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It is expected that the Gross-Neveu-Yukawa (GNY) chiral Ising transition of Dirac fermions coupled with
a scalar field in (2 + 1) dimensions will be the first fermionic quantum critical point that various methods,
such as conformal bootstrap, perturbative renormalization group, and quantum Monte Carlo (QMC) simulations,
would yield converged critical exponents—serving the same role as the Ising and O(N ) models in the textbooks
of statistical and quantum physics. However, such an expectation has not been fully realized from the lattice
QMC simulations due to the obstacles introduced by the UV finite-size effect. In this Letter, by means of the
elective-momentum ultrasize (EMUS)-QMC method, we compute the critical exponents of the O(N/2)2

� Z2

GNY N = 8 chiral Ising transition on a two-dimensional π -flux fermion lattice model between Dirac semimetal
and quantum spin Hall insulator phases. With the matching of fermionic and bosonic momentum transfer and
collective update in momentum space, our QMC results provide fully consistent exponents with those obtained
from the bootstrap and perturbative approaches. In this way, the EMUS now live happily on the N = 8 island
and could explore the chiral Gross-Neveu-Yukawa archipelago with ease.

DOI: 10.1103/PhysRevB.108.L121112

Introduction. Just as the Ising and O(N ) models are the
simplest (2 + 1)-dimensional [(2 + 1)D] universality classes
that the perturbative renormalization group (RG) analysis (ε
expansion) [1,2], the conformal bootstrap [3–6], and lattice
model simulations [7] have provided highly consistent and
well-converged results—serving as the textbook example for
the development of many-body methodologies, the simplest
(2 + 1)D universality class involving fermions—the Gross-
Neveu-Yukawa (GNY) model of Dirac fermions coupled with
a scalar bosonic field is expected to provide a similar level
of consistency and bring our understanding of the quantum
phase transitions in interacting Dirac fermion systems onto
more solid ground.

Such consistency not only has a theoretical impact towards
quantum field theory and high-energy physics [8–11], but
is also intimately related to the ongoing research in d-wave
superconductors and nematic quantum criticality [12,13],
graphene [11,14–17], twisted bilayer graphene [18,19], and
other quantum moiré materials [20,21], as well as the kagome
metallic systems [22,23], where the transition from Dirac
and Weyl semimetals (with the fermion flavor tuned by the
spin, valley, and layer degrees of freedom and the Coulomb
interaction tuned by gating and twist angles) to various
symmetry-breaking phases holds the key to understanding
the intriguing phenomena therein. However, such consistency,
especially in the form of critical exponents or the scal-
ing dimensions of external operators in the conformal field
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theory (CFT) data, has not been fully reached for the simplest
one—the GNY chiral Ising transition with O(N/2)2

� Z2

global symmetry. The present ε-expansion [10,11,24], confor-
mal bootstrap with O(N ) global symmetry [9,25], and lattice
model quantum Monte Carlo (QMC) simulations [26–31] are
giving rise to closer exponents over the years (see Table I),
except for the remaining boson anomalous dimension expo-
nent ηφ . The ∼20% deviation from the latest QMC study
[26,27] compared with that from ε expansion [11,24] and
conformal bootstrap [9] comes from the fact that, although
in the latest lattice model simulation [26] the critical bosonic
and fermionic modes are designed with the same velocity
at the bare level, the actual coupled system when driving to
the quantum critical point still acquires different velocities
of the critical modes at the finite size studied (see Fig. 1 in
Ref. [26]), and it has been observed that such a difference at
the UV is sufficient to cause significant drifts of the exponents
in the finite-size analyses (see Figs. 2 and 3 in Ref. [26])
and renders the access of the thermodynamic limit difficult.
From these experiences, one sees that better model design
and algorithmic developments, with less computation time and
human time, are critically needed to overcome the problem
and bring consistent results with bootstrap and ε expansion
for GNY chiral Ising universality classes.

