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Bulk-edge correspondence for point-gap topological phases in junction systems
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The bulk-edge correspondence is one of the most important ingredients in the theory of topological phases of
matter. While the bulk-edge correspondence is applicable for Hermitian junction systems where two subsystems
with independent topological invariants are connected to each other, it has not been discussed for junction
systems with non-Hermitian point-gap topological phases. In this Letter, based on analytical results obtained
by the extension of non-Bloch band theory to junction systems, we establish the bulk-edge correspondence for
point-gap topological phases in junction systems. We also confirm that almost all the eigenstates are localized
near the interface which are called the “non-Hermitian proximity effects”. One of the unique properties is that
the localization length becomes the same for both subsystems, nevertheless those model parameters are different.

DOI: 10.1103/PhysRevB.108.L121302

Introduction. Non-Hermitian systems have recently re-
ceived a lot of attention since they possess novel physical
phenomena and richer topological properties than Hermi-
tian systems [1–56]. In particular, non-Hermitian physics
describes not only open quantum systems but also dissipative
classical systems on equal footing, due to mathematical simi-
larity of the fundamental equations of motion in both systems
[57–66].

A topological phase refers to a state of matter with a non-
trivial topological invariant for energy-gapped states. There
are two types of energy gaps defined in the non-Hermitian
system, namely point-gaps and line-gaps [21,31]. Hereafter,
we focus on topological phases originating with the point-gap
(point-gap topological phases, in short) which is unique to the
non-Hermitian systems [19,32].

The bulk-edge correspondence (BEC) for the point-gap
topological phases has been studied [45–47] and the following
statements are confirmed for systems without any symmetry
in one dimension systems: A spectrum for a system with
periodic boundary conditions (PBC) forms closed curve(s)
winding a point on the complex plane, giving a topological in-
variant which is called a winding number for that point. Then,
the spectrum for the corresponding system with semi-infinite
boundary conditions (SIBC) is equal to the the spectrum for
the system with PBC (PBC spectrum, in short) together with
the area, which is the set of points for which the winding
number is nontrivial. The spectrum for the corresponding sys-
tem with open boundary conditions (OBC) forms non-closed
curve(s) and appears on the SIBC spectrum. Further, it has
been revealed that the point-gap topological phases give rise
to the skin effect which makes all eigenstates localized near
the open boundaries.

As mentioned above, the BEC for the point-gap topological
phases has only been discussed with PBC, SIBC, and OBC
so far. While interface states appearing at the region where
two subsystems with different point-gap topological phases
are connected have been studied [48,49,52,53], the BEC for
the junction geometry has not been clarified; nevertheless, the

BEC has been established even for junction systems in the
Hermitian system.

In this Letter, we extend the concept for the BEC for
the point-gap topological phases in non-Hermitian systems to
junction systems. To this end, we consider a one-dimensional
junction system with PBC where two ends of a subsystem
are connected to those of the other subsystem so that the
whole system forms a ring geometry. Here, each subsystem
has asymmetric hopping terms and its own point-gap topo-
logical phase. We confirm that the spectrum for the junction
system with PBC appears where the winding number for each
subsystem is different. We further study the eigenstates in
the junction systems and find that almost all the eigenstates
are localized near the interface, which are called the “non-
Hermitian proximity effects”. This establishes the BEC for the
point-gap topological phases in junction systems with PBC.
We also discuss the junction system with OBC where one end
of a subsystem is connected to that of the other subsystem so
that open boundaries exist at both ends of the whole system.
We confirm that the spectrum for the junction system with
OBC appears where the winding number for the correspond-
ing junction system with PBC is nontrivial, revealing that the
existing BEC for the point-gap topological phases [21,46,47]
can be applied to the junction systems with OBC as well.

