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g-factor engineering with InAsSb alloys toward zero band gap limit
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Band gap is known as an effective parameter for tuning the Landé g factor in semiconductors and can be
manipulated in a wide range through the bowing effect in ternary alloys. In this work, using the recently
developed virtual substrate technique, high-quality InAsSb alloys throughout the whole Sb composition range
are fabricated and a large g factor of g ≈ −90 at the minimum band gap of ∼0.1 eV, which is almost twice that
in bulk InSb, is found. Further analysis to the zero gap limit reveals a possible gigantic g factor of g ≈ −200
with a peculiar relativistic Zeeman effect that disperses as the square root of magnetic field. Such a g-factor
enhancement toward the narrow gap limit cannot be quantitatively described by the conventional Roth formula,
as the orbital interaction effect between the nearly triply degenerated bands becomes the dominant source for
the Zeeman splitting. These results may provide insights into realizing large g factors and spin-polarized states
in semiconductors and topological materials.
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Landé g factor is a major material parameter describing the
response of electron spins to an external magnetic field (B). In
solid state physics, the long-standing interest in finding large
g-factor materials originates from the peculiar spin-dependent
transport and optical phenomena, which hold great promise
for potential applications in spintronics [1,2], nonreciprocal
spin photonics [3], and quantum information processing [4,5].

In III-V semiconductors, the electron g factor is known to
observe the renowned Roth formula [6,7]

g = ge − 2

3

(
1

Eg
− 1

� + Eg

)
EP,

where ge ≈ 2, Eg, �, and EP are the free electron g factor,
the band gap, the spin-orbit coupling, and the Kane energy,
respectively. The Roth formula is, in principle, a single-band
theory, which explains the g-factor as a result of remote band
perturbations [8]. A recent study further reveals the connec-
tion between the g factor and the Berry curvature of the bands
due to the mixing of wave functions [9]. Therefore, it is
natural to expect a large g factor in narrow band gap materials.
Indeed, among all the binary III-V semiconductors, InSb has
the smallest band gap and thus the largest g factor, g ≈ −52
[10,11].
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To further reduce the band gap, one can resort to ternary
semiconductor InAsSb alloys, as the bowing effects can sup-
press the band gaps below those of their binary constituents
[12]. Recent experiments have firmly established a strong
negative bowing of the band gap with a bowing coefficient
of ∼0.8 eV [13,14], leading to a minimum band gap of 0.1 eV
when the Sb composition is close to 63%. As a result, the the-
oretical estimation of the electron g factor based on the Roth
formula reaches as high as g = −117, which is more than
twice that in InSb [15,16]. Such a large tunable range of band
gaps and g factors has rendered InAsSb alloy a promising plat-
form for spintronics [15–17], topological phase engineering
[18–20], and infrared (IR) optoelectronics [21–23].

However, there remain concerns about the high expecta-
tion value of g factors in InAsSb alloys toward the zero gap
limit. On the one hand, the Roth formula is a single-band
theory and fails to predict the correct result as the band gap
reduces, and multiband theories such as the k · p model are
necessary. Also, the experimental studies of g factors in the
narrow or zero band gap region, particularly for Dirac materi-
als, do not exhibit extraordinarily large g factors as expected
[24–26]. On the other hand, there are technical difficulties in
obtaining high-quality InAsSb alloys with the Sb composition
close to 50%. Although in earlier works, InAsSb alloys with
different alloy compositions were fabricated, they suffered
from a large lattice mismatch between the alloy and substrate,
which led to the relaxation of the bulk alloy and formation of
numerous threading dislocations deteriorating the electronic
properties [27,28]. The increased disorder, particularly in the
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FIG. 1. (a) Structure layout of the InAs0.37Sb0.63 sample. The
InAsSb alloy (absorber) is sandwiched between the two
Al0.48In0.52Sb barriers. (b) Schematic band alignment of the
InAs0.37Sb0.63 sample as an example. The zero energy corresponds
to the top of the GaSb valence band.

intermediate composition range, can contribute to the extrinsic
composition dependence of the key material parameters that
determine the g factor in a bulk material, such as Eg, �, and
EP [29], and makes the experimental characterization of their
intrinsic electronic property difficult.

