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Scaling at the out-of-time-ordered correlator wavefront: Free versus chaotic models
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Out-of-time-ordered correlators (OTOCs) are useful tools for investigating foundational questions such as
thermalization in closed quantum systems because they can potentially distinguish between integrable and
nonintegrable dynamics. Here, we discuss the properties of wavefronts of OTOCs by focusing on the region
around the main wavefront at x = vBt , where vB is the butterfly velocity. Using a Heisenberg spin model as an
example, we find that the leading edge of a propagating Gaussian with the argument −m(x)(x − vBt )2 + b(x)t
gives an excellent fit to the region around x = vBt for both the free and chaotic cases. However, the scaling in
these two regimes is very different: in the free case the coefficients m(x) and b(x) have an inverse power law
dependence on x, whereas in the chaotic case they decay exponentially. We conjecture that this result is universal
by using catastrophe theory to show that, on the one hand, the wavefront in the free case has to take the form of an
Airy function and its local expansion shows that the power law scaling seen in the numerics holds rigorously and,
on the other hand, an exponential scaling of the OTOC wavefront must be a signature of nonintegrable dynamics.
We find that the crossover between the two regimes is smooth and characterized by an S-shaped curve giving
the lifting of Airy nodes as a function of a chaos parameter. This shows that the Airy form is qualitatively stable
against weak chaos and consistent with the concept of a quantum Kolmogorov-Arnold-Moser theory.
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Introduction.The hallmark of chaos in classical dynamics
is an exponential sensitivity to small changes in initial con-
ditions (the butterfly effect). This is at odds with quantum
mechanics where unitary time evolution means that the over-
lap between two states is constant in time. Although quantum
systems do not display chaos, there are qualitative differences
in behavior depending upon whether their classical limit is
integrable or nonintegrable (chaotic) [1]. In the latter case
we have “quantum chaos,” which is well studied in single-
particle quantum mechanics, including in experiments [2–12].
On the theoretical side, the main approach has traditionally
been through spectral statistics [13,14]. These have universal
properties that depend only on the symmetries of the Hamilto-
nian and show close agreement with the predictions of random
matrix theory (RMT) [15–18]. More recently, attention has
shifted to many-body quantum chaos and, particularly, its
role in foundational issues such as thermalization in closed
quantum systems. One limitation of RMT is that it does not
describe thermodynamic quantities like temperature and en-
ergy that are needed for such analyses [19]. This is remedied
by the eigenstate thermalization hypothesis (ETH) [20–24],
which has been numerically verified in a range of generic
models [25–28] but is violated in integrable and localized
systems [29–38], as expected. The ETH generalizes RMT and
gives identical predictions if one focuses on a small enough re-
gion of the spectrum. Any diagnostic of quantum chaos should
therefore clearly differentiate between the integrable and ETH
cases. While the ETH does give rise to the notion of chaotic
eigenstates, it is a time-independent statement and does not
resemble classical chaos. In fact, aside from the weak ETH
(eigenstate typicality) [39–41], it has no classical counterpart.

A truly dynamical diagnostic for quantum many-body
chaos is provided by out-of-time-ordered correlators (OTOCs)

[42–51]. They take the form

C(x, t ) = 〈[Â(t ), B̂]†[Â(t ), B̂]〉, (1)

where Â and B̂ are operators that at t = 0 have only local
support (act on different individual lattice sites a distance x
apart) and hence commute. The average is usually taken over
an ensemble diagonal in the energy basis, but some studies
have considered pure states as well [52–54]. As Â evolves in
time, it picks up weight throughout the lattice, becoming non-
local and causing C(x, t ) to become nonzero. This, in effect,
tracks the tendency of dynamics to smear information across
the system, and it becomes impossible to determine the initial
conditions from local data alone. In this respect the OTOC re-
sembles classical chaos, where incomplete information leads
to exponential inaccuracy. Indeed, the late-time value of the
OTOC in local spin models does appear to be an indicator of
chaos [43,52–63]. In the classical limit commutators become
Poisson brackets, which are a diagnostic for classical chaos,
and the general expectation is therefore that OTOCs in nonin-
tegrable models experience exponential growth [51],

