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Piezoresistive effect in two-dimensional Dirac materials
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Applying the Bir-Picus ansatz for strain-induced corrections to the electron momentum scattering time on
impurities in a transition metal dichalcogenide monolayer, and taking the parameters of MoS2 for our estima-
tions, we derive general analytical expressions describing the piezoresistive effect, the strain-induced corrections
to (longitudinal) Drude conductivity, linear magnetoresistance, and the Hall conductivity of the monolayer for
an arbitrary dependence of electron momentum scattering time on its energy. We show that a two-band model,
even with the account of the trigonal warping of electron valleys, should be revisited for the description of the
piezoresistive effect in the case of strongly degenerate electrons. Therefore, we extend the two-band model by
accounting for the deformation of higher-energy bands and derive general expressions describing strain-induced
corrections to the kinematic coefficients of the monolayer. Thus, the developed approach allows to estimate the
deformation constants of higher-energy bands.
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Introduction. Mechanical strain affects the electrical and
optical properties of materials [1]. An external applied me-
chanical force can result in modifications of the crystal lattice
of a solid-state object by influencing the bounding between
atoms. From an application-oriented point of view, the alter-
ation of the properties of a strained material allows for a tool
detecting external perturbations. For instance, an increase (or
a decrease) of conductivity under external stress embodies the
piezoresistive (also called tensoresistive) effect (PRE) under-
lying the operation of various pressure sensors. The majority
of existing micromechanical sensors [2] and piezoresistors are
silicon and germanium based. These are the materials where
the PRE was initially discovered [3,4].

However, strain-induced effects also remain in the focus
of recent research involving two-dimensional (2D) Dirac ma-
terials such as graphene and transition metal dichalcogenide
(TMD) monolayers [5–7]. TMD materials may be used for
various known and undiscovered fundamental effects and
potential technological applications in nano- and optoelec-
tronics. Due to specific characteristics of the band structure,
TMDs exposed to external electromagnetic (EM) fields allow
for nontrivial transverse electron transport [8–11].

A typical example of a 2D TMD material is molybdenum
disulfide (MoS2), a noncentrosymmetric direct-band-gap su-
perconductor of the D3h point symmetry group, having two
nonequivalent valleys in its Brillouin zone. It is the absence
of inversion symmetry which allows for the manifestation of
the PRE in MoS2, which accounts for the induction of elec-
trical polarization under external strain [12,13] allowing for
its potential applicability in strain optronics [14] and flexible
electronics [15,16].

The goal of this Letter is a theoretical study of the PRE in
2D TMD materials using the parameters of MoS2 as a testing
ground. The key entities describing the effect are the longitu-
dinal Drude conductivity, the transverse Hall conductivity, and
the longitudinal Drude conductivity in the external magnetic
field (or magnetoresistance) of the monolayer exposed to an
external in-plane uniform strain.

It is rather well known that in 2D TMD monolayers, the
interaction of carriers of charge with deformation can be de-
scribed as their interaction with an effective gauge pseudo-EM
field expressed by pseudoscalar and pseudovector potentials
[17]. From this perspective, PRE can be viewed as the conse-
quence of the joint action of (i) “real” and (ii) “pseudo” -EM
fields. Let us assume that both fields are weak, thus (i) induces
the linear response of the system and both the longitudinal
(Drude) and transverse (Hall) conductivities, and the field (ii)
results in the emergence of corrections to both the Drude and
Hall conductivities.

Then, phenomenologically, PRE lies within the formula
σαβ = σ 0

αβ + λαβi jui j , where the fourth-rank tensor λαβi j de-
scribes the corrections to the bare conductivity tensor σ 0

αβ due
to the deformation described by the strain tensor ui j . Certainly,
λαβi j depends on the properties of the electron gas (nondegen-
erate or degenerate), the inclusion of scattering on short-range
or Coulomb impurities, and electron densities driven by the
external gate voltage. The bare conductivity tensor according
to classical Drude theory is diagonal σ 0

αβ = σ 0δαβ , whereas
a weak classical magnetic field produces the corrections
σ 0

xy = −σ 0
yx ∝ ωc, where ωc is a cyclotron frequency, whereas

σ 0
xx ∝ ω2

c .
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In cubic-lattice semiconductors (such as germanium and
silicon), PRE strongly depends on the degree of degeneracy
of the electron gas [1]. In the case of Boltzmann statistics, the
main effect comes from the modulation of the material band
gap due to strain [18,19]. In contrast, if the electron gas is
strongly degenerate and the Fermi level is located within the
conduction band, the effect predominantly results in a strong
modification of the kinematic characteristics of charge carri-
ers, such as the electron velocity, distribution function, and the
relaxation time. In the case of 2D Dirac materials, the band
gap is affected by the pseudoscalar potential of the pseudo-
EM field, whereas the kinematic characteristics are mainly
determined by the pseudovector potential. Here, we consider
the key nontrivial effects coming from the pseudovector po-
tential, which considerably affects degenerate electrons.