Model. We start with a one-dimensional tight-binding
model with asymmetric hopping terms, the so-called Hatano-
Nelson model [1–3] whose Hamiltonian is

H =
∑

n

(t+c†
n+1cn + t−c†

ncn+1 + εc†
ncn), (1)

where t± := te±γ for t, γ ∈ R, and ε ∈ R which corresponds
to the onsite potential. By applying the Fourier transform to
Eq. (1), the PBC spectrum σPBC for this Hamiltonian is given
by

σPBC = {2t cos (k − iγ ) + ε | k ∈ [0, 2π )}. (2)

Then, all the eigenenergies lie on an ellipse centered at ε on
the complex plane, and the point-gap is open for all points
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surrounded by the ellipse. The topological invariant for the
point-gap topological phases at a point Ep can be defined as
winding number w(Ep) as follows [21,31]:

w
(
Ep

)
:= 1

2π i

∫ 2π

0
dk∂k ln det(H (k) − Ep), (3)

where H (k) is the momentum representation of Eq. (1). Equa-
tion (3) means how many times the spectrum σPBC winds
around the reference point Ep on the complex plane. The BEC
for the OBC spectrum σOBC, as mentioned in introduction, can
be written down as

σOBC ⊂ {Ep|w(Ep) �= 0 ∨ Ep ∈ σPBC}. (4)

To extend the above-mentioned BEC to junction systems
with PBC, we consider a ring geometry where two subsystems
with asymmetric hoppings, subsystem I and II, have inde-
pendent parameters. First, we define the Hamiltonian for the
whole system as

H = H1(1, N1) + H2(N1 + 1, N2 − 1) + HBC. (5)

Here, Hi=1,2(N, M ) which corresponds to the subsystem I and
II is given by

Hi(N, M ) =
N+M−1∑

n=N

(t+
i c†

n+1cn + t−
i c†

ncn+1 + εic
†
ncn) (6)

in real space, where t±
i := tie±γi , ti, γi, εi ∈ R. HBC determines

PBC or OBC. For the sake of simplicity, hereafter we assume
ti > 0 and γ1 + γ2 > 0.

To discuss the BEC for the junction system with PBC, we
decouple the two subsystems H1 and H2, and impose PBC on
each subsystem. Then, we obtain the PBC spectrum for each
subsystem σ

(i=1,2)
PBC from Eq. (2). Applying Eq. (3), the winding

number for each subsystem wi=1,2 is given by the sign of γi for

the reference point EP located inside σ
(i)
PBC. We also introduce

the following winding number Wi := wi(εi ) = sgn(γi), where
εi means the center of σ

(i)
PBC, which we use hereafter.

Junction systems with PBC. Here, we analytically solve the
eigenvalue E (∈ C) and the (right) eigenvectors |ψ〉 of the the
Schrödinger equation

H |ψ〉 = E |ψ〉 , |ψ〉 = (ψ1, · · · , ψN1+N2 )T (7)

for the Hamiltonian of the junction system with PBC in Eq. (5)
with HBC = t+

2 c†
1cN1+N2 + t−

2 c†
N1+N2

c1 + ε2c†
N1+N2

cN1+N2 . Our
derivation is based on the extension of the non-Bloch band
theory [19,32] to junction systems (see the Supplemental Ma-
terial for the details of the derivation [67]). We obtain two
recurrence relations for the bulk region as

E1ψn = t+
1 ψn−1 + t−

1 ψn+1 (n ∈ [2, N1 − 1]), (8)

E2ψn = t+
2 ψn−1 + t−

2 ψn+1 (n ∈ [N1 + 2, N1 + N2 − 1]),
(9)

where E1 := E − ε1 and E2 := E − ε2. For n = 1, N1, N1 +
1, and N1 + N2, we obtain four boundary conditions:

E1ψ1 = t+
2 ψN1+N2 + t−

1 ψ2, (10)

E1ψN1 = t+
1 ψN1−1 + t−

1 ψN1+1, (11)

E2ψN1+1 = t+
1 ψN1 + t−

2 ψN1+2, (12)

E2ψN1+N2 = t+
2 ψN1−1 + t−

2 ψ1. (13)

Here, without loss of generality, we represent

E1 = t1
(
x1 + x−1

1

)
, E2 = t2

(
x2 + x−1

2

)
, (14)

with x1, x2 ∈ C, whose absolute values belong to (0,1]. Then,
the general solution is given by

ψn =
{

φ1(eγ1 x1)n + φ2(eγ1/x1)n (n ∈ [1, N1]),

φ3(eγ2 x2)n−N1 + φ4(eγ2/x2)n−N1 (n ∈ [N1 + 1, N1 + N2]),
(15)

where φi=1,2,3,4 are constants. By substituting Eq. (15) into
Eqs. (10)−(13) and examining nontrivial φi, we can deter-
mine the values of x1 and x2. Similar to the non-Bloch band
theory, there should be N1 + N2 pairs (x(m)

1 , x(m)
2 ) for m =

1, · · · , N1 + N2 so that the spectrum becomes continuous
when N1 + N2 → ∞. We can express the mth eigenenergy
E (m) and the corresponding eigenfunction ψ (m)

n exactly by
substituting x(m)

1 (or x(m)
2 ) into Eqs. (14) and (15), respectively.

