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Absence of the anomalous Hall effect in planar Hall experiments
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Recently, the planar Hall effect has attracted tremendous interest. In particular, an in-plane magnetization can
induce an anomalous planar Hall effect with a 2π/3 period for hexagon-warped energy bands. This effect is
similar to the anomalous Hall effect resulting from an out-of-plane magnetization. However, this anomalous
planar Hall effect is absent in the planar Hall experiments. Here, we explain its absence, by performing a
calculation that includes not only the Berry curvature mechanism, as those in the previous theories, but also the
disorder contributions. The conventional π -period planar Hall effect will occur if the mirror-reflection symmetry
is broken, which buries the anomalous one. This is because the anomalous planar Hall effect is of the higher
order with respect to the small h/(EF τ ), when compared to the conventional planar Hall effect, with EF being
the Fermi energy and τ the relaxation time. We show that an in-plane strain can enhance the anomalous Hall
conductivity and changes the period from 2π/3 to 2π . We propose a scheme to extract the hidden anomalous
planar Hall conductivity from the experimental data. Our work will be helpful in detecting the anomalous planar
Hall effect and could be generalized to understand mechanisms of the planar Hall effects in a wide range of
materials.
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Introduction. In the planar Hall effect, an in-plane trans-
verse voltage can be induced by coplanar electric and
magnetic fields, irrelevant to the Lorentz force. It used to be
expected only in ferromagnetic and antiferromagnetic mate-
rials [1–6], but recently, it has attracted much attention in
nonmagnetic materials. So far, there are three mechanisms:
(i) the conventional mechanism [7–11]; (ii) the chiral anomaly
[12–20], which is excluded in two-dimensional (2D) as chiral-
ity is defined in odd dimensions; and (iii) the newly proposed
mechanism, the anomalous planar Hall effect induced by an
in-plane magnetization, such as in spin-orbit coupled 2D sys-
tems [21–24], atomic crystals [25,26], topological materials
[27–34], and heterodimensional superlattice [35,36]. In the
third mechanism, in-plane magnetization can be tuned by
an in-plane external magnetic field without introducing the
Lorentz force.

However, the anomalous planar Hall effect is still absent
in the planar Hall measurements. For example, it has been
theoretically suggested that the hexagonal warping in the band
structure, such as on the surface of a topological insulator
[27,28,33], could lead to a 2π/3 period of the anomalous
planar Hall effect. However, measurements in the topological

*Corresponding author: luhz@sustech.edu.cn

insulators Bi2−xSbxTe3 [7], Sn-doped Bi1.1Sb0.9Te2S [37], and
Bi2Te3 [38] all show only a π period, despite the observed
strong warping of these materials [39–42].

In this Letter, we propose a theory to understand the
absence of the anomalous planar Hall effect in the experi-
ments. The anomalous planar Hall effect requires breaking
of all mirror-reflection symmetries [27] in addition to time-
reversal symmetry breaking. However, the breaking of the
mirror-reflection symmetry may also induce the conventional
planar Hall effect with considerably large values because it is
inversely proportional to the impurity density in diffusive sys-
tems. As a result, the total planar Hall conductivity is nearly
identical to the conventional one, thereby implying that the
anomalous planar Hall effect is covered by the conventional
planar Hall effect. To illustrate our explanation, we use the
hexagon-warped (threefold rotational symmetric) 2D surfaces
states in a topological insulator as an example and calculate
the planar Hall conductivity in the presence of an in-plane
magnetic field. We further extend the previous researches
[27,28,33] on the anomalous planar Hall effect by including
disorder in the analysis. Though the intrinsic conductivity has
been computed for this system analytically, a proper inclusion
of the disorder has been missing; thus this work fills the
gap. Up to the first order of the warping, only the anomalous
planar Hall effect contributes to the Hall conductivity. Both
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FIG. 1. [(a) and (b)] Comparison between the theoretically cal-
culated anomalous planar Hall conductivity σ A

H with a 2π/3 period
and conventional planar Hall conductivity σ c

H with the π period.
The parameters are v = 0.3 eV nm, α = 0.2 eV nm3, � = 0.01 eV,
τ = 2h̄v2/(niu2

0EF ) = 1 ps, and r = (niu3
1 )2/3/(niu2

0 ) = 0.1. (c) The
anomalous Hall conductance converted from the measured Hall
resistance RH (inset) and the longitudinal resistance Rxx in the exper-
iment [37], as the difference (divided by 2) between the original Hall
conductance data in the range of θ ∈ [0, 2π ] and its mirror reflection
with respect to θ = π .

