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Quantum valley and subvalley Hall effect in large-angle twisted bilayer graphene
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We study the quantum valley Hall effect and related domain wall modes in twisted bilayer graphene at a large
commensurate angle. Due to the quantum valley and subvalley Hall effect, a small deviation from the com-
mensurate angle generates two-dimensional conducting network patterns composed of one-dimensional domain
walls, which can host non-Fermi-liquid behavior within an accessible temperature range. The domain wall modes
can be manipulated using an external electric field and layer shifting, manifesting the physics of the celebrated
Haldane and Semenoff models for the subvalley Dirac cones, living on the domain walls. These findings open
up an alternative direction towards realizing the emergence and manipulation of topological quantum valley and
subvalley Hall states and possible applications in valleytronics. Our theory can be generalized to many twisted
bilayer systems, including twisted graphene, twisted α-graphene, and twisted kagome bilayers at large-angle
rotation.
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Introduction. Small-angle twisted bilayer graphene (TBG)
has become an active research avenue after the discovery of
various correlated states such as superconductor, Mott in-
sulator, quantum fractal phase, etc. [1–17]. Many of these
intriguing phenomena appear at certain rotation angles, coined
magic angles, at which the electronic kinetic energy is mini-
mized [18–21]. Interestingly, contrary to the early prediction
of layer decoupling at large twist angles [22], recent studies
have observed fascinating physical properties arising from
interlayer coupling even at large rotation angles, including
higher-order topology [23,24], geometrical frustration [25],
flat bands [25], hypermagic angles [26], and nontrivial optical
response [27].

The low-energy band structure of large-angle TBG is
crucially affected by the higher-order Fourier components
of the interlayer coupling [28,29]. Explicitly, according to
Refs. [28,29], commensurate-angle TBGs can be classified
into sublattice-exchange-odd (SEO) and sublattice-exchange-
even (SEE) configurations. SEE has only one stacking
configuration, similar to AA-stacked bilayer graphene (BLG);
hence we call it the effective AA (EAA) structure. The energy
spectrum of EAA possesses gapped band structures that host
crystalline and higher-order topological insulators [23,24]. In
contrast, SEO can have two types of stacking structures simi-
lar to the Bernal-stacked BLG. We name them the effective
AB (EAB) and effective BA (EBA) configurations, respec-
tively. One fascinating phenomenon observed in AB and BA
BLG is the quantum valley Hall effect (QVHE) [30–43].
Considering the extensive research activities involving the
QVHE and its great potential for device applications, it is
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highly desirable to extend related topological phenomena to
other two-dimensional material setups. Especially, if such a
valley-dependent functionality can also be achieved in twisted
BLG, the tunability of the twisted structure would facilitate
further rapid development of valleytronics applications.

In this Research Letter, we study the valley-dependent
topological properties of TBG with a large twist angle.
In particular, we establish the bulk-edge or bulk-domain
wall correspondence using theoretical models and realistic
ab initio computations based on density functional theory
(DFT; see Supplemental Material (SM) [44] for the compu-
tational details). We found that an out-of-plane electric field
(E-field) opens up a topological gap in EAB and EBA TBG.
In the presence of U(1) valley symmetry (i.e., without valley
mixing), EAB TBG and EBA TBG support gapless domain
wall (DW) modes between two distinct configurations with
different valley Chern numbers (VCNs). The VCN Cv is de-
fined as integrating the Berry curvature around a given valley.
This QVHE and its DW modes can be tuned by applying an
external E-field, applying a twisting angle, and shifting one
layer with respect to another. We found that the shifting works
as an emergent E-field that competes with the external E-
field to produce subvalley Dirac cones and the corresponding
subvalley Hall effect. This emergent phenomenon is akin to
the topological physics of the Haldane model in single-layer
graphene. Namely, two subvalleys experience a Haldane mass
that emerges from the layer shifting and a Semenoff mass that
is induced by an external E-field. The competition between
these Haldane and Semenoff subvalley masses gives rise to
tunable DW modes in large-angle TBG.