The eigenproblem in the presence of strain. The bare Hamil-
tonian in the framework of the two-band model of the MoS2

monolayer band structure including the terms describing the
trigonal warping of the valleys reads

H0(p) = �

2
σz + v(τvσx px + σy py) +

(
0 μp2

+
μp2

− 0

)
, (1)

where � is the band gap in the absence of strain, v is the
interband velocity parameter, τv = ±1 is the valley index, μ

reflects the warping strength, and the Pauli matrices σi, i =
x, y, z describe the triangle sublattices of the hexagonal lattice
of the monolayer.

The presence of strain with the components of displace-
ment vector of the media ui can be described by the pseu-
dovector potentials Ai = ηiA = ηiτvA0(uyy − uxx, 2uxy) [20],
where ηi are characteristic parameters of the TMD material,
and the components of the strain tensor read

ui j = 1

2

(
∂ui

∂x j
+ ∂u j

∂xi

)
. (2)

The total Hamiltonian including the carrier-strain
interaction reads H = H0(p − A1) + (α|p − A2|2 + β|p −
A3|2σz )/4m0, where α and β are band parameters of a TMD
monolayer [20]. In matrix form,

H =
(

�
2 + �c

p hp

h∗
p −�

2 + �v
p

)
, (3)

where hp = v(p − A1)− + μ(p − A1)2
+ is the off-diagonal

part of the system Hamiltonian, responsible for the inter-
band processes and the trigonal warping of the valleys, and
(p − A1)± = τv (px − (A1)x ) ± i(py − (A1)y); �c,v

p = (α|p −
A2|2 ± β|p − A3|2)/4m0 with m0 the free-electron mass. The
energy eigenvalues of the Hamiltonian (3) are

Ec,v = �c + �v

2
± Ep,

Ep =
√(

� + �c − �v

2

)2

+ |hp|2,

|hp|2 = v2|p − A1|2 + μ2|p − A1|4

+ vμ[(p − A1)3
− + (p − A1)3

+], (4)

and the wave functions read

ψc(r) =
⎛
⎝ cos

(
θp

2

)
sin

(
θp

2

)
h∗

p

|hp|

⎞
⎠eipr

√
S

,

ψv (r) =
⎛
⎝ sin

(
θp

2

)
− cos

(
θp

2

)
h∗

p

|hp|

⎞
⎠eipr

√
S

, (5)

where cos θp = (� + �c − �v )/2Ep, S is a sample area, and
the subscripts c and v denote conduction and valence bands,
correspondingly.

From Eq. (4) it becomes clear why it is important to take
into account the deformation of higher-energy bands beyond
the two-band model. Indeed, in the absence of higher-energy
band terms α = β = 0, and hence �c = �v = 0, the electron
energy only contains the deformation in the form of a shift
p → p − A1. Thus, the valleys shift as a whole without a
change of their form. Such a shift does not influence the
intravalley scattering processes and kinematic electron char-
acteristics, such as its dispersion, velocity, etc., resulting in the
absence of PRE. Therefore, the account of the higher-energy
band deformation (α, β �= 0) is of crucial importance for the
phenomena in question.

The energy dispersion (4) can be simplified assuming the
inequality � � |hp|, which is legitimate due to the large value
of the gap in MoS2, � ∼ 2 eV, and that the other characteristic
energies in the system are usually much smaller than the gap
[21,22].

Furthermore, counting the electron energy in the con-
duction band from its bottom and disregarding the terms
proportional to p4, we find for the conduction band Ec = εp,
where

εp = 1

4m0
(α|p − A2|2 + β|p − A3|2)

+ 1

�
[v2|p − A1|2 + vμ((p − A1)3

− + (p − A1)3
+)].