the intrinsic and noncrossing impurity-related extrinsic Hall
conductivities are independent of the impurity density, except
for the small higher-order skew-scattering contribution. They
exhibit a 2π/3 period [Fig. 1(a)] and a B3 dependence on the
in-plane magnetic field. Surprisingly, the conventional planar
Hall effect occurs beyond the first order of the warping, with a
B2 dependence and a π period. Further, it is stronger than the
anomalous planar Hall effect by several orders of magnitude
[Fig. 1(b)]. These differences are listed in Table I. Hence,
the total planar Hall conductivity has a π period, like those
observed in the experiments. Because of the huge difference
in magnitude, it is difficult to use the Fourier transformation
to extract the anomalous planar Hall conductance from the

TABLE I. Comparison between the anomalous and conventional
planar Hall effects, in the presence of the hexagonal warping with
threefold rotational symmetry and in-plane strain at a relaxation time
τ of about 1 ps. B is the in-plane magnetic field. The period is defined
by θ in Fig. 1. e2/h is the conductance quantum. Here θ is the angle
between the magnetic and electric fields.

Anomalous Conventional

Magnitude 10−5 e2/h 10−1 e2/h
B dependence B3 B2

Period (warping) 2π/3 π

Period (in-plane strain) 2π π

experimental data. We propose to extract the anomalous pla-
nar Hall conductance as the difference (divided by 2) between
two planar Hall conductance data sets. They are obtained by
measuring the conductance as a function of the magnetic field
angle θ ∈ [0, 2π ] and its mirror reflection with respect to
θ = π . We apply this data analysis scheme to the experiment
of the topological insulator Sn-doped Bi1.1Sb0.9Te2S [37]. It
shows the extracted anomalous planar Hall conductance fol-
lows a sin(3θ ) dependence on the magnetic field angle with a
2π/3 period [Fig. 1(c)]. Our work will be helpful for further
investigations on the mechanisms of the planar Hall effects.

Disorder-corrected planar Hall conductivity. Beyond the
previous works [27,28,33] in which the Berry curvature is
the only mechanism (intrinsic part), we also take into account
the disorder contributions (extrinsic part) in the calculation of
the anomalous planar Hall conductivity [43]. The intrinsic part
is given by the summation of the z-component Berry curvature
�λ

zk of the occupied states:

σ in
H = e2

h̄

∑
λk

�λ
zknF(Eλk), (1)

where nF is the Fermi distribution at the λth band Eλk. The
extrinsic part from the disorder scattering can be calculated
[43] using the Feynman diagrams in Fig. 2.

We consider the hexagon-warped surface states of a topo-
logical insulator, in an in-plane magnetic field B:

Ĥ = v(kxσy − kyσx ) + α

2
(k3

+ + k3
−)σz + �xσx + �yσy, (2)

where v is the Dirac velocity; α measures the hexago-
nal warping that brings the threefold rotational symmetry;
the in-plane magnetic field comes in terms of the Zeeman
splitting � = (�x,�y) = �(cos θ, sin θ ) = gμBB/2, with g
being the effective g factor; σ = (σx, σy, σz ) are the Pauli
matrices; and k± = kx ± iky. The orbital contribution from
the in-plane magnetic field relates to the z component of the
vector potential, which will not enter into the two-dimensional
Hamiltonian due to the Peierls substitution. Hence, there is no
orbital contribution excluding the Lorentz force; thus, the pla-
nar Hall effect is purely induced by the in-plane magnetization
due to the in-plane magnetic field. The warping term is the key
to realize the anomalous planar Hall effect since the σz term is
essential for the nonzero z-component Berry curvature. The
warping coefficient could reach a considerable value up to
0.25eV nm3 in the surface states of Bi2Te3-type topological
insulators [39,41]. This model carries �λ

zk = λvα

2ε3
k

[2vkx(k2
x −

3k2
y ) + 3(�yk2

x + 2�xkxky − �yk2
y )], with λ = ±1. The ex-

pressions of eigenenergies including εk and velocities can be
found in Ref. [43].

First, we study the intrinsic and noncrossing extrinsic con-
tributions. Up to the first order of α, we find the anomalous
planar Hall conductivity σH ≡ σ in

H + σ ex
H as [43]

σH = e2

h

(
4

EF
+ u3

1

niu4
0

)
α

v3
�3 sin 3θ, (3)

where the third-order skew-scattering disorder correlations
(the third and fourth diagrams in Fig. 2) result in the second
term that is inversely proportional to the impurity density ni.
On the other hand, the intrinsic (Berry curvature) as well as the
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FIG. 2. The Feynman diagrams for the extrinsic contribution to
the planar Hall conductivity. The arrowed solid and dashed lines
stand for the full and bare Green’s functions GR/A

k and gR/A
k , re-

spectively. The gray shadows represent the vertex correction to the
velocity from the ladder diagrams. The dashed lines without arrows
represent the disorder scattering. We model disorder as randomly
located nonmagnetic δ-function impurities with the strength distri-
butions satisfying 〈ui〉imp = 0, 〈u2

i 〉imp = u2
0, and 〈u3

i 〉imp = u3
1. The

velocity v̂μ (μ = x and y) is corrected by disorder as ṽμ(k)|k=kF (φ) =
v̂μ(k)|k=kF (φ) + niu2