In this Letter, we achieve this goal by means of the elective-
momentum ultrasize (EMUS)-QMC method [28,32,33]: We
compute the critical exponents of the N = 8 chiral Ising GNY
transition on a 2D π -flux fermion lattice model between Dirac
semimetal (DSM) and quantum spin Hall insulator (QSH)
phases [26,29]. By designing the matching of fermionic
and bosonic momentum transfer within the high-resolution
patches in the Brillouin zone (BZ) and a collective update
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TABLE I. EMUS live on the chiral Gross-Neveu-Yukawa
archipelago. This table summarizes the critical exponents of the N =
8 chiral Ising GNY transition. We compare the EMUS-QMC results
with previous QMC results and those from the latest ε-expansion
and bootstrap estimates. The bootstrap estimates are obtained for the
three external operators �ε = 3 − 1

ν
, �σ = 1+ηφ

2 , and �ψ = 1+ηψ

2 of
the GNY island with O(8) global symmetry [9]. The ε-expansion
work [24] relies on the DREG3 prescription to analytically continue
spinors away from d = 4.

1/ν ηφ ηψ

This work 1.07(12) 0.72(6) 0.04(2)
Previous QMC [26] 1.0(1) 0.59(2) 0.05(2)
Previous QMC [27] 1.20(1) 0.62(1) 0.38(1)
ε expansion [24] 0.993(27) 0.704(15) 0.043(12)
Conformal bootstrap [9] 0.998(12) 0.7329(27) 0.04238(11)

completely in the momentum space, we have effectively ac-
cessed much larger system sizes and better data quality with
reduced computational cost as well as human time. Our QMC
results yield the crossing of the RG-invariant ratio with very
small drifts and our stochastic finite-size analysis finds fully
controlled exponents (see Table I), finally in agreement with
those obtained from the bootstrap and ε expansion.

With our computation protocol, the EMUS now live hap-
pily on the N = 8 island of the chiral GNY archipelago
[9], and they can readily jump to other islands with a sim-
ple change of the simulation code and further explore the
exciting and vast ocean of CFTs. Relevance towards the

experiment on interacting Dirac fermion systems is also
discussed.

The chiral GNY model. At the level of field theory, our
chiral GNY model describes the situation of an N/4 four-
component Dirac interacting with a bosonic scalar field φ. The
coefficient m in the mφ2 term of the bosonic Lagrangian [see
Eq. (1)] has a critical value mc, below which the bosonic scalar
field spontaneously acquires a finite expectation value, giving
a mass to the fermions [the QSH phase in Fig. 1(b)]. Above
mc, the expectation value of φ vanishes, and the fermions go
back to the massless form [the DSM phase in Fig. 1(b)]. At
mc, the system is expected to flow to the chiral GNY CFT. We
note in the literature there are two different GNY models with
the same number of fermions but different global symmetry
groups. In addition to the chiral GNY model with O(N/2)2

�

Z2 global symmetry in this work, there is also the GNY
model with O(N ) global symmetry investigated in a recent
bootstrap work [9]. However, since these models are nearly
degenerate and are only distinguishable at high perturbative
order, the differences between the scaling dimensions of the
external operators {�ψ = 1+ηψ

2 ,�σ = 1+ηφ

2 ,�ε = 3 − 1
ν
} are

very small (∼3 × 10−6) for N = 1, 2, 4, 8 [9,11], hence we
focus on the lattice realization of the N = 8 chiral Ising GNY
with O(N/2)2

� Z2 global symmetry.
We adapt the lattice model shown in Fig. 1(a) with the

Lagrangian [26]

L = Lfermion + Lboson + Lcoupling, (1)

FIG. 1. Chiral-Ising GNY model and EMUS algorithm. (a) The lattice model of N = 8 chiral Ising GNY in real space. Each unit cell
contains two boson and two fermion sites. Black arrows indicate fermionic hopping with phase factor θ = π