Recent advances in the virtual substrate technique allow
for the molecular beam epitaxy (MBE) growth of high-quality
unstrained, unrelaxed InAsSb alloys in the whole composition
range [14,30], providing a perfect opportunity for experimen-
tal studies of the material parameters and g factors in the
narrow band gap region. In this work, we present a system-
atic investigation of the band structure evolution with the
composition in InAsSb alloys via a combination of magne-
toabsorption measurements and k · p calculations. We find
that the Kane energy shows very little bowing effect across
the entire composition range, but the g factor increases signif-
icantly as the band gap reaches the minimum. When Eg → 0,
the Landau levels (LLs) of the triply degenerated bands be-
come fully relativistic (i.e., LL energy ∝ √

B) due to the
dominant orbital interaction, and their relative wave-function
mixing determines the spin states and energy spacing of the
LLs. For a typical III-V (more generally, zinc-blende type)
semiconductor, we find that these relativistic LLs are highly
spin polarized along with maximized energy spacings, which
could lead to a g factor of g ≈ −200 at 1 T (vs g → −∞ based
on the Roth formula), overwhelmingly larger than most of the
two-band Dirac materials. Our findings may provide another
perspective for g-factor engineering in future devices based on
semiconductors and topological materials.

Five InAs1−xSbx alloy samples are studied in this work,
with x = 0.09, 0.22, 0.44, 0.50, and 0.63. These samples
are grown by solid-source MBE on undoped GaSb(100)

substrates. The x = 0.50 sample was grown using a VEECO
Gen II MBE system in Army Research Laboratory, and the
other samples were grown using a VEECO GEN930 MBE
system in Stony Brook University. The growth process has
been described previously in Ref. [14]. The core structure
and band alignment of our InAs0.37Sb0.63 sample are schemat-
ically shown in Fig. 1 as an example. Information on the
core structures of these samples is summarized in Table I. In
addition, samples with x = 0.09, 0.22, and 0.44 are n doped
(Te doped, 2 × 1016 cm−3), and samples with x = 0.50 and
0.63 are grown without intentional doping. To avoid the for-
mation of two-dimensional electron “pockets” due to band
bending at the boundaries of the InAsSb layer (absorber),
the barriers and cap are p-doped to 1016 cm−3. The three-
dimensional character of the carrier motion in InAsSb is
confirmed by magnetotransport measurements in tilted mag-
netic fields [14].

InAsSb alloy samples are then studied with magneto-IR
spectroscopy, which is known for its accuracy in determining
electronic band structures. The samples are placed inside a
superconducting magnet at liquid-helium temperature (the ef-
fective temperature at the sample is measured to be T = 5 K).
The samples are illuminated with IR radiation in the Fara-
day configuration using a Bruker 80v Fourier-transform IR
spectrometer. A composite Si bolometer is mounted behind
the sample to detect the transmitted light signal at different
magnetic fields.

Figure 2(a) shows the false color plot of the normal-
ized transmission T (B)/T (0 T) of the InAs0.50Sb0.50 sample
as a typical example. A series of absorption modes, which
blueshift in energy with increasing magnetic fields, can be
identified and attributed to LL transitions. The low-lying
transitions are labeled with T0–T5. These modes originate
from the same nonzero energy intercept as the magnetic field
approaches zero, indicative of the nature of interband LL
transitions. The energy intercept allows for direct readout of
the band gap Eg = 108 meV.

To quantitatively describe these LL transitions and extract
other material parameters, we employ the well-established
eight-band k · p model to fit the experimental results
[24,27,31,32]. The model consists of several parameters,
including Eg, �, EP, the electron effective mass m∗, and
the modified Luttinger parameters γ1, γ2, and γ3. To sim-
plify the Hamiltonian, we first assume γ1,2,3 = 0. Meanwhile,
we set Ac = h̄2/2m∗ − EP(3Eg + 2�)/6m0Eg(Eg + �) = 0,
where h̄ is the reduced Planck constant and m0 is the free-
electron mass, to avoid spurious solutions [33]. Finally, we
focus on the � point LLs, which carry the dominant con-
tributions to the observed optical transitions. With these

TABLE I. Composition and thickness of the core layers in the MBE-grown InAsSb samples of different Sb concentrations. The core layer
structure is shown in Fig. 1(a).