(6)

In what follows we are only interested in the linear-in-strain
tensor ui j contribution to the conductivity of the system since
we assume a relatively small deformation, as it is com-
monly supposed in works on strain-induced effects (see, e.g.,
Ref. [1]). In this case, it is instructive to make a shift in the
reciprocal space, p − eA → p in expressions (5) and (6).

Keeping only the linear-in-A terms gives the electron dis-
persion in a given valley,

εp ≈ p2

2m
+ γ (A · ∇p)W (p), (7)

where W (p) = τvW (p3
x − 3px p2

y ) [21], γ = (αη2m +
βη3m)/(2m0), (2m)−1 = (αη2 + βη3)/(2m0) + v2/� ≈
v2/�, and W = 2vμ/�. The wave function of an electron in
the conduction band (in the limit �̃ � |hp|) reads

ψc(r) = 1

�

(
�

h∗
p+γ A

)
ei(p+γ0A)r

√
S

, (8)

where γ0 = (αη2m + βη3m)/(2m0) + η1.
Drude piezoconductivity. We consider a degenerate elec-

tron gas statistics characterized by the Fermi energy EF . It is
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placed in a 2D monolayer sample illuminated by an external
EM field with the frequency ω, which is much smaller than
both the band gap of the material, ω 
 �, and the Fermi
energy, ω 
 EF (here and below we count the conduction-
band energy from its bottom). These approximations allow us
to use the Boltzmann transport equation [23,24] to analyze
PRE,

∂ f

∂t
+ [F(t ) · ∇p] f + Q̂{ f } = 0, (9)

where F(t ) = eE(t ) is a force acting on the electrons in the
uniform alternating electric field E(t ) = Ee−iωt , and Q̂ is the
electron-impurity collision integral.

Electron scattering on short-range impurities. First, let us
consider the case of electron scattering on short-range defects
(later, we will consider the generalization of these processes:
electron scattering on long-range Coulomb centers). The first-
order solution of Eq. (9) with respect to the external EM field,
which determines the ac current density, reads

jα = −e
∫

dp
(2π h̄)2

vα (−iω + Q̂)−1(F · ∇p) fp, (10)

where vα is the electron velocity, and fp is the equilibrium (in
the presence of strain) electron distribution function. For an
arbitrary function χp, the collision integral can be found from
the Fermi golden rule,

Q̂χp = 2πni

h̄

∑
p′

|Mpp′ |2δ(εp − εp′ )(χp − χp′ ), (11)

where ni is the density of impurities, and Mpp′ is the intraband
scattering matrix element of the impurity potential over the
wave functions Eq. (5). The functions vα , fp, and Q̂ include
strain-induced corrections. Thus, all these quantities should
be expanded up to linear order with respect to A.

The strain-induced correction to the collision operator con-
sists of two contributions. The first one originates from the
strain-induced modification of the electron dispersion (7), and
the second one is due to the correction to the scattering matrix
elements coming from the strain-induced additions to the elec-
tron wave functions (8). Denoting the bare collision operator
as Q̂0 and the strain-induced corrections as Q̂1, we can expand
the collision operator up to the first order with respect to
Q̂1 as

(−iω + Q̂0 + Q̂1)−1 ≈ (−iω + Q̂0)−1

− (−iω + Q̂0)−1Q̂1(−iω + Q̂0)−1.

(12)

The action of bare collision operator (in the case of short-
range impurities) on the nth harmonic of the distribution
function gives

(−iω + Q̂0)−1einϕ = einϕ (−iω + 1/τn)−1,

1

τn
= 2πniu2

0

h̄

∑
p′

δ
(
ε0

p − ε0
p′
)
(1 − cos nθ ),

(13)

where u0 is a strength of the short-range impurity potential.

Furthermore, the action of the first-order correction Q̂1 (for
the short-range impurities) can be found from a straightfor-
ward derivation [25],

Q̂1{χp} = 2πniu2
0

h̄

∑
p′

(δεp − δεp′ )δ′(ε0
p − ε0

p′
)
(χp − χp′ )

+ 2πni

h̄

∑
p′

Dpp′δ
(
ε0

p − ε0
p′
)
(χp − χp′ ). (14)

Here, ε0
p = p2/2m is a bare electron energy, and δεp = γ (A ·

∇p)W (p) is a strain-induced correction [see also Eq. (7)]. In
Eq. (14), Dpp′ is a strain-induced correction to the scattering
matrix element induced by the wave-function renormalization
in the presence of strain (8).