4 . Purple and beige lines indicate
coupling terms with strength equal to the bosonic field multiplied with λ = ±1, depending on the boson sublattice. (b) Fermion dispersions.
When m is small (large), bosonic fields are in ferromagnetic (paramagnetic) phases and the fermions are in the massive QSH (massless
DSM) phases, separated by the GNY chiral Ising transition at mc. (c) In momentum space, two patches near Dirac points are simulated in
EMUS-QMC. (d) An example of the EMUS update scheme with patch size Lf = 2 (corresponds to L = 12 in the original model). The left
panel is one of the patches in the fermion BZ. The right panel is the allowed momentum transfer for bosons.
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where

Lfermion =
∑
〈i, j〉σ

ψ
†
i,σ

[
(i∂τ − μ)δi j − teiσθi j

]
ψ j,σ + H.c.,

Lboson =
∑

i

[
1

4

(
∂φi

∂τ

)2

+ mφ2
i + φ4

i

]
+

∑
(i, j)

Ji j (φi − φ j )
2,

Lcoupling =
∑

〈〈i, j〉〉,σ
λi jφpψ

†
i,σ ψ j,σ + H.c.,

and ψi,σ is the fermionic operator on each site i with spin
σ = ↑,↓. Ldermion describes fermions with nearest-neighbor
hopping t = 1 and a phase factor θ = π/4 for each bond,
which introduces a π flux in each plaquette and leads to two
Dirac cones at X = (0, π ) and (π, 0) in the BZ. We set μ = 0
to ensure the half filling of fermions.

In Lboson, φi is the scalar bosonic field, and m is the
mass term to tune the boson across the chiral GNY Ising
transition. The imaginary time derivative term provides the
quantum fluctuations. Ji j are interaction terms up to fourth-
nearest neighbor, and their magnitudes are set to J1 = 4t2/5,
J2 = −J1/8, J3 = J1/63, and J4 = −J1/896. This combina-
tion ensures the largest linear region in bosonic dispersion,
and the bosonic velocity vb is equal to that of the bare fermion
v f = vb = √

2t [26].
Lcoupling is a next-nearest-neighbor hopping for the

fermion, whose strength is determined by the boson φp sitting
on the bond and the difference of two boson sublattices λi j =
±1. In the symmetry-breaking phase of the bosonic field, this
will open a gap at the Dirac points in fermion dispersion and
transform the DSM to a QSH insulator [29].

We note that each of the two Dirac cones accounting for
four fermion components (two spins and two sublattices),
combining with the chiral symmetry consisting of the inver-
sion of bosonic fields and swapping of the two sublattices,
leads to a O(4)2

� Z2 global symmetry.
EMUS-QMC method. As shown in Fig. 1(b), the linear

dispersion of Dirac cones only occupies a small part of the
BZ and simulating the region out of linear dispersion will not
contribute much to the critical behavior. In previous studies,
different methods have been introduced to bypass this issue.
One can write the model with a single Dirac cone (the SLAC
fermion) covering most of the BZ [30,34]. Although the
SLAC fermion avoids the Nielsen-Ninomiya theorem [35,36],
one has to pay the price of long-range hoppings and the
violation of locality has been shown to fundamentally change
the associated universality class [37–39]. One can also enlarge
the linear dispersion region without violation of the locality,
by adding longer neighbor hoppings with appropriate strength
[26]. However, as discussed in the Introduction, one still ex-
periences a strong finite-size effect when tuning the system
to the interacting fixed point, and a drift in the crossings of
RG-invariant ratios, and gives rise to the ∼20% deviation of
the bosonic anomalous dimension ηφ in the latest QMC from
the ε-expansion and conformal bootstrap, as shown in Table I.