With the eigenenergy E (m)(see Sec. II in Ref. [67] for details),
we establish the BEC for the point-gap topological phases in
junction systems with PBC as follows:

σ
junc
PBC ⊂ {

Ep|	w(Ep) �= 0 ∨ Ep ∈ (
σ

(1)
PBC ∪ σ

(2)
PBC

)}
, (16)

	w(Ep) := |w1(Ep) − w2(Ep)|. (17)

In addition, the eigenfunction can be approximated as

|ψn| ∝
{

eκ1n (n ∈ [1, N1]),

eκ2n (n ∈ [N1 + 1, N1 + N1]),
(18)

where

κi =
{

γi − li (li � γ1 + γ2),

γi − sgn(γ j �=i )li (li > γ1 + γ2),
(19)

li := − log |xi| (i = 1, 2). (20)

From Eqs. (18) and (19), we find that almost all the eigen-
states are localized in junction systems with PBC. For the
eigenenergies corresponding to the delocalized eigenstates, γ1

and γ2 must be positive so that li = γi for i = 1, 2. These
eigenenergies appear at the intersections of the PBC spectra
for each subsystem. These are the main results of this Letter.

The statements above can be regarded as a natural exten-
sion of the BEC for junction systems in Hermitian systems.
Below, we will examine several cases to validate our results
and discuss the BEC for the point-gap topological phase in
junction systems with PBC.

Case I: W1 = W2. Figure 1 shows the spectra for the junc-
tion systems with PBC (PBC junction spectra, in short) on
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FIG. 1. PBC junction spectra (green dots) for different onsite
potentials. (a) ε2 = 4, (b) ε2 = 2.6, (c) ε2 = 2, and (d) ε2 = 0 with
the condition ε1 = −ε2. The other parameters are set as t1 = t2 = 1,
γ1 = 0.6, γ2 = 0.8, and N1 = N2 = 500. PBC spectra for subsystems
I and II, σ

(1)
PBC and σ

(2)
PBC, are shown by the red and blue ellipses,

respectively. The gray regions mean 	w(Ep) �= 0.

the complex plane for different values of onsite potentials.
Since γ1 and γ2 are set to be positive, W1 = W2 = 1. As ε2

approaches infinity, each subsystem becomes isolated from
each other in the energy space, expected to be independent
Hatano-Nelson model, Eq. (1), with OBC. Then, the PBC
junction spectrum forms two energy bands on the real axis,
which are the same with two spectra of the Hatano-Nelson
model with OBC with ε1 and ε2. The numerical result in
Fig. 1(a) agrees with this expectation even at |ε1 − ε2| = 8.

We check how the PBC junction spectrum behaves as we
decrease the difference in onsite potential |ε1 − ε2|. As shown
in Fig. 1(b), when the PBC spectra for the subsystems I and II
get closer but are not overlapped by each other, we see that the
PBC junction spectrum forms a loop at the edge of each band
(note that this does not imply the inconsistency of the BEC
for the point-gap topological phases [46] since the system
is subject to PBC). When σ

(1)
PBC and σ

(2)
PBC begin to intersect,

the two loops merge into a single loop passing through the
crossing points [Fig. 1(c)]. When the onsite potentials become
equal to each other, the PBC junction spectrum becomes an
ellipse, similar to the PBC spectrum in Eq. (2), as shown in
Fig. 1(d). For all cases, we observe that the PBC junction spec-
trum σ

junc
PBC appears in the region where 	w �= 0, satisfying

Eq. (16).
Next, we consider the probability distribution function

(PDF) of an eigenstate |ψn|2 in junction systems with PBC.
We show two PDFs corresponding to the eigenenergies in
Fig. 1(c) as typical examples. We see that both PDFs are lo-
calized near the boundaries of the subsystems. We remark that
the eigenstate in Fig. 2(a-1) [Fig. 2(a-2)] whose eigenenergy is
inside the σ

(1)
PBC (σ (2)

PBC) is localized only near n = N1 (n = 1).
This can be explained as follows. Since the subsystem I dom-
inates the eigenstate in Fig. 2(a-1), the PDF shows the peak
near the right edge of the subsystem I as the skin effect due to
γ1 > 0. Meanwhile, for the subsystem II, the PDF localized
near the left edge of the subsystem II as the proximity effects
of the peak in the subsystem I. We shall henceforth call this
the non-Hermitian proximity effect. The result in Fig. 2(a-2)
can be explained in the same way as above.