0

∑
k′ GA

k′ (EF )ṽμ(k′)GR
k′ (EF ), where ni is the im-

purity density, and kF (φ) is the Fermi wave vector, with φ being the
polar angle.

side-jump and other skew-scattering disorder contributions
give rise to the first term that has nothing to do with ni.
Both terms ∝ B3 and show threefold rotational symmetry. The
ni-independent part is eight times the intrinsic (i.e., Berry cur-
vature alone) planar Hall conductivity [33,43]. Up to the first
order of α, the leading disorder contributions are fully due to
the anomalous planar Hall effect and could strongly influence
the intrinsic contribution. The term in the parentheses could be
rewritten as 4/EF + r1.5

√
EF τ/(2h̄v2), with r being defined

in Fig. 1. The parameter r determines the relative strength of
the third-order skew-scattering contribution compared to other
contributions.

Why are anomalous planar Hall effects much weaker than
conventional planar Hall effects? Our theory can deal with the
anomalous and conventional planar Hall effects in a unified
way that fully takes into account the higher-order warping
terms. We achieve this by numerical calculation with realistic
sample parameters. The inset of Fig. 3(c) shows that the nu-
merical σ A

H (the circles) at a weak warping α = 0.001 eV nm3

agrees well with the analytical Eq. (3). This comparison con-
firms the accuracy of the numerical calculation. Beyond the

FIG. 3. The amplitudes of the anomalous and conventional Hall
conductivities as functions of the Zeeman energy shown with cir-
cles (a), the warping coefficient α (b), and the dimensionless ratio
r = (niu3

1 )2/3/niu2
0 that describes the third-order skew scattering (c).

The inset of panel (c) shows the anomalous Hall conductivity for the
weak warping coefficient α = 0.001 eV nm3, where the circles are
the numerical results while the green line is from Eq. (3). (d) The
total Hall conductivities σH of different r are plotted as functions of
the angle θ . The Fermi energy EF = 0.4 eV, the Fermi velocity v =
0.3 eV nm, and τ = 1 ps. In panels (a) and (b), r = 0.1. In panels
(b)–(d), � = 0.01 eV. In panels (a), (c), and (d), α = 0.2 eV nm3.

weak warping limit, the mirror-reflection symmetry breaking
will also result in a large conventional Hall conductivity
inversely proportional to the impurity density. It is in vivid
contrast to the out-of-plane magnetization case, where only
the anomalous Hall effect exists [44]. The total planar Hall
conductivity, which is the sum of σ A

H (anomalous) and σ c
H

(conventional) in Figs. 1(a) and 1(b), exhibits approximately
the same sin 2θ behavior with the periodicity π as σ c

H in
Fig. 1(b). The conventional σ c

H can be approximated by the
classical Boltzmann one σ Boltz

H = −e2τ
∑

k vxvyδ(εk − EF )
with the group velocities vx,y = h̄−1∂kx,yεk. Up to
the lowest order of the warping and the magnetic
field,

σ Boltz
H = e2

h

EF τ

h

27πE2
F

4v6
�2α2 sin 2θ. (4)

In the weak scattering regime (τ ∼ ps), the dimensionless
quantity EF τ/h is very large, which in turn results in a
significant disparity between the anomalous σ A

H and the
conventional σ c

H:

σ A
H ∼ e2

h

4α

v3EF
�3 	 σ c

H ∼ σ Boltz
H . (5)

Here the weak third-order impurity scattering term is ignored
in σ A

H . In summary, beyond the first order of warping, the
conventional planar Hall conductivity exhibits a significantly
larger value that obscures the anomalous one.

We can distinguish the small anomalous planar Hall
effect from the conventional planar Hall effect, according
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to their different magnetic field dependencies, as shown in
Figs. 1(a) and 1(b). As expected, σ A

H oscillates with a 2π/3
period, while the period of σ c

H is π . This π period origi-
nates from the conventional planar Hall part in σ ex

H and ∝
1/ni as indicated by Eq. (4). The conventional planar Hall
conductivity

σ c
H(B) = σ c

H(−B), (6)

which has a sin 2θ dependence. By contrast, the anomalous
σ A

H ∝ ∑
λk �λ

z , where the Berry curvature is antisymmetrical
�λ

z (−B,−k) = −�λ
z (B, k); then

σ A
H (B) = −σ A

H (−B). (7)

This means the anomalous part is an odd function of the in-
plane magnetic field. The amplitudes of σ A

H and σ c
H versus the

Zeeman energy in Fig. 3(a) show the approximate relations
σ A

H ∝ �3 and σ c
H ∝ �2, which verify the argument in Eqs. (6)

and (7).
Dependence on Fermi energy and warping. For a small

r (defined in Fig. 1), the amplitude of the anomalous planar
Hall conductivity decreases with the increasing Fermi energy,
roughly following 1/EF as shown in Fig. 1. This behavior is
in agreement with Eq. (3) and is in sharp contrast with the
conventional planar Hall effect, whose amplitude is enhanced
dramatically for EF > 0.3 eV. Moreover, the amplitude of the
conventional one does not vary with the increasing Fermi
energy, monotonously. At the energy EF ∼ 0.30 eV, the con-
ductivity almost vanishes. This complicated behavior implies
the subtlety of the planar Hall effects.