Sb (%) Grading (nm) Bottom barrier (nm) Absorber (nm) Top barrier (nm) Cap layer (nm)

9 Not N/A Al80Ga20As6.2Sb93.8 500 InAs91Sb9 1000 Al80Ga20As6.2Sb93.8 200 InAs91Sb9 100
22 Al85In15Sb 1600 Al95In4.5Sb 500 InAs78Sb22 1000 Al95In4.5Sb 200 InAs78Sb22 100
44 Al60In40Sb 3000 Al68In32Sb 500 InAs56Sb44 1000 Al68In32Sb 200 InAs56Sb44 100
50 Al39In61Sb 2630 Al63In37Sb 250 InAs50Sb50 1500 Al63In37Sb 200 InAs50Sb50 100
60 Al40In60Sb 4000 Al48In52Sb 500 InAs40Sb60 1000 Al48In52Sb 200 Al40In60Sb 100
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FIG. 2. (a) False color plot of the normalized transmission
T (B)/T (0 T) of the InAs0.50Sb0.50 alloy sample. The dashed lines
indicate the fitting results from the k · p model using parameters
given in Table II. The first few absorption modes are labeled with
Ti, i = 0, 1, . . . , 5. (b) Calculated LL fan diagram of InAs0.50Sb0.50

at the � point. The blue, black, and red colors denote the LLs
from the EB, HH, and LH bands, respectively. The arrows show the
low-lying LL transitions, in correspondence to those in panel (a).

assumptions, the k · p Hamiltonian is greatly simplified while,
as we will show below, ensuring a good agreement between
the experiment and model. The simplified Hamiltonian now
reads

Hk·p =
[

H+ 0

0 H−

]
, (1)

where

H+ =

⎡
⎢⎢⎢⎢⎣

Eg i
√

3V † iV
√

2V

−i
√

3V 0 0 0

−iV † 0 0 0√
2V † 0 0 −�

⎤
⎥⎥⎥⎥⎦,

H− =

⎡
⎢⎢⎢⎢⎣

Eg −√
3V −V † i

√
2V †

−√
3V † 0 0 0

−V 0 0 0

−i
√

2V 0 0 −�

⎤
⎥⎥⎥⎥⎦.

Here, V = 1√
6
P0k−, k = (kx, ky, kz ) is the wave vector, k± =

kx ± ky, and P0 is related to the Kane energy by EP =
2m0P2

0 /h̄2. The bases for the Hamiltonian are in the order
of the electron band (EB) spin-up, heavy hole (HH) spin-up,
light hole (LH) spin-down, split-off (SO) spin-down, EB spin-
down, HH spin-down, LH spin-up, and SO spin-up bands.

To calculate the LL energies, we apply the ladder operator
formalism and the following ansatz to the two subblocks of
the Hamiltonian [31,32]. For the H+ subblock, the ansatz
is |n+〉 = [|n − 1〉 , |n − 2〉 , |n〉 , |n〉]T . For the H− subblock,
the ansatz is |n−〉 = [|n − 1〉 , |n〉 , |n − 2〉 , |n − 2〉]T . Here,
[· · · ]T denotes the transpose operation, n is a positive integer,
and |n〉 is the nth harmonic oscillator eigenfunction. Further
details of the calculation can be found in Refs. [31,32].

TABLE II. Fitting parameters extracted from experiments using
the k · p model.

Sb Eg (eV) � (eV) EP (eV) gexpt gtheory

0% 0.415 0.390 19 15.0 12.8
9% 0.315 0.323 22 20.0 21.6
22% 0.220 0.276 20 29.4 31.7
44% 0.132 0.280 19 63.2 63.2
50% 0.108 0.300 19 76.0 87.4
63% 0.100 0.375 21 91.5 108.5
100% 0.235 0.800 23.3 51.3 49.1

With the calculated LLs, we can fit the experimental data
and extract the corresponding band parameters. The dashed
lines in Fig. 2(a) show the best fits to the data, and Fig. 2(b)
shows the calculated LL structure using the fitting parameters
in Table II. In Fig. 2(b), we also label out the corresponding
low-lying LL transitions for T0–T5, where we assume the
dominant contributions to the observed transitions in Fig. 2(a)
are the HH to EB LL transitions [27].