Structure and VCN. In the following, we consider a com-
mensurate angle θ = 38.21◦. However, our conclusions also
remain the same for other large commensurate angles. The
lattice structure of EAB and EAA configurations for 38.21◦
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FIG. 1. The lattice structure of (a) the EAB configuration at twist
angle 38.21◦ and (b) the EAA configuration obtained by a shift d =
{0, 2d0} from the EAB configuration. Blue and red lines represent the
top and bottom layers, respectively. Cyan discs represent the eclipsed
atoms of the two layers. The primitive unit cell is shown by the solid
black line. (c) and (d) Band structures of the EAB structure when
E = 0 (c) and E �= 0 (d). E �= 0 opens up a gap at the K and K ′

valleys. (e) Band structure of the EAA structure. (f) and (g) Berry
curvature distributions of the EAB structure under E > 0 (f) and E <

0 (g). (h) Vanishing Berry curvature of the EAA structure.

is shown in Figs. 1(a) and 1(b). Note that EAA can be con-
structed from EAB by shifting one layer with respect to the
other by a shift vector d = {0, 2d0}. The DFT band structure
of EAB in the absence of an E-field (i.e., E = 0) shows gap-
less quadratic bands touching at each valley K or K ′ of the
superlattice Brillouin zone [see Fig. 1(c)]. However, turning
on the E-field gaps out those quadratic bands touching [see
Fig. 1(d)]. In Figs. 1(f) and 1(g), we plot the Berry curvature
distribution of EAB under ±E , which shows that the gapped
Dirac cones act as the hotspot of the Berry curvature. The
VCN changes its sign upon reversing the direction of the
E-field or changing the valley, i.e., Cv = η sgn(E ) (see SM
for the derivation), where η = ±1 represents the valley index.
In contrast, the band structure of the EAA configuration is
always gapped irrespective of the presence or absence of E
[see Fig. 1(e)]. However, EAA does not show any Berry
curvature because of the underlying C2zT symmetry, where
C2z : {x, y, z} → {−x,−y, z} and T are twofold rotation and
time-reversal symmetries, respectively. This is because C2zT
symmetry enforces the reality of the wave functions and van-
ishing Berry curvature [54–56].

Domain wall modes. In general, gapless modes appear at
the edge or DW between two systems with distinct topological
invariants. As such, we expect the edge or DW modes to
appear at the edges or DW between two configurations with
different VCNs. Also, the presence of opposite VCNs from
opposite valleys forces the edge or DW modes to propagate
with opposite velocities. Furthermore, the absolute change
in the VCN, �Cv = |CA

v − CB
v |, between two regions A and

B is equal to the number of DW modes between those re-
gions. For instance, in Fig. 2(a), we consider a TBG ribbon
with an EAB configuration. We then apply opposite E-fields
on the two sides of the system. In this case, as �Cv = ±2
for the K and K ′ valleys, respectively, the system hosts two
counterpropagating modes in each valley. We numerically
confirm the existence of DW and edge modes in the energy

FIG. 2. Edge and DW modes under different E-field and DW
configurations. The green (blue or red) color represents the DW
(edge) modes. (a) A DW is created in EAB by changing the sign of
E (i.e., +E and −E ) across the system. Wave functions are strongly
localized at the DW (L/2) and edges (0 and L). (b) and (c) Energy
dispersion along the DW and edges near each valley K or K ′ for a
ribbon geometry with periodicity along the DW. (d) and (f) DWs are
created sharply (d) and smoothly (f) between the EAB and EBA (i.e.,
alternate stacking configuration) under +E . Corresponding localized
modes are shown in (e) and (g) for the K valley. (h) and (j) Sharp (h)
and smooth (j) DWs are created between the EAB and EAA under
+E . For the smooth junction in (j), the wave function is localized
near EAB. Corresponding edge and DW states are shown in (i) and
(k) for the K valley. The color bars in (d), (f), (h), and (j) represent
how the DWs are created, sharply or smoothly, between two different
configurations as represented by cyan and magenta colors.