C(0, t ) ∼ eλLt (2)

(although we note that integrable systems near unstable points
behave similarly [64–69]). The growth is controlled by the
quantum Lyapunov exponent λL, which obeys [51]

λL � 2πkBT/h̄. (3)

Models that approach the bound are known as fast scramblers.
An OTOC should also display spatial dependence as in-

formation propagates across the system. A recent conjecture
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gives the initial growth of the OTOC wavefront as [70–73]

C(x, t ) ∼ exp

[
−λL

(x/vB − t )1+p

t p

]
. (4)

This has been tested in several cases and used to study the
many-body localization transition [70–82]. When the param-
eter p, or the broadening coefficient, takes the value p = 0,
Eq. (4) reduces to the simple “Lyapunov-like” exponential
growth of Eq. (2), but for quantum spin models expected to
obey ETH it is believed that, in general, p > 0 [70]. However,
broadening is not necessarily a general indicator of how close
one is to a chaotic model in the sense of ETH [83,84], and
puzzles remain concerning the value of p in this early growth
regime. For example, in two dimensions the values of p co-
incide in chaotic and integrable models, so the broadening
coefficient is inadequate for distinguishing them [70], while
some studies [70,72,85–88] differ on whether the distinction
between values of p even exists in either regime.

For interacting models Eq. (4) is usually fitted in regimes
where C(x, t ) ≪ 1 [71,78], corresponding to times well
before the arrival of the main front, where C(x, t ) is exponen-
tially small and not well suited to experimental or numerical
verification, as one requires high accuracy. We instead focus
on the main wavefront region around x = vBt , which is the
edge of the OTOC “light cone” where C(x, t ) = O(1), and
show that it carries information about integrability. While
there can additionally be signatures of chaos at late times, such
as long-time oscillations or saturation seen in OTOCs for spin
chains and quantum maps [70,84,89–94], it is still preferable
to examine the main front because at late times the signal is
more likely to suffer contamination from numerical errors or
the environment (in the case of experiments).

Recent numerical work in free models has shown that the
portion of the OTOC around the wavefront is well fitted by the
leading edge of a propagating Gaussian (the peak and trailing
edge of the Gaussian are not relevant here) [53,95],

CG(x, t ) ∼ exp[−m(x)(x − vBt )2 + b(x)t], (5)

where m(x) and b(x) have an inverse power law dependence
on x. A Gaussian also occurs in random circuit models [83],
and wavefront results suggest one would also be found in the
critical Ising model [59]. In this Letter we point out that in
free models the wavefront is an example of a fold catastrophe,
and this allows us to employ arguments from catastrophe
theory, a mathematically rigorous theory of bifurcations. A
fold arises where two classical solutions (rays) coalesce and
is universally dressed by an Airy wave function. Local to the
wavefront it can be expanded to give precisely the form in
Eq. (5) with power law dependence of m(x) and b(x), thereby
analytically verifying the numerics of [53,95]. However, the
converse must also be true: when the scaling disagrees with
the catastrophe theory prediction, the dynamics must have a
nature fundamentally different from the free case, i.e., non-
integrable (chaotic). We show numerically that the Gaussian
wave form of Eq. (5) in fact still holds in the chaotic case but
that the scaling of m(x) and b(x) is exponential. We conclude
that in locally interacting models the Gaussian wave form (5)
therefore carries signatures of whether the model is free or
ETH obeying.