Following the above analysis, we can analyze the ex-
perimental results of other InAsSb alloys with different
Sb compositions. Figure 3 shows their false color plot of
the normalized transmission data for Sb compositions of
9%, 22%, 44%, and 63%, respectively. Similar to Fig. 2(a),
the dashed lines are best fits to the data using the k · p model,
which exhibits excellent agreement with the experiment. Ta-
ble II summarizes the band parameters extracted from the
fitting for different Sb concentrations. We note that the actual
fitting parameters are Eg and EP, whereas � does not critically

FIG. 3. (a)–(d) False color plot of the normalized transmission
T (B)/T (0 T) for InAsSb samples of (a) 9%, (b) 22%, (c) 44%, and
(d) 63% Sb compositions. The dashed lines indicate the fitting results
from the k · p model using parameters given in Table II. The gray
areas are opaque regions to IR light and show no intensity. The color
scales in all panels are kept the same.
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affect the fitting results as the SO band is distant from the other
bands. Here, we assume that � follows the the bowing relation
of ternary InAsSb alloys reported in Ref. [12].

Based on the results in Table II, we can study the bowing
effects of the band parameters. First, the band gap Eg bows
positively with the Sb concentration. By comparing the inter-
band LL transition energies of different compositions, we find
that the energy decreases as the Sb composition increases and
Eg reaches its minimum ∼100 meV at 63% Sb concentration.
The extracted Eg versus Sb composition gives a bowing coef-
ficient of 0.83, consistent with our previous result [14].

Second, the Kane energy EP shows a weak bowing effect
throughout the entire Sb composition range. This is in contrast
to an earlier work [27], where EP bows significantly with the
Sb concentration. It is likely that the samples in Ref. [27]
were grown with relaxed strain due to a strong mismatch of
the lattice parameters between the substrate and the epilayers,
which degraded the quality of the alloys, particularly near the
middle of the composition range. According to Ref. [29], this
may lead to additional coupling between the conduction and
valence bands and hence bowing of EP.

Lastly, we discuss the bowing effect in g factors. The g
factor for the nth LL is defined as gn = minm |En,↑(↓)(B) −
Em,↓(↑)(B)|/B, where min{· · · } finds the nearest LL of oppo-
site spin. Based on this definition, the experimental g factors
(gexpt) are extracted from the splitting of the two lowest EB
LLs at 1 T, calculated using the k · p model with experi-
mental band parameters. For comparison, we also calculate
the theoretical g factors (gtheory) from the Roth formula. In
both cases, we observe a negative bowing. That is, the g
factor gradually increases with increasing Sb composition and
reaches a maximum when the band gap reaches a minimum at
63% Sb. Then, the g factor decreases with increasing band gap
and Sb composition. Such behavior is expected as the mixing
between the EB, HH, and LH bands enhances the g factor,
and the mixing is strongly correlated with the size of the band
gap. Therefore, the g factors and band gaps exhibit opposite
bowing effects. However, the bowing in gexpt is found smaller
than that in gtheory. As discussed before, this is because the
Roth formula is a single-band theory and fails to handle the
orbital mixing effect as the band gap reduces [8].

Further enhancement of the g factor is possible when the
band gap approaches zero. In this case, the EB, HH, and
LH bands are degenerated (forming a triple point), and their
interactions become the dominant effect. For simplicity, as the
SO band is still far from these bands, we can omit the SO
band presence in the following discussion. We thus arrive at
the following Hamiltonian H±:

H+ =

⎡
⎢⎣

0 itU † iU

−itU 0 0

−iU † 0 0

⎤
⎥⎦,

H− =

⎡
⎢⎣

0 −tU −U †

−tU † 0 0

−U 0 0

⎤
⎥⎦.

Here, U = P0k−, and for a more general discussion, we use
t to denote the ratio of the coupling strength between the EB
and HH to that between the EB and LH. The corresponding

FIG. 4. (a) Landau fan diagram of a triply degenerated band
structure (i.e., zero band gap) with t = √

3 for the case of zinc-blende
semiconductors. The energy is in units of P0k0, where k0 = √

e/h̄.
(b) The spin-up component in low-lying LLs as a function of t .
(c) The t dependence of the low-lying LL energies. In all panels,
the red and blue colors denote the spin-up and spin-down component
dominant LLs, respectively. The dark-yellow color denotes the LLs
with equally mixed opposite spins. The black line denotes the highly
degenerated HH LLs.