spectrum calculation, where we assume the periodicity along
the boundary between two regions, as shown in Figs. 2(b)
and 2(c); the DW (edge) modes are shown in green (red or
blue) (see SM for details of the tight-binding calculations).
We plot the corresponding wave functions in Fig. 2(a), which
are exponentially localized at the DW and edges, respectively.
The existence of edge states can be explained by the change in
the VCN between EAB or EBA and the vacuum. For instance,
EAB obtains |Cv| = 1 under the E-field, which gives �Cv = 1
between EAB and the vacuum. Note that the change in the
VCN between EAB and the vacuum is of the same sign for
both the left and right edges. This is because the sign of
the VCN changes on two sides by the opposite sign of the
E-field. Therefore the states at the two edges obtain the same
propagation direction. Furthermore, as the change in the VCN
between EAB and EBA under the same E-field is equal to
�Cv = ±2, we expect similar edge and DW modes localized
between them [see Figs. 2(d) and 2(e)]. The existence of DW
modes is very robust as their appearance does not depend
on the detailed chemistry of the DW. For demonstration, we
construct a ribbon of TBG and then slowly shift one layer with
respect to the other layer, to construct a smooth DW between
EAB and EBA [see Fig. 2(f)]. We observe two in-gap DW
modes and edge modes as shown in the insets of Fig. 2(g),
similar to Fig. 2(e).

The existence of DW modes in the EAB or EBA configu-
ration is similar to the case of AB-stacked BLG. However, in
contrast to gapless AA-stacked BLG, the EAA configuration
of commensurate TBG is gapped, and Cv = 0. Therefore one
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FIG. 3. (a) TBG with a small twisting δθc from the commensu-
rate angle θc = 38.21◦. The local configurations of EAA and EAB or
EBA (separated by a black solid line) can be traced by tracking the
coordination of eclipsed atoms (atoms in two layers stacked on top,
shown by red and blue dots) which form a triangular (hexagonal)
coordination in the EAA (EAB or EBA) region. (b) and (c) Maps
of the direct energy gap δg of local structures in real space as a
function of the shift vector d for E = 0 (b) and E �= 0 (c). The
vector d0 in (b) has a unique correspondence with L in (a) as shown
by the increasing d0 (blue arrows) along the line with length L =
l/[2 sin(δθc/2)] in (a) where l represents the lattice constant of EAA
or EAB. The positions of local structures with different d vectors are
labeled as positions a, b, and c in (b) and positions d, e, f, g, and
h in (c). The energy dispersions in momentum space near K and K ′

corresponding to the local structures are shown in the bottom panel of
(b) and (c). The ± symbols represent the sign of the Berry curvature
of the gapped Dirac cones.

can imagine that EAA effectively behaves as a vacuum state.
Consequently, by creating a DW between EAA and EAB,
we expect the appearance of DW modes between them. In
Figs. 2(h) and 2(i), indeed, we confirm the existence of one
DW mode at the center of the system. Additionally, as is
shown in Figs. 2(h) and 2(i), only the edge located on the
EAB side supports edge modes, while the EAA edge does
not support any edge modes. This is in accordance with the
nonzero (zero) VCN of EAB (EAA). Similar to the EAB-EBA
setup in Fig. 2(f), a DW between EAB and EAA, created
by smoothly changing the local configuration, also hosts DW
modes as shown in Figs. 2(j) and 2(k). However, the position
of the DW mode wave functions is located closer to the EAB
region [see Fig. 2(j)].

Incommensurate structure and domain wall network. When
two layers are slightly rotated from a commensurate angle θc,
it generally breaks the commensurability of the lattice over
a large length scale in the lattice (see SM). However, such
an incommensurate system locally resembles a commensurate
configuration [see Fig. 3(a)] that can be constructed by a
certain amount of shifting of one layer with respect to the
other layer, where the nearby local structures are connected
by smooth shifting [26]. Moreover, the local structural envi-
ronment could be large enough to construct momentum space
locally [18]. In the following, we study the existence of DW
modes based on the energy spectrum of the local structures.
First, we construct the commensurate TBG Hamiltonian at
θc = 38.21◦, and then the Hamiltonian of the local structure
is constructed by using the appropriate shift vector d. In TBG,
the effective low-energy Hamiltonian comprises two parts.
The intralayer part can be represented by the Dirac Hamilto-
nian H1,2 = −iν(σxkx + σyky), where ν is the Fermi velocity

and σi represents the Pauli matrices. The interlayer coupling
part Hamiltonian for θc = 38.21◦ is written as (see SM for the
derivation)

Hαβ

k,k̃
= tk+G

3∑

i=1

eiGi·(τα+d)e−iG̃i·τβ

, (1)

where α and β represent the sublattice index with positions
τi(i = α, β ); G = ∑

nibi and G̃ = ∑
ñib̃i are the recipro-

cal lattice vectors for the two layers, respectively; and tk+G
is the Fourier coefficient of the tight-binding hopping in
the momentum space whose amplitude decays rapidly with
|k + G|. The G and G̃ vectors that satisfy the momentum
conservation process with the largest |t | are given as (G1,
G̃1) = (b1, b̃1 + b̃2), (G2, G̃2) = (−2b1 − 2b2,−b̃1 − 2b̃2),
and (G3, G̃3) = (−b1 + b2,−2b̃1). The Hamiltonian for the
external E-field is written as HE = diag(E , E ,−E ,−E ).