Faced with these difficulties, here we work in a different
direction. Instead of enlarging the linear region, we only
simulate the linear region—the momentum space near the
Dirac points—with the EMUS-QMC method [28,32,33]. The
EMUS scheme is different from the usual fermion determi-

nant QMC, in that, instead of simulating the lattice model with
a homogeneous L × L grid in real (and momentum) space,
it focuses on small patches of BZ that are important in the
IR limit and ignore the momenta elsewhere. In this Letter,
we choose the patches to be two squares with side lengths
1
6 of the full BZ centered at the Dirac points, where the
dispersion deviates from the linear dispersion to within 5%.
By simulating only (L f + 1)2 fermion modes in each patch,
one effectively simulates a full system with size L = 6L f . We
note a larger ratio is not favored as in that case the patch will
contain the momenta substantially deviated from the linear
region and then introduce UV defects, and at the same time,
although one can choose a small ratio to make the effective
system size even larger, one would need to pay the price
that the inverse temperature β would need to be scaled with
L to probe the quantum critical point and the computation
complexity linearly scales with β. Overall, the ratio of L f

L = 1
6

is found to be ideal for our model in Eq. (1).
Although the hard cutoff in momentum space effectively

renders the QMC to simulate a different model—whose dis-
persion near the Dirac points is the same as the original
one—with different finite-temperature observables, such as
the values of the order parameter, we find the CFT data
(critical properties) of the EMUS simulation share the same
IR structure with the original ones, as shown in this Letter
and our previous examples [28,32,33]. Previous studies have
demonstrated the validity of the EMUS-QMC method, where
it was shown that the simulated models with both the usual
DQMC and EMUS-QMC give rise to the same universal in-
formation including the critical exponents and scaling form
of bosonic propagators of the antiferromagnetic Ising critical
points coupled to the Fermi surface [28,33]. Moreover, the
EMUS-QMC scheme has been shown to successfully access
the quantum critical data beyond the critical exponents; one
example is Ref. [33], where various non-Fermi-liquid proper-
ties such as the Fermi-surface topology and self-energies are
obtained.

As shown in Figs. 1(c) and 1(d), the momentum modes
included in the simulation belong to two small patches near
the Dirac points, where the dispersion is almost linear. When
updating the bosonic field directly in momentum space, one
only needs to keep track of the momentum transfer within
the same patch, making the coupling terms grouped and block
diagonal, instead of global and all-to-all, which is the case if
one performs a local update in real space [28,32,33].

We leave the detailed description of the EMUS-QMC to
the Supplemental Material (SM) [40], but just to highlight that
we can now simulate system sizes up to 36 × 36 × 2, with
less computation time and human time, compared with the
16 × 16 × 2 in traditional method [26].

Results. We perform EMUS-QMC on Eq. (1) with patch
sizes L f = 2, 4, 6, which leads to an equivalent full sys-
tem size L = 12, 24, 36, and the inverse temperature is set
to be proportional to the system size β = 3

4 L. We compute
the magnetic structure factor of the bosonic field S(q) =
1

L2 〈φqφ−q〉 = 1
L4

∑
i, j e−iq·(ri−r j )〈φiφ j〉, and use S(�) (square

of the order parameter) and the RG-invariant correlation ratio
R = 1 − S(�+�q)

S(�) [42], where �q = 2π
L (0, 1) or (1,0), to ex-

tract the GNY critical exponents. Since we work directly in
momentum space, the Fourier components φq can be used in
measurements on the fly.
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FIG. 2. N = 8 chiral Ising GNY CFT data. (a) The square of the bosonic order parameter S(�), and (b) the correlation ratio R against the
control parameter m for system sizes L = 12, 24, 36. (c) and (d) The data collapse of S(�) vs m and the stochastic analysis of the error bound
of {1/ν, ηφ}. Results yield 1/ν = 1.07(12) and the bosonic anomalous dimension ηφ = 0.72(6). The color bar in (d) denotes the F ratio of
deviation. The red dot is the set of exponents used in the collapse in (c).