FIG. 2. (a) Schematic plots of eigenstates |ψn|2 corresponding to
complex eigenenergies appearing inside σ

(1)
PBC [(a-1)] and σ

(2)
PBC [(a-

2)] in Fig. 1(c). The eigenstates are localized near the boundary of
subsystems. Note that PBC are imposed on both edges. (b) Inverse
of the localization lengths ξi=1 (red dots) and ξi=2 (blue dots) in the
subsystem I and II, respectively, in the junction system of Fig. 1(c).
m is numbered in ascending order of the real part of the eigenenergy
values.

To study the localization properties further, we calculate
the localization length for each subsystem ξi=1,2, defined as
|ψn| ∝ en/ξi for n in each subsystem, by numerical fittings.
Note that ξi can take a negative value representing the expo-
nential decay with increasing n. Fig. 2(b) shows 1/ξi of all the
eigenstates in Fig. 1(c).

First, we consider the eigenenergies on the real axis.
We see that ξ1 = 1/γ1 for all negative eigenenergies on the
real axis, which is consistent with the localization length of
an isolated subsystem I with OBC, while the other local-
ization length ξ2 increases gradually as the corresponding
eigenenergy decreases (m � 227). According to our analytic
calculations, the localization length ξ2 whose eigenenergy is
negative infinity as ε1 = −ε2 → ∞ eventually converges to
zero, which is reasonable by considering the physical mean-
ing. The above analysis can also be applied to all positive
eigenenergies on the real axis (m � 774).

Next, we shift our focus to the complex eigenenergies
(227 < m < 774). In this region, ξ1 = −ξ2 is expected by our
analytic results [67] and confirmed numerically in Fig. 2(b).
Remarkably, the absolute values of the localization lengths
are exactly the same, nevertheless the values of the parame-
ters γi and εi are different for each subsystem. According to
our analytic calculation (Sec. II A in Ref. [67]), |ξ1| = |ξ2|
remains satisfied even when t1 �= t2. This is one of the unique
properties of non-Hermitian proximity effects. Further, we
concentrate on the eigenenergies at the intersections of σ

(1)
PBC

and σ
(2)
PBC in Fig. 1(c), where the winding number cannot

be defined. The localization lengths of the corresponding
eigenenergies are shown at m = 460, 461 in Fig. 2(b). Since
1/ξi=1,2 = 0, we find the eigenstates for these two eigenen-
ergies delocalize. This result also agrees with our analytic
calculations.

Our investigation confirms that the results for additional
cases in Fig. 1 are consistent with our analytic results. We
consider that the BEC we established can generally be applied
to the point-gap topological phases in junction systems.

Case II: W1 �= W2. Figure 3(a) shows the PBC junction
spectrum where W1 = −1 and W2 = 1. In this case, we see
that the spectrum appears even in the internal area shared by
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FIG. 3. (a) PBC junction spectrum (green dots). All the parame-
ters are the same with Fig, 1(c), but only the value of γ1 is set as −0.3.
PBC spectra for subsystems I and II, σ (1)

PBC and σ
(2)
PBC, are shown by the

red and blue ellipses, respectively. The gray regions mean 	w �= 0.
(b) Inverse of the localization lengths ξi=1 (red dots) and ξi=2 (blue
dots) in the subsystem I and II, respectively, in the junction system
of Fig. 3(a). m is numbered in ascending order of the real part of the
eigenenergy values.

σ
(1)
PBC and σ

(2)
PBC while it does not where W1 = W2 [Figs. 1(c)

and 1(d)]. But this is not a violation of BEC for junction
systems with PBC since 	w = 2 for that area. Therefore,
Eq. (16) is also confirmed here without exception. Also, the
eigenstates, as can be seen in Fig. 3(b), are localized near the
boundaries of the subsystems, exhibiting the non-Hermitian
proximity effects. The localization lengths in Fig. 3(b) show
the same behaviors as the previous case [Fig. 2(b)].