In Figs. 3(b) and 3(c), we show the map of the direct energy
gap �g of the local structures for E = 0 and E �= 0 as a func-
tion of the shift vector d. When E = 0, some local structures
possess two important symmetries. They are twofold in-plane
(C2) and threefold out-of-plane (C3z) rotational symmetries.
For instance, let us consider a locus of local structures on a
line, connecting EAA, EAB, and EBA [vertical dashed line
in Fig. 3(b)]. For E = 0, all the local structures on this line
are C2 symmetric with an additional C3z at the positions EAB
and EBA. Figure 3(b) shows that the local structure at EAA
is gapped, which is also consistent with our DFT calculations,
as discussed in Fig. 1(e). However, from the EAA towards the
EAB (on the dashed line), the �g decreases and finally closes
at EAB, at which quadratic band crossing appears at the K or
K ′ valley. The energy dispersion near a valley, corresponding
to the local structure in positions a and b, is shown in the
bottom panel of Fig. 3(b). By further moving towards EBA
from EAB, the quadratic band touching split into two Dirac
cones, which we call subvalley Dirac cones [see the energy
dispersion at a general position c in the bottom panel of
Fig. 3(b)]. These subvalley Dirac cones are protected by the
underlying C2 symmetry and finally merge together at EBA to
form a quadratic band touching.

For a better understanding of the DW physics, we derive
a low-energy Hamiltonian up to the second order in the mo-
mentum under an external E-field considering a slight shift
from the EAB on the vertical dashed line (i.e., dx = 0), which
becomes (see SM for the derivation)

H0,dy (kx, ky ) = (
α
(
k2

x − k2
y

) + m1dy
))

σx − 2α kxkyσy

+ (E + m3 dyky)σz, (2)

where α and mi (i = 0, 1, 2, 3) are the constants. When E = 0,
the system recovers C2 = σx symmetry, and it supports a
gapless spectrum at ky = 0 and kx = ±k0, where k0 = √

m1dy.
As such, for m1 > 0, two gapless solutions appear only when
dy > 0, and no solutions appear for dy < 0. This is in ac-
cordance with Fig. 3(b), where gapless configurations only
appear for dy > 0, while the local structures for dy < 0 are
gapped. The two regions meet each other at EAB (dy = 0) on
the vertical dashed line. The quadratic band touching at this
point is enforced by the underlying C3z = ei 2π

3 σz symmetry.
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Now, we write an effective Hamiltonian for each subvalley
Dirac cone (for dy > 0) as Hsv = kxσx + kyσy sitting at ±k0.
These gapless Dirac cones cannot be gapped out unless the
C2 symmetry is broken by either a nonzero shift along dx or
an E-field E . The dx and E result in a mass term for these
subvalley Dirac cones,

Msv = (E ± dxk0)σz, (3)

where the first mass term comes from E and the second term
is related to dx, which can be interpreted as an emergent
electric field. The two subvalley Dirac cones get the same
sign of masses by E , akin to the Semenoff mass as in the
case of single-layer graphene [57]. However, away from the
C2-symmetric DW configurations (i.e., dx �= 0), the second
term in Eq. (3) induces the opposite sign of masses for the
two subvalley Dirac cones, resembling the Haldane mass as
in single-layer graphene [58]. This subvalley Haldane mass
gives opposite subvalley Chern numbers (sub-VCNs) for two
gapped subvalley Dirac cones. The sub-VCN is defined by the
integration of the Berry curvature around each gapped subval-
ley Dirac cone. Note that the sign of the sub-VCN changes
when dx changes its sign about the dx = 0 line. For instance, if
the sub-VCNs for two gapped Dirac cones are (+1/2,−1/2)
for dx > 0, they are then (−1/2,+1/2) for dx < 0. Therefore
the change in the sub-VCN between dx < 0 and dx > 0 is
±1, which protects the two counterpropagating DW modes at
dx = 0. Therefore this system can host a quantum subvalley
Hall effect even in the absence of a true external E-field.

