ − x)δ j j′δξξ ′δmm′ . (2)

Below we omit the Klein factor and x whenever possible.
The unperturbed Hamiltonian H0 + Hfs describes a crossed

sliding Luttinger liquid at the fixed point [82], with the
kinetic energy H0 and marginally relevant forward scatter-
ing terms Hfs quadratic in the density operator ∝ ∂xφ

j
cm.

In addition, there exist intrawire or interwire backscattering
processes, arising from electron-electron interactions and/or
tunnelings, which can destabilize the fixed point character-
ized by the quadratic terms, as those in coupled-wire systems
[89–99]. Since the bandwidth W serves as high-energy cutoff
[104], the dimensionless coupling g/W , with the strength g
characterizing a general scattering, takes a larger value in
(quasi-)flat-band systems, allowing for higher-order scatter-
ings to play a more significant role. As in Refs. [89,95], we do
not specify Hfs; for demonstration, a specific model [82,85–
88] is presented in the Supplemental Material (SM) [105].
Below we construct operators describing general scatterings,
including higher-order processes (previously discussed in
multiband wires [106,107]), and discuss the resulting elec-
tronic states.

FIG. 2. Quantum-wire network in a moiré structure. Left: For
each wire, we define the local coordinate x and fermion fields ψ�mσ ,
which experience a periodic potential V (x) generated by the moiré
structure. Right: Each array consists of parallel wires with the chem-
ical potential μ and Fermi wave vector kF , where we linearize the
energy dispersion and bosonize the fields with Eq. (1).

General scattering operator. We consider the operator

O{
s j
�pσ

} =
N⊥∑

m=1

∏
p=0

3∏
j=1

[
ψ

( j)
R(m+p)↑

]s j
Rp↑[ψ ( j)

L(m+p)↑
]s j

Lp↑

× [
ψ

( j)
R(m+p)↓

]s j
Rp↓[ψ ( j)

L(m+p)↓
]s j

Lp↓ , (3)

where the subscript {s j
�pσ } denotes an integer set for all values

of ( j, �, p, σ ) with p ∈ integers. The set characterizes O; a
negative value implies Hermitian conjugate: ψ s ≡ (ψ†)|s| for
s < 0. A nonzero s for a given p indicates that the pth nearest
neighbor wires participate in the scattering. While O can in
principle involve any number of wires, physically one expects
s to vanish for large p in systems subject to finite-range inter-
actions.

The operator O describes scatterings within an array
when s is nonzero for a single j value. The corresponding
renormalization-group (RG) relevance condition is given by
�s j

�pσ
< 2, where the scaling dimension �s j

�pσ
is determined

by H0 + Hfs. In a network consisting of crossed wires, interar-
ray scatterings can occur at wire intersections [81,82,87,88],
as characterized by Eq. (3) with nonzero s for multiple j
values. References [81,82] showed that such scatterings can
induce superconducting and insulating phases in moiré bilay-
ers. However, the RG relevance condition in this case is more
stringent: �s j

�pσ
< 1, since the corresponding operator en-

ters the effective action without involving the spatial integral
[105]. Furthermore, the interarray scatterings are independent
of the filling factor. To explore correlated states from more RG
relevant scatterings, below we examine scatterings within an
array and suppress j.

We start with the constraints on possible s�pσ values. In the
absence of proximity-induced “external” pairing, the global
particle number or charge is conserved, giving∑

p,σ

(sRpσ + sLpσ ) = 0. (4)

For clean systems, the momentum conservation gives addi-
tional constraint. Here, the moiré structure plays an important
role, as it creates a periodic potential, which partially relaxes
the constraint from the momentum conservation. As illus-
trated in Fig. 2, electrons experience a moiré potential with
a spatial period of λ. This leads to a generalized condition for
momentum conservation,

kF

∑
p,σ

(sRpσ − sLpσ ) = 2π

λ
× integer, (5)

which allows us to organize O{s�pσ } into two categories.
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In the first category, scatterings are allowed for any kF

independent of the filling factor, provided that the coefficients
satisfy ∑

p,σ

(sRpσ − sLpσ ) = 0. (6)

Together with the constraint in Eq. (4), we get∑
p,σ

sRpσ =
∑
p,σ

sLpσ = 0, (7)

meaning that the numbers of the left- and right-moving parti-
cles are individually conserved. We refer to these processes as
conventional scatterings, which characterize electronic states
corresponding the “crystalline states” in Ref. [89].

At certain fillings, on the other hand, another category of
scatterings can take place even when Eq. (6) is not fulfilled.
The momentum difference due to the number imbalance be-
tween the left- and right-moving particles can be compensated
by the “crystal momentum” proportional to the reciprocal lat-
tice vector 2π/λ. With Eqs. (4)–(5) and the relation between
the filling factor and Fermi wave vector ν = kF λ/π [104], we
get a condition on the filling factor,

ν = P∑
p,σ sRpσ

, (8)

with a nonzero integer P. In our description, ν = 1 corre-
sponds to 4 electrons per moiré unit cell in TBG [81,82].
Since these processes are feasible owing to the presence of
the moiré periodic potential, in analogy to Refs. [104,108],
we refer to the second category as moiré umklapp scatterings
and the corresponding states of matter moiré correlated states.