Model. We consider a Heisenberg spin Hamiltonian with
nearest and next nearest interactions,

Ĥ (J1; �; J2; γ ) = Ĥf + ĤI ,

Ĥf = J1

L−1∑
j=1

(Ŝ+
j Ŝ−

j+1 + H.c.),

ĤI = �

L−1∑
j=1

ŜZ
j ŜZ

j+1

+ J2

L−2∑
j=1

(Ŝ+
j Ŝ−

j+2 + H.c.) + γ

L−2∑
j=1

ŜZ
j ŜZ

j+2,

(6)

and open boundary conditions. This model has free, in-
teracting integrable, and interacting nonintegrable regimes
depending on the choice of the coefficient vector �c ≡
(J1,�, J2, γ ). We use dimensionless units with h̄ = kB = 1
so that time evolution is generated by the unitary operator
U (t ) = e−iĤt and thermal states are generated by the density
operator ρβ = 1

Z e−βĤ , where Ĥ = Ĥ (J1; �; J2; γ ).
In this work, we focus on two key regimes of our model.

The first is the XX chain, �c f = (−0.5, 0, 0, 0), which is free.
We choose J1 = −0.5 because it sets the butterfly velocity
to vB = 1. The second is �cETH = (−0.5, 1,−0.2, 0.5), which
has been verified to obey the ETH with periodic boundary
conditions [25]. In this latter case we find vB > 1 (see the
Supplemental Material (SM) [96]). To explore the transition
between these limiting regimes we also consider intermediate
points for which the interactions are turned on via a tunable
parameter 0 � λ � 1,

Ĥλ = Ĥf + λĤI , (7)

such that the variable coefficient vector becomes �c =
(−0.5, λ,−0.2λ, 0.5λ) and smoothly interpolates between �c f

and �cETH.
When considering the free point �c f , we use a system size of

L = 1600, while for the ETH case we use L = 14 for the nu-
merics. We leave the investigation of the interacting integrable
case for future work. In the free case, the numerics are carried
out by exactly diagonalizing the model with a Jordan-Wigner
transformation and dynamically evolving the system via the
resulting free fermion Hamiltonian [97]. In the ETH case, the
numerics are performed with full-spectrum exact diagonaliza-
tion. We demonstrate that an alternative choice of parameters
for �cETH leads to the same basic results in the SM [96] (see
also Ref. [98] for details on the parameter choice).

Suitable operators for Â(t ) and B̂ must be chosen for the
OTOC in Eq. (1). In the ETH regime we use spin operators
Â(t ) = σ Z

1 and B̂ = σ Z
m , where x is the distance between sites

1 and m and the average 〈· · · 〉 is taken over the thermal
ensemble restricted to eigenstates with zero magnetization,
mz = ∑L

j=1〈ŜZ
j 〉 = 0, and inverse temperature β = 1. In the

free case we perform a Jordan-Wigner transformation from
spins to fermions, and for simplicity the OTOC we use in this
case is

C(x, t ) = |am,n(t )|2, (8)
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where am,n(t ) = { f̂ †
m(t ), f̂n}. Here, f̂m is the annihilation op-

erator for a fermion on site m. Note that if instead of Eq. (8)
we use Eq. (1) with operators σ z

m, then in the case of a pure
Gaussian state or a thermal ensemble the dominant dynamical
term is, in fact, |am,n(t )|2; see Refs. [53,95] for further details.

Airy light cones. In 1972 Lieb and Robinson [99] showed
that quantum correlations in spin systems propagate at finite
speeds and spread out in a light-cone-like fashion. Pio-
neering experiments with ultracold atoms and trapped ions
[100–105], where a sudden quench leads to a nonequilibrium
state [106,107], have confirmed this behavior. In integrable
and nearly integrable systems the light cone wavefront has
an Airy function profile. For example, the wavefront for in-
teracting bosonic atoms in an optical lattice was measured
in experiments to have an Airy function profile [100], in
qualitative agreement with theoretical calculations which can
be done analytically in certain limits [108]. The associated
problem of domain wall propagation [109–116] also yields
Airy functions or related kernels for the wavefront. The Airy
function shape implies a dynamical scaling behavior, such as
a t1/3 broadening of the magnetization domain wall in XX
chains [109] and also classical XXZ chains in the easy-plane
regime [117]. This body of results has led to the notion of an
Airy universality class for free systems [118–120].