Now, the strain-induced correction to the current density
can be written as a sum of two terms. The first term de-
scribes the correction to the current density due to the electron
kinematic quantities, such as velocity δvα (δv = ∇pδεp) and
energy δεp,

jI
α = −e

∫
dp

(2π h̄)2
[δvα (−iω + Q̂0)−1(F · ∇p) f0

+v0
α (−iω + Q̂0)−1(F · ∇p)(δεp f ′

0)]. (15)

The second term originates from the corrections to the
scattering integral (14),

jII
α = e

∫
dp

(2π h̄)2
v0

α (−iω + Q̂0)−1

×Q̂1(−iω + Q̂0)−1(F · ∇p) f0. (16)

From Eq. (15) we can derive the general expression for the
strain-induced correction to the conductivity,

δσαβ

σ0
= λ

(
uxx − uyy uxy + uyx

uxy + uyx −(uxx − uyy)

)
, (17)

where the coefficient λ determines PRE. From the same
Eq. (15) we find

λI = 12γW mA0

(
1 − 1

4

〈(ε2τ1ω )′′〉
〈(ετ1ω )′〉

)
, (18)

where the primes stand for the derivative with respect to
electron bare energy ε ≡ ε0

p, and τnω = τn(1 − iωτn)−1. The
energy distribution averaging in Eq. (18) is defined as

〈X 〉 =
∫ ∞

0
dεg(ε)X (ε) f0(ε)

/∫ ∞

0
dεg(ε) f0(ε), (19)

where g(ε) = νm/2π h̄2 is a 2D density of states and ν = 4 is
the electron degeneracy factor accounting for the valley and
spin degrees of freedom.

The coefficient λII is determined by the integrals in Eq. (16)
with Q̂1 taken from Eq. (14). For short-range impurities, the
first term in Eq. (14) vanishes, and the second term is de-
termined by the lower component of the wave function (8).
This component has an additional smallness vpF /� 
 1 as
compared with Eq. (18). Therefore, we can disregard λII as it
is much smaller than λI.

It should be noted that when deriving Eq. (18), we assumed
an arbitrary dependence τnω(ε) for generality. In the case of
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short-range impurities, the scattering time τ1 does not depend
on energy in 2D systems with a parabolic dispersion. In this
case, Eq. (18) can be simplified,

λI ≈ 6γW mA0. (20)

Let us make an estimation of this parameter. Using
η2 = −5.655, η3 = 1.633, α = −0.01, β = −1.54 [20], and
m = 0.5 m0, we find γ ≈ −0.6. Taking the warping W ≈
−3.5 eV A3/h̄3 [21] and A0 = h̄/a0, where a0 = a/

√
3 with

the MoS2 lattice constant a = 0.315 nm [26], we find λI ∼ 1.
Then, from Eq. (17) we conclude that the relative correction
to conductivity is of the order of relative deformation. For a
single-layer MoS2, the breaking deformation is about 10%
[27,28]. Thus, the upper bound is δσαβ ∝ 0.1σ 0.

Electron scattering on Coulomb impurities. In the case of
Coulomb impurities, the general expressions derived above
still hold, but the matrix element of the impurity potential is
different, u0 → u(p − p′) [29,30]. It results in an energy de-
pendence of the first-harmonic relaxation time τ1(ε). Another
difference is in the integrals in Eq. (14). The second integral
in Eq. (14) is still small as it is proportional to �−1, and can be
neglected. The first term in Eq. (14) describes the relaxation
time correction due to the strain-induced renormalization of
electron dispersion.

The direct calculation of the first term for the case of
Coulomb impurities is cumbersome. To simplify the deriva-
tions, we can use the ansatz suggested in Ref. [1]. The key
idea here is to use an energy-dependent expression for the
relaxation time τ (ε) derived for the isotropic electron energy
for the case of arbitrary electron dispersion εp. Following this
approach, we use τ1ω(εp) with the electron energy includ-
ing the deformation, Eq. (7). Expanding τ1ω(εp) ≈ τ1ω(ε0

p) +
τ ′

1ω(ε0
p)δεp yields Eq. (18) for τ1ω(ε0

p) with τ1ω → τ1ω(ε0
p),

whereas the scattering time correction τ ′
1ω(ε0

p)δεp gives an
additional contribution to the current density,

jIII
α = −e

∫
dp

(2π h̄)2
vατ ′

1ωδεp(F · ∇p) f0. (21)

Taking this integral and using Eq. (18) yields

λ = 12γW mA0

(
1 − 〈(ε2τ1ω )′′〉 − 〈(ε2τ ′

1ω )′〉
4〈(ετ1ω )′〉

)
(22)

for an arbitrary dependence of the first-harmonic relaxation
time on bare electron energy. Since 〈(ε2τ1ω )′′〉 − 〈(ε2τ ′

1ω )′〉 =
2〈(ετ1ω )′〉, Eq. (22) resembles Eq. (20). Hence, formula (20)
is universal, and it represents a key analytical result of this
Letter.