For both categories, the bosonization in Eq. (1) gives

O{s�pσ } =
∑
m=1

exp

{
i√
2

∑
p

[Sp,cφc(m+p) + S̄p,cθc(m+p)

+ Sp,sφs(m+p) + S̄p,sθs(m+p)]

}
, (9)

with the coefficients

Sp,ξ = sLp↑ − sRp↑ + ξ (sLp↓ − sRp↓), (10a)

S̄p,ξ = sLp↑ + sRp↑ + ξ (sLp↓ + sRp↓). (10b)

The global charge conservation requires
∑

p S̄p,c = 0. The
momentum conservation requires

∑
p Sp,c = 0 for conven-

tional scatterings and ν
∑

p Sp,c = 2P for moiré umklapp
scatterings. If the charge (spin) is conserved for a fixed p,
the coefficient S̄p,c (S̄p,s) vanishes. While there is in general
no constraint on S̄p,s, for simplicity we choose S̄p,s = 0, as
operators with nonzero S̄p,s are typically less RG relevant.

The conventional scatterings fulfilling Eq. (7) include
charge-density-wave couplings, Josephson couplings, and
hoppings. They lead to charge density wave, superconducting,
and Fermi liquid states, respectively [105]. In addition, the
twisted structure enables moiré umklapp scatterings, which
we discuss below.

Moiré correlated states. The moiré umklapp scatterings can
be further categorized into four types, depending on whether
they involve multiple wires, whether they involve scatterings
between wires, and whether they conserve the particle number

(b)

(a)

(c) (d)

FIG. 3. Examples for moiré umklapp scatterings at ν =
P/4. (a) Oi, characterized by Eq. (3) with (sR0σ , sL0σ ) =
(2, −2). (b) Oii, with (sR0σ , sL0σ , sRnσ , sLnσ ) = (1, −1, 1, −1).
(c) Oiii, with (sR0σ , sL0σ , sRnσ , sLnσ ) = (1, −1, 1, −1). (d) Oiv, with
(sR0σ , sL0σ , sRnσ , sLnσ ) = (2, 0, 0, −2). Here we illustrate processes
that are invariant upon changing the spin sign; see Table S1 for more
general cases [105].

for each wire. While the operator in Eq. (3) describes general
processes at fractional fillings in Eq. (8), below we provide
specific examples allowed at ν = P/4.

We start with processes involving only single wires and
denote the corresponding operator as Oi. In Fig. 3(a), we
illustrate the process with nonzero coefficients, (sR0σ , sL0σ ) =
(2,−2) for both σ = ↑ and σ = ↓. The example describes
a process where four electrons at kF are backscattered to
−kF , with the total momentum difference 8kF = 4ν × (2π/λ)
compensated by the moiré potential. Next, there are umklapp
processes involving multiple wires with correlated intrawire
scatterings, labeled as Oii. The simplest case involves two
nth nearest neighboring wires, with an example in Fig. 3(b);
we note that the number of backscatterings in each wire can
be different. Furthermore, we have Oiii involving interwire
scatterings while still conserving the particle number for each
wire. As mentioned above, the latter constraint implies S̄p,c =
0 for any p, as in the case for Oi and Oii. For instance,
in Fig. 3(c) we show a process involving two nth nearest
neighbor wires. Finally, allowing for processes which do not
conserve the particle number for some wires, we have Oiv,
with S̄p,c 
= 0 for some p. In Fig. 3(d) we plot a two-wire
process. In addition to the depicted examples, we present the
moiré umklapp scatterings in Table S1 in the SM [105], cov-
ering a broader range of fillings and higher-order processes.

For Oi, Oii, and Oiii, one can obtain a sum of sine-Gordon
terms upon bosonization. Taking Fig. 3(a) as an example, we
have Oi + O†

i ∝ ∑
m cos (4

√
2φcm). When the corresponding

operator is RG relevant, it gaps out all the φcm fields and
leads to a correlated insulating state at fractional fillings. In
the strong-coupling limit, φcm is pinned to a minimum of
the cosine. A kink excitation corresponds to a tunneling pro-
cess between two neighboring minima, where φcm changes its
value by ±π/(2

√
2). We find that the system hosts fractional

excitations with charge ±e/2 associated with the kink. In
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contrast to the first three types, the states resulting from Oiv

can host gapless edge modes, which we demonstrate next.
Chiral edge modes. We consider Oiv scattering involving

the nth nearest neighbor wires, which allows us to keep only
a few nonzero coefficients in Eq. (10); i.e., Sn,c = S0,c and
S̄n,c = −S̄0,c. To proceed, we introduce chiral fields ��m =
−�φcm + f θcm with f = −S̄0,c/S0,c, which satisfy