To explain the ubiquitous presence of Airy functions we
use catastrophe theory. Due to topological properties, a finite
set of bifurcations is structurally stable, meaning the bifurca-
tions are robust to deformations and perturbations and hence
occur generically in nature without the need for fine tuning;
they are classified by catastrophe theory and form a hierar-
chy in which the higher catastrophes contain the lower ones
[121–124]. In optics and hydrodynamics catastrophes appear
as caustics, in which the amplitude diverges in the classical
limit, with examples including rainbows, gravitational lens-
ing, ships’ wakes, and rogue waves [125–129]. Each class of
catastrophe is specified by a normal form 	(s, C), which is a
polynomial in the state variables s = {s1, s2, . . .} that specify
the rays and linear in the control parameters C = {C1,C2, . . .}
that include the coordinates and other parameters. In physical
terms 	(s, C) is the action, and the local wave function is
obtained by an elementary path integral over all configurations
[130–132]


(C) =
(

1

2π

)n/2 ∫ ∞

−∞
· · ·

∫
dns ei	(s;C). (9)

The simplest one in the hierarchy is the fold catastrophe,
which has one state variable s, one control parameter Z , and a
cubic action 	 = s3/3 + Zs. In this case the wave function is
directly proportional to the Airy function 
(Z ) = √

2πAi(Z )
[133], which is plotted in Fig. 1(a). The two extrema of
	(s, Z ) describe the coalescence of two rays as a function of
Z . The next catastrophe in the hierarchy is the cusp, which
has a quartic action (coalescence of three rays), and the wave
function is known as the Pearcey function [134].

The connection to OTOCs is that in the integrable case
where spins map to noninteracting fermions, we can show that
the edge of a light cone is a catastrophe/caustic across which
the number of saddles of the action changes, corresponding to
coalescing quasiparticle trajectories [135]. Consider the case

0 5 10 15 20 25 30 35
t

0.0

0.1

C
(x

,t
)

|z|3/2(x − vBt)−2 ∼ t−1

Z > 0 Z < 0

(a)

C(x, t)

|ΨAi|2
CG(x, t)

0 2 4 6 8 10
t

0.0

0.5

1.0

1.5

2.0

C
(x

,t
)

(b)

x = 3

x = 4

x = 5

x = 6

x = 7

x = 8

FIG. 1. Wavefronts of C(x, t ). (a) Free case, �c f . Here, x = 10.
Exact numerical results (solid red line) along with a fit to the Gaus-
sian form (5) (green line) and the Airy result from Eq. (12) (blue
line). The expected t−1 decay in the amplitude is also shown (black).
Note that the part of the wavefront we are fitting to a Gaussian is only
a window around t = 10. (b) ETH case, �cETH, at different positions x.
Solid lines indicate the exact OTOC data, and dashed lines are fits to
Eq. (5) centered at x = vBt . Vertical bars indicate the fitting window
given in Eq. (13).

where a quench excites a Bogoliubov fermion at the site at
x = 0. The resulting wave function is [96]


(x, t ) = 〈x|e−iĤt b̂†
x=0|0〉 = 〈x|

∑
k

e−iε(k)t |k〉

≈
√

a

2π

∫ π
a

− π
a

dk ei[kx−ε(k)t], (10)

where a is the lattice constant. The operators b̂x are the linear
combinations of f̂m and f̂ †

m that diagonalize the Hamiltonian
via a Bogoliubov transformation, and ε(k) is the Bogoli-
ubov dispersion relation [for the XX chain ε(k) = 2J1 cos ka].
Putting 	(k, x, t ) = kx − ε(k)t , a caustic occurs at quasimo-
mentum kc, where two conditions are satisfied [136],

(∂	/∂k)kc = 0, (∂2	/∂k2)kc = 0. (11)

The first is Fermat’s principle, which gives classical rays as
saddles of the action 	 = ∫

Ldt , where L = kẋ − ε(k), and
the second defines the caustic as the locus of points (x, t )
where saddles coalesce. Together, these conditions correspond
exactly to the Lieb-Robinson (LR) bound for a light cone de-
termined by the maximum value of the group velocity dε/dk
of the fermions [135,137,138], vLR = maxk |dε/dk|.