In the presence of E , the C2 symmetry is broken, which
gaps out both the subvalley Dirac cones as depicted for po-
sitions d and h in Fig. 3(c). According to Eq. (3), as dx

increases, one Dirac cone remains gapped, while the other
Dirac cone goes through the gap closing and reopening at the
DW when |E | = |dxk0| [see positions e and f in Fig. 3(c)].
This gapless Dirac point corresponds to a DW mode, which
is also consistent with �Cv = 1 between positions d and f in
Fig. 3(c). The phase transition resembles the Haldane model
with a different sublattice potential (known as the Semenoff
mass) in the case of single-layer graphene, where the com-
petition between the Semenoff mass and the Haldane mass
dictated the topological phase boundary. Furthermore, at the
EAA, two gapped subvalley Dirac cones meet each other and
annihilate their underlying Berry curvature and hence the sub-
VCN. Note that �Cv = 2 between positions d and h (EAB and
EBA) in Fig. 3(c), which ensures two DW modes, represented
by two gapless Dirac cones at position g [see bottom panel
of Fig. 3(b)]. The DW mode between EAB-EBA and EAA
in Fig. 3(c) appears closer to the EAB-EBA region, which
is consistent with our tight-binding calculation in Fig. 2(j).
In contrast, the gapless DW configuration between EAB and
EBA [Fig. 3(b)] appears exactly between them, which is con-
sistent with Fig. 2(f).

Discussion. Let us compare the QVHE in large-angle TBG
with that in untwisted or small-angle twisted TBG. First, in the
presence of an E-field, all the configurations, EAA, EAB, and
EBA, are gapped in large-angle commensurate TBG, which
makes it distinct from the small-angle twisting, where the AA
configuration is gapless even under an E-field. Second, unlike

TABLE I. Number of atoms N , in-plane lattice constant l , and
band gap � of the EAA configuration for several θc with the largest
layer coupling at a large angle of rotation.

θc (deg) N l (Å) � (meV)

38.21 28 6.46 5
32.2 52 8.85 0.1
43.17 76 10.7 0.2
42.1 124 13.67 0.25

the small-angle case, the relaxation effect is insignificant in
large-angle twisting. This is because the ground state energy
difference (computed using DFT) between AA and AB-BA
is ∼103 meV/atom whereas it is only 0.14 meV/atom in the
case of EAA and EAB-EBA at θc = 38.21◦. Therefore lattice
relaxation makes the AA region shrink into a topological point
defect [43] in the small-angle TBG. However, in large-angle
TBG, EAA, EAB, and EBA all exist as stable local structures
and support the proposed DW states.

Although our theory is generally valid, it is experimentally
more significant near a few values of θc as the band gap �

decreases rapidly when the lattice constant l and the number
of atoms N of the commensurate unit cell increases as listed in
Table I, where we show � for four θc values with the smallest
l and N .

The proposed DW modes can be detected in both scanning
tunneling microscopy (STM) and transport measurements. As
the size of the DW network is larger than the STM resolu-
tion, it can be detected by the STM local density of states
and dc optical conductance measurement [39]. Moreover, the
two-dimensional (2D) conducting DW network pattern can
induce intriguing non-Fermi-liquid behavior above a critical
temperature Tx ∼ h̄v f

kBL , where v f , h̄, kB, and L represent the
DW Fermi velocity, reduced Planck constant, Boltzmann con-
stant, and length of 1D conducting channels, respectively [59].
In our case, for a rotation δθc = 0.05◦ from θc = 38.21◦, L is
∼740 nm, and computed v f is ∼0.6 × 106 m/s, which gives
Tx ≈ 7 K. As the band gap of EAA is ∼5 meV (∼58 K in
the temperature scale), the 2D DW network at δθc = 0.05◦ is
expected to show 1D non-Fermi-liquid transport from 7 K up
to ∼58 K.

Finally, we note that our theoretical idea can also be
applied to other related structures such as twisted bilayer
α-graphene [60] and twisted kagome bilayers [61] (see SM
for more details) with more tunability.
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