[��m(x),��′m′ (x′)] =i�πδ��′δmm′ f sgn(x − x′). (11)

The transformation leads to

Oiv + O†
iv ∝

∑
m=1

cos

{
S0,c√

2
[�L(m+n) − �Rm]

}
. (12)

The expression indicates the presence of n gapless chiral
modes �L,1, . . . , �L,n at one edge and, similarly, n gap-
less right-moving modes at the opposite edge. To proceed,
we define �̃m,n = [�L(m+n) − �Rm]/2 and get Oiv + O†

iv ∝∑
m=1 cos (

√
2S0,c�̃m,n). Using Eq. (11), it can be shown that

the �̃m,n fields for any m commute [105], gapping out the bulk
modes in the interior of the system. Similar to the correlated
states induced by Oi-Oiii, the system hosts fractional excita-
tions, with charge ±2e/S0,c. We expect formation of chirality
domains, hosting gapless chiral modes at domain walls [105].
While the formation of domain walls costs energy, (disorder-
induced) local magnetic moments can trigger their formation,
which increases the entropy and therefore lowers the free
energy at finite temperatures. Remarkably, a finite magnetic
field is required to train domains in order to stabilize edge
modes with a definite chirality in micrometer-size samples
[28,29].

Using the Landauer-Büttiker formalism [109–112], we ob-
tain quantized Hall resistance h/(ne2). For n = 1 and ν =
3/4, it leads to a value of h/e2, as observed in Ref. [29]. In
consequence, the system exhibits quantum anomalous Hall
effect with chiral edge modes and fractional excitations. We
note that it is possible to reproduce a sequence of Chern
insulating states with C = ±1,±2, and ±3 (corresponding to
n here) at fillings ν = ±3/4,±1/2, and ±1/4, respectively.
The complete sequence was observed in Refs. [30–32], while
a partial set was reported in Refs. [27–29,33–36].

To demonstrate that Oiv can be RG relevant, we compute
its scaling dimension and get [105]

�iv = 1

2
|S0,cS̄0,c|

(
1 + 2U

h̄v0

)− 1
2

, (13)

with the q ∼ 0 Fourier component U of the density-density
interaction and the velocity v0. In consequence, for a given
scattering process, the RG relevance condition �iv < 2 is
fulfilled for sufficiently large U .

Experimental signatures. The predicted chiral edge modes
can be characterized by spectroscopic and transport measure-
ments. For simplicity we consider a moiré correlated state
hosting a single edge mode [105]. Utilizing scanning tunnel-
ing spectroscopy, one can probe the local density of states,
which follows a universal scaling curve for energy ε and
temperature T ,

ρ(ε) ∝ T
1
f −1 cosh

(
ε

2kBT

)∣∣∣∣�
(

1

2 f
+ i

ε

2πkBT

)∣∣∣∣
2

. (14)

FIG. 4. QPC setups for systems in a moiré correlated state with
a gapped bulk (orange) and gapless chiral edge modes (green). The
setup (a) allows for tunnel current It . The setup (b) leads to backscat-
tering current Ib and conductance correction δG.

In contrast to carbon nanotubes [113,114] or helical liquids
[115,116], the scaling exponent here does not depend on Hfs,
demonstrating the topological nature of the chiral edge modes.

Alternatively, one can probe the chiral edge modes via
charge transport [117–122]. Specifically, we consider two se-
tups employing quantum point contacts (QPCs). The setup
in Fig. 4(a) allows for interedge tunneling with a current
described by another universal scaling formula,

It ∝ T
2
f −1 sinh

(
eV

2kBT

)∣∣∣∣�
(

1

f
+ i

eV

2πkBT

)∣∣∣∣
2

, (15)

with bias voltage V . On the other hand, the interedge
backscattering in Fig. 4(b) leads to power-law correction
in the (differential) conductance with the magnitude |δG| ∝
max(eV, kBT )2 f −2. Unlike fractional quantum Hall states
[117–121], the scaling exponents depend on f here, but not
directly on the filling factor ν. The same QPC geometry
can be used to detect fractional charges through shot noise
[123–125].

As a remark, while the theoretical works establishing a
quantum-wire network in moiré bilayers [73,75] involve a
sufficiently large interlayer potential difference, achievable
via voltage gates, we expect that the network can form under
broader conditions [9–11,76–78]. Namely, a spectral gap can
be generally induced in graphene-based devices through cou-
pling to other layered materials or substrates, depending on
their stacking configurations [27–29,36,126–130]. Therefore,
a gap with a spatially dependent sign can be achieved through
nanoscale engineering [82,103,131], leading to a network of
gapless domain walls that separate regions with opposing gap
signs.

Finally, we point out that, through the proposed exper-
imental verification, the system can reveal the long-sought
intrinsic fractional quantum anomalous Hall states, where
topology and many-body physics interplay. Upon inducing
superconductivity (e.g., by proximity), moiré correlated states
hosting fractional edge modes provide a platform to stabilize
parafermion edge or zero modes [132–141] even without mag-
netic fields.
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