Strain-induced magnetoresistance and the Hall effect. In
this section, we consider the Hall effect and strain-induced
magnetoresistance in the case of weak classical magnetic
fields, when ωcτ 
 1 and in the static limit of the external
electric field, ω → 0. In the presence of an external magnetic
field B, the expression for the electric current density acquires
a linear-in-B contribution,

jα = e2
∫

dp
(2π h̄)2

vαQ−1([v × B] · ∇p)Q−1(F · ∇p) fp.

(23)

Assuming B = (0, 0, B) and E = (Ex, 0, 0), and following
the same steps of the derivation as it was done above, we
find that the correction to the relaxation time τ ′

1(ε0
p)δεp gives

a vanishing contribution to the current density in the pres-
ence of strain. The remaining part stemming from τ1(ε0

p)
gives

δσxx

σ 0
= 3γ τvWAymωc

× 〈[ε2(τ 2)′]′〉 + 4〈(ετ 2)′〉 − 2〈(ε2τ 2)′′〉
〈(ετ )′〉 (24)

for the longitudinal part of the conductivity (magnetoresis-
tance), whereas the strain-induced correction to the Hall effect
reads

δσyx

σ 0
= 3γ τvWAxmωc

〈[ε2(τ 2)′]′〉 + 4〈(ετ 2)′〉
〈(ετ )′〉 , (25)

where σ0 = e2N〈(ετ )′〉/m is a Drude conductivity, Ax =
τvA0(uyy − uxx ), and Ay = 2τvA0uxy. Obviously, strain results
in the emergence of a linear-in-B magnetoresistance effect,
whereas in the absence of strain, magnetoresistance behaves
as ∝ ω2

c in the case of a classically weak magnetic field.
Since the fraction in Eq. (25) is proportional to τ with some
coefficient of the order of unity, and ωcτ 
 1, then as long as
λ ∼ 1, the contribution of the δσyx term under uniaxial strain
uxx �= 0 can be roughly estimated as δσyx ∼ σ 0(ωcτ )uxx.

Another specific feature of this effect is that it exists only if
the electron-impurity scattering time depends on the electron
energy. Indeed, Eq. (24) gives zero if τ is constant. It holds
for the case of short-range impurity scattering in 2D systems
with parabolic band dispersion. Hence, the magnetoresistance
effect described by Eq. (24) may occur for the dominating
short-range impurity electron scattering mechanism only if we
take into account the nonparabolicity of the electron bands
in the electron-impurity scattering probability and the energy
dependence of the electron density of states.

In the case of electron scattering on Coulomb impurities (as
a dominant mechanism), the momentum relaxation time in 2D
systems does depend on energy even for a simple parabolic
band. Thus, the linear magnetoresistance [Eq. (24)] effect
occurs.

If both mechanisms are present and we denote as τc(ε)
the momentum relaxation time describing the electron scatter-
ing on Coulomb centers, then the total scattering time reads
τ−1(ε) = τ−1

i + τ−1
c (ε). It depends on energy even if short-

range impurity time τi is a constant. Thus, in the case of
a combined action of two impurity scattering mechanisms,
linear strain-induced magnetoresistance occurs.

Conclusions. We developed an analytical theoretical de-
scription of the piezoresistive effect for degenerate electron
gas in two-dimensional Dirac materials under the action of a
uniform strain both in the absence and presence of a weak
classical magnetic field. We derived analytical expressions for
the conductivity correction coefficients, Eqs. (22), (24), and
(25), for an arbitrary dependence of the electron momentum
scattering time on energy. We showed that for a degenerate
electron gas, strain-induced corrections to the conductiv-
ity stem from the combined action of warping of electron
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dispersion and the emerging corrections to the higher-energy
electron bands.

We want to note that the effects in question are present
even at room temperatures. Moreover, the developed theory
is general: It can describe not only scattering on impurities

but also other scattering mechanisms, characterized by the
electron momentum relaxation time τ (ε).
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