Figure 3(b) illustrates the amplitudes of σ A
H and σ c

H as func-
tions of the warping coefficient α. Both the anomalous and the
conventional planar Hall effects vanish in the limit α → 0,
indicating the important role of the warping in the planar Hall
effect. The amplitude of the anomalous planar Hall conductiv-
ity increases monotonously with α, obeying the linear relation
at weak α in the analytical Eq. (3), while it tends to saturate in
the large-warping limit. For small warping, σ c

H increases very
slowly from zero and even shows a small and negative dip near
α = 0.1 eV nm3; therefore, the total planar Hall conductivity
equation (3) includes only the anomalous contribution up to
the first order of α. Nevertheless, the amplitude of σ c

H grows
rapidly at large α. It is worth noting that we do not assume
any anisotropic scattering or tilted energy band, which differs
from previous works [7,9,10].

Enhanced anomalous planar Hall effect. The missing
anomalous planar Hall conductivity could be found if the
third-order skew scattering were larger. This is because the
conventional one σ c

H ∼ σ Boltz
H is almost independent of r,

while the third-order skew anomalous one is proportional to
r1.5. As revealed in Fig. 3(c), the amplitude of the anomalous
part exceeds the conventional part when r ≈ 100. Thus, the
period of the total Hall conductivity shows a clear transi-
tion from π to 2π/3 with increasing the r. The anomalous
planar Hall part arising from the third-order skew scatter-
ing dominates in the total conductivity at large ratio r. The
third-order skew scattering is a non-Gaussian disorder corre-
lation, which usually yields contributions smaller than those
described by the pair correlators. In order to observe the

FIG. 4. (a) In the presence of an in-plane strain, the planar Hall
conductivity σH at different relaxation times τ . (b) The amplitudes
of the anomalous and conventional parts versus the magnetic field.
The parameters are EF = 0.4 eV, v = 0.3 eV nm, α = 0.2 eV nm3,
β = 0.1 eV nm, r = 0.1, � = 0.01 eV in panel (a), and τ = 0.1 ps
in panel (b).

anomalous planar Hall effect in experiments, we propose to
use strain to enhance it. The Zeeman energy � ∼ 0.003 eV
at B = 10 T if g = 10. Hence, because of its �3 behavior,
the anomalous planar Hall effect is much smaller than the
conventional planar Hall effect. It is known that the strain in
the x-y plane could induce a term βkxσz [22,45,46] that breaks
the mirror-reflection symmetry and reduces the C3v symmetry
to C1v , which will result in another anomalous contribution
with a 2π period in the planar Hall conductivity. Hence,
the total planar Hall conductivity can be written as σH =
σ c

H + σ A1
H + σ A2

H = C sin 2θ + A1 sin θ + A2 sin 3θ , with σ A1
H

and σ A2
H being the anomalous planar Hall conductivities in-

duced by the strain and threefold warping, respectively. As
σ A1

H linearly depends on the magnetic field, it may be com-
parable to σ c

H, especially in low-mobility samples. Therefore,
the period may change from π to 2π by decreasing τ as
demonstrated in Fig. 4(a), where the 2π/3 period still does
not appear. We can extract their amplitudes from the con-
ductivities at θ = π/4, π/2, and 5π/4 [43], respectively, as
shown in Fig. 4(b), where σ A1

H is out-of-phase relative to σ c
H

and σ A2
H , and then σ A1

H ∝ �, σ A2
H ∝ �3, and σ c

H ∝ �2, as
expected.

The X and � crossing diagrams (last three diagrams in
Fig. 2) are well-known to play significant roles in the anoma-
lous Hall effect [47,48]. We also consider their effects on the
planar Hall effect and find that they lead to an anomalous
planar Hall contribution [43], but with a π period instead
of a 2π/3 period. Nevertheless, its amplitude is 3 orders of
magnitude smaller than that of the conventional planar Hall
contribution. Therefore, our proposed data analysis scheme
remains valid to distinguish the conventional and noncrossing
anomalous planar Hall contributions, as long as the disorder
scattering is weak. Furthermore, this scheme can distinguish
the anomalous noncrossing and crossing contributions if the
disorder scattering is strong.
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