Junction systems with OBC. To clarify the BEC for the
point-gap topological phases in junction systems, hereafter
we consider the junction system with OBC in Eq. (5) with
HBC = ε2c†

N1+N2
cN1+N2 . Since OBC is implemented by remov-

ing hopping terms between two neighboring sites, there are
N1 + N2 cases for implementing the removal of hopping terms
in the model. While, in principle, our analytical method can be
applied to the other cases, we focus on the above HBC for the
present analytical calculation.

The eigenfunction can be approximated as (see Ref. [67])

|ψn| ∝
{

exp[(γ1 + l1)n] (n ∈ [1, N1]),

exp[(γ2 − l2)n] (n ∈ [N1 + 1, N1 + N2]).

(21)

We find that there is no solution where l1, l2 > 0. This means
that the spectrum for the junction system with OBC must
appear on the real axis, particularly on the OBC spectra for
each subsystem.

Figure 4(a) shows the spectra for the junction system with
all possible OBC calculated numerically. As discussed above,
we numerically confirm that all the spectra appear on the
real axis. Further, regardless of the removal position, it can
be numerically confirmed and analytically explained that all
spectra appear on and inside σ

junc
PBC without exception. Actually,

the winding number of the junction system wjunc(Ep), which
is not well defined by Eq. (3), is estimated to be unity since
a Hamiltonian connected by the continuous deformation of
t1 = t2 and γ1 = γ2 > 0 without closing the point gap gives
w(Ep) = 1 from Eq. (3), where Ep locates in the point gap.
Thus, we confirm that the spectrum for the junction system
with OBC (OBC junction spectrum, in short) appears on and
inside the spectrum for the corresponding junction system
with PBC regardless of the removal position for hopping

FIG. 4. (a) Spectra (magenta dots) of the junction system with all
possible OBC (N1 + N2 cases). All the parameters are the same with
Fig, 1(c) except for the system size (N1 = N2 = 30). PBC spectra
for subsystems I and II, σ

(1)
PBC and σ

(2)
PBC, are shown by the red and

blue ellipses, respectively. The PBC junction spectrum is shown by
the green dots and the gray region means wjunc �= 0. (b) Inverse of
the localization lengths ξi=1 (red dots) and ξi=2 (blue dots) in the
subsystem I and II, respectively, in the junction system with OBC.
All the parameters are the same with Fig. 1(c). m is numbered in
ascending order of the real part of the eigenenergy values.

terms. This result is consistent with the BEC for the point-gap
topological phases [46].

Figure 4(b) shows the localization properties of the junc-
tion system with OBC which is implemented by removing the
hopping terms between n = 1 and n = N1 + N2. We see that
ξ1 = 1/γ1 (ξ2 = 1/γ2) for all the eigenenergies on the OBC
spectrum for the subsystem I (II), which is also consistent
with localization length of an isolated subsystem I (II). In
contrast to the previous arguments on Figs. 2(b) and 3(b),
we see that both ξ1 and ξ2 are positive for m � 367, mean-
ing the corresponding PDFs show the peak only at the right
edge of the whole system, not exhibiting the non-Hermitian
proximity effects. This result is reasonable because of the
absence of the hopping between n = 1 and N1 + N2 and
γ1, γ2 > 0. For the eigenenergies whose eigenstates are dom-
inated by the subsystem I (m � 366), however, we find the
non-Hermitian proximity effects even in the junction system
with OBC.

Conclusion. In this Letter, we have established the BEC
for the point-gap topological phases in junction systems. To
summarize, for the point-gap topological phases in junction
systems with PBC, the PBC junction spectra do not appear
where the winding number for each subsystem is equal. Fur-
ther, almost all the eigenstates are localized near the interface
and exhibit the non-Hermitian proximity effects. We also re-
vealed that the OBC junction spectrum appears on and inside
the corresponding PBC junction spectrum. Thereby, the BEC
for the point-gap topological phases [21,46,47] can be applied
to the junction systems with OBC as well.

Since the BEC for junction systems in Hermitian systems
requiring that the number of edge states is given by the dif-
ference in topological number for each subsystem is generally
valid, the BEC for non-Hermitian junction systems we estab-
lished, Eqs. (16) and (17), is regarded as a natural extension
of the BEC for Hermitian junction systems. Therefore, while
our conclusion is derived from a specific lattice model, we
consider that the present statements can be applied to more
general junction systems with point-gap topological phases.
Especially, it is quite interesting to study the non-Hermitian
proximity effects for other systems.
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