Why do caustics occur? In classical integrable systems
trajectories are confined to live on invariant tori of dimension
N in phase space of dimension 2N , where N is the number
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of degrees of freedom. Each torus is associated with a family
of trajectories that wrap around the torus either periodically
or quasiperiodically. When projected down onto coordinate
space, the edges of the torus lead to a diverging density of
trajectories that all have the same position (but different mo-
menta), i.e., a caustic in coordinate space [139].

Identifying light cones in integrable systems as caustics
allows rigorous results from catastrophe theory to be applied:
(i) The only structurally stable bifurcations in two dimensions
(the space-time formed by x and t) are fold lines that meet
at cusp points, as someone who has ironed a shirt knows.
(ii) For a fold catastrophe the phase 	(s, Z ) is cubic in s.
(iii) A diffeomorphism from the physical variables (k, x, t )
to the canonical Airy cubic form (s, Z ) exists. Therefore, a
Taylor expansion truncated at third order about the caustic
can give the exact wave function in the neighborhood of that
point. Adding higher-order terms will not affect the qualitative
behavior because the merging of two stationary points is fully
captured by a cubic action with the tunable parameter Z .

Performing the transformation of variables s3 ≡
−t
2 ∂3

k ε(kc)(k − kc)3 in Eq. (10) gives [70,72]


Ai(x, t ) ∼ √
a

( −2

∂3
k ε(kc)t

)1/3

ei	(kc,x,t ) Ai(Z ), (12)

where Z = (x − vBt )|t∂3
k ε(kc)/2|−1/3 [96]. In Fig. 1(a), we

plot |
Ai(x, t )|2 alongside the numerical result at the point
x = 10, with the caustic at Z = 0 marked by the vertical
dotted line. The Airy wave function gradually goes out of
phase at longer times because the Taylor expansion was made
at a single point, but the range could be extended via a uni-
form mapping onto the tail of a Wentzel-Kramers-Brillouin
solution [140]. From the asymptotics of the Airy function as
Z → −∞ it follows that the amplitude of the OTOC decays
as |Z|3/2/(x − vt )2 ∼ 1/t inside the light cone (in agreement
with Refs. [59,60]), and the fringe spacing becomes constant.
Traveling along the wavefront x/t = vB, one finds that the
amplitude decays as x−2/3 and the width of the primary fringe
grows as t1/3, i.e., subdiffusively. Furthermore, Eq. (12) also
correctly predicts the early-time growth: keeping just the first
term of the Z → ∞ asymptotic series for the Airy function
[96] gives the universal p = 1/2 form of the OTOC in Eq. (4)
[70–72].

Airy functions were derived for OTOCs before
[70,72,120]. Our point here is that catastrophe theory
guarantees that these results are exact, providing the
assumptions underlying Eqs. (10) and (11) hold, namely,
noninteracting quasiparticles with dispersion ε(k). But if
these results are exact, any deviation would imply that the
assumption of free quasiparticles must be breaking down. We
turn to this case below.

The fold is only the first in a hierarchy, and in fact, the
two edges of the light cone should generically meet at a cusp.
However, the high symmetry of the XX model means that ε(k)
is so simple that only two rays can coalesce at once and no
cusp occurs, just two pure fold lines that meet at x = t = 0. If
a symmetry-breaking term is added (like in the XY model),
three rays can coalesce at the origin, and the back-to-back
Airy functions are locally replaced by a Pearcey function
[135].

FIG. 2. Log-linear plots for the Gaussian parameters m(x) (red)
and b(x) (blue). (a) The free Hamiltonian �c f . Dashed lines are fits
to Eq. (15). The inset is a log-log plot of the same data. (b) The
ETH Hamiltonian �cETH using the same data as in Fig. 1(b), indicating
exponential decay of m(x) and b(x).