One sees in Fig. 2(b) that the drift of crossing points of
R is extremely small compare to that in Fig. 2 of Ref. [26].
This is a strong indication that our simulation has a smaller
finite-size effect, as we attain larger effective system sizes.
With the obtained S(�) and R in Figs. 2(a) and 2(b), we further
perform a stochastic data collapse in Figs. 2(c) and 2(d), to un-
biasedly determine the optimized critical exponents {1/ν, ηφ}.
The detailed description of such an analysis is given in SM
[40], and here we outline the main procedure and results.

We sample the values of {1/ν, ηφ} from the 2D parameter
space in Fig. 2(d). Whenever a set of critical exponents is
proposed, we try to fit a single curve with rescaled data from
all system sizes [as in Fig. 2(c)], compute the ratio of deviation
F to determine the goodness of fit, and vary the exponents
until F attains its minimum. This whole process is repeated
1000 times with random noise added to S(�) within its error
bar and with random initial guesses in the {1/ν, ηφ} space,
so as to estimate the error bound for the optimal exponents,
which is shown in Fig. 2(d). The color of each dot indi-
cates its magnitude of convergent F ratio, where those of
the blue ones are lower, and fit better. In this way, exponents
1/ν = 1.07(12) and ηφ = 0.72(6) are obtained. The red dot
indicates the exponents are generated from the original data
of S(�) without noise, which collapses well as shown in
Fig. 2(c).

To obtain the fermion anomalous dimension ηψ , we mon-
itor the imaginary time Green’s function by utilizing the
Lorentz symmetry at the GNY-Ising CFT. Figure 3 shows
the imaginary time decay of the fermionic and bosonic
Green’s function at the critical point mc, where G f (τ ) =
1

L2

∑
k〈ψk(τ )ψ†

k (0)〉, and Gb(τ ) = 1
L2

∑
q〈φq(τ )φ−q(0)〉, re-

spectively. Both panels are in log-log scale, and the dotted
straight lines indicate the power-law decay of both correla-
tion functions. From Fig. 3(a), we can extract the anomalous
dimension of the fermion ηψ = 0.04(2), by the relation
G f (τ ) ∝ 1/τ 2+ηψ , while in Fig. 3(b), a straight line of
Gb(τ ) ∝ 1/τ 1.72 is drawn, using the ηφ = 0.72 just obtained.

One can see both straight lines match well with the data as the
system size L increases, which reflects the robustness of ηψ

and ηφ .
Discussion. Table I summarizes our results and the previ-

ous ones from QMC, ε expansion, and conformal bootstrap.
One sees a textbook level consistency of the {1/ν, ηφ, ηψ } for
the N = 8 chiral Ising GNY with the conformal bootstrap
[9] and ε expansion [24] is finally achieved. We note that
the present EMUS-QMC simulation actually consumes much
less computation resources compared with our previous one
[26], and it can be readily extended to other chiral GNY
islands with different numbers of fermion flavors and sym-
metries of the bosonic field, by simply changing the power
in the fermion determinant and the form of the boson energy
difference [40].

The EMUS-QMC can also be used to investigate other
GNY transitions from DSM to plaquette valence bond solids
[43–47], SU(2) QSH [48–50], nematic order [13], intervalley

FIG. 3. Fermion and boson Green’s functions at the chiral GNY
CFT. We fit the imaginary time decays of (a) fermionic and
(b) bosonic Green’s functions, to extract the anomalous dimension
ηψ = 0.04(2) and verify the consistency of ηφ = 0.72 obtained from
Fig. 2.
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coherent and valley polarized orders [51–55], as well as super-
conductivity [56,57] in graphene and twisted bilayer graphene
and kagome metal systems. It could also be applied to the
investigations of the symmetric mass generation transitions in
which the Dirac cones are gapped out without spontaneous
symmetry breaking [58–62]. We foresee EMUS will soon
explore the exciting islands in the vast ocean of CFTs and the
broad continent of realistic 2D quantum materials.
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