LL energy reads

E0
n,± = 0, n = 0, 2, 3, 4 . . . ,

Eα
n,+ = αP0kB

√
n(1 + t2) − t2, n = 1, 2, 3, 4 . . . ,

Eα
n,− = αP0kB

√
n(1 + t2) − 1, n = 1, 2, 3, 4 . . . ,

where kB = √
eB/h̄, and e is the elementary charge. Each LL

has three indices. The superscript α is the band index and
takes the value of 0,+1,−1, denoting the HH, EB, and LH
bands, respectively. The first subscript n denotes the LL index
in each band, and the second subscript ± denotes the sub-
block H± to which the eigenstate relates. Figure 4(a) shows
the magnetic field dependence of the calculated LL energies
with t = √

3, which is the case for III-V semiconductors.
Due to the electron-hole symmetry (i.e., E−1

n,± = −E+1
n,±), we

will focus on the α = +1 LLs in the discussion below. We
will also exclude the discussion of the spin states in the
α = 0 LLs as their Zeeman effect is negligible due to large
degeneracy. In this case, we can omit the band index for
simplicity.

As the basis state for each subblock H± is not a pure spin
state, the spin-up component of a LL is found to be

S↑
n,+ = 1 − n/2

n(1 + t2) − t2
, S↑

n,− = (n − 1)/2

n(1 + t2) − 1
.

Figure 4(b) shows the calculated spin-up component of the
low-lying LLs as a function of t . We find that independent of
t , LL1,+ is equally spin mixed while LL1,− is fully spin-down
polarized. For other LLs, they become more spin polarized
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with increasing t . Hence, for t that gives decent spin polariza-
tion, the Zeeman splitting is now directly connected to the
orbital energy levels (i.e., the LLs) and exhibits a peculiar
relativistic

√
B magnetic field dependence [Fig. 4(a)], in stark

contrast to the conventional linear in B Zeeman splitting.
On the other hand, the magnitude of the Zeeman splitting

also depends on the choice of t . Figure 4(c) shows the t
dependence of the low-lying LL energies. For t = 0, 1, and
t → +∞, the LLs of opposite dominant spin components are
degenerated, and thus zero Zeeman effect. On the contrary,
when a LL is equally separated from two neighboring LLs
of opposite spins, the optimized Zeeman effect is achieved.
For example, a simple calculation using the relation E2,− −
E2,+ = E2,+ − E1,− gives an optimized t ≈ 1.7 for large Zee-
man splitting in LL2,+, which is close to t = √

3 in III-V
semiconductors. The optimized t for other LLs is also close
to this value.

It is interesting to compare the Zeeman effect in such
triple-point semimetals to those of Dirac semimetals such as
graphene [26] and ZrTe5 [34]. In the two-band model (as
in Dirac semimetals), the interaction between the two bands
leads to degenerated LLs with no dominant spin components.
This is equivalent to taking t → 0 or +∞ in our model,
where no Zeeman effect exists if only considering the orbital
interaction. The Zeeman effect comes into play through the
interaction with remote bands [8,24,35], which leads to a rel-
atively small g factor. However, in triple-point semimetals, the
additional interaction with the third band can lift the degener-
acy of the LLs (except for the lowest two LLs). Therefore,
the Zeeman effect can reveal itself through the splitting of
the orbital energy levels and no longer takes effect through
perturbations. In this case, the g factor can be more easily and
effectively manipulated through the interactions between the

three bands (EB, HH, and LH) rather than with the remote
bands. These observations could be useful in designing high g
factors in future topological materials.

Before closing, we comment on how to enhance the Zee-
man effect in practicable materials. We find that t = √

3 is an
ideal ratio that gives rise to a decent 80% spin polarization
in n > 1 LLs as well as the ideal energy spacing between
spin-polarized LLs. In fact, this ratio is protected by the
crystal symmetry and hence it can be also applied to the
zinc-blende type semiconductor [36]. Using a typical value of
EP = 20 eV, the Zeeman splitting for LL2,+ is about 11 meV
at 1 T (i.e., min{E2,− − E2,+, E2,+ − E1,−} ≈ 11 meV), which
corresponds to an effective g factor of g ≈ −200. Our finding
is consistent with that reported on triple-point (zinc-blende)
HgCdTe [37]. Therefore, zinc-blende type semiconductors
with zero energy gap are ideal candidates for realizing large
Zeeman effects.
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