Profile of the wavefront in the ETH case. In Fig. 1(b) we plot
the exact results for the OTOC for �cETH. Fringes are partially
visible at smaller x, but the Airy nodes have disappeared. At
x = 3 the wavefront has quite a sharp slope, indicating that
the process of scrambling (the increase in nonlocality of the
observable) is still in full swing. By x = 8, the slope of the
OTOC at the wavefront has significantly decreased. The Gaus-
sian wave form in Eq. (5) provides an excellent local fit to the
wavefront in both the free [53,95] and chaotic regimes, as seen
from the dashed curves in Figs. 1(a) and 1(b), respectively.
The fit is performed over the range

t = x

vB
± �t, (13)

where �t ≈ 0.5 gives a reasonably large window to describe
the shape of C(x, t ) at the wavefront. The fits for the parame-
ters m(x) and b(x) in Eq. (5) are shown in Fig. 2 and indicate
strong agreement with the data: errors on each term are on
the order of 10−7 to 10−9 for all x. A crucial ingredient to
identify the parameters in the ETH case is to first determine
the butterfly velocity vB, which can be done using velocity-
dependent Lyapunov exponents [70,141], as demonstrated in
the SM [96]. We find that the velocity for the ETH model
characterized by �cETH is roughly vB ≈ 1.28 (in contrast to
vB = 1 for �c f ). Although the free and ETH wavefronts both
display flattening, the scaling properties of m(x) and b(x) are
fundamentally different in the two regimes, as we now show.
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Scaling in free models. By expanding the Airy wave func-
tion given in Eq. (12) about the caustic at z = 0 we obtain

m(x) = cm

x
2
3

, b(x) = cb

x
1
3

, (14)

where cm and cb are constants that depend explicitly on the
dispersion relation (see the SM [96] for details). Due to the
universality of the Airy wave function, this scaling is expected
to hold for models which can be written in terms of freely
propagating quasiparticles. Furthermore, corrections beyond
quadratic order in x − vBt can be obtained. However, the cubic
term in the exponent falls off rapidly (at least as x−1), and
so it is reasonable, even at moderate distances, to keep only
the Gaussian approximation. We have numerically verified
Eq. (14), and the results are shown in Fig. 2(a). Fitting the
scaling of each parameter for distances 0 < x � 650, we find

m(x) ∝ 1

xam
, b(x) ∝ 1

xab
, (15)

with am = 0.68857 ± 0.00008 and ab = 0.33043 ± 0.00002,
indicating good agreement with the expected values. We also
note that because m(x) ∝ b(x)2, m(x) falls off significantly
more quickly than b(x). This may point to an intermediate
regime in x where the OTOC is well described by C(x, t ) ∼
eb(x)t .

Scaling in the ETH regime. In Fig. 2(b) we show a plot of
the data for the �cETH case. A linear trend emerges, implying
that the spatial dependence on m(x) and b(x) in the ETH
regime exhibits exponential rather than power law decay,

b(x) ∼ e−cx, m(x) ∼ e−wx, (16)

where c,w > 0 are constants. We find that c = 0.38 ± 0.02
and w = 0.66 ± 0.05. Like in the free case, m(x) ∝ b(x)2;
however, as shown in the SM [96], this is not generally the
case.

The exponentially decaying behavior of m(x) and b(x) is
clearly distinct from the free fermion case. This indicates that
the Gaussian wave form can distinguish ETH-obeying from
free dynamics. In both Figs. 2(a) and 2(b) m(x) and b(x)
decay by upwards of two orders of magnitude as a function of
position; however, the exponential decay in the ETH regime
ensures that this occurs over a short distance of x ≈ 10, while
in the free model it takes a distance of x ≈ 600. Thus, the
general flattening of the OTOC at the wavefront (see, e.g.,
Fig. 1) occurs much faster in thermalizing models.

Crossover between free and ETH regimes. Figure 3(a)
shows the OTOC as a function of time at the fixed coordinate
x = 2 for the system described by the tunable Hamiltonian
in Eq. (7) for a range of λ. For the free system (λ = 0), the
local minima correspond to Airy zeros. As λ is increased,
the integrability is broken, and the nodes are lifted up from
zero, although they remain local minima even in the ETH
regime. The amplitude at the first minimum as a function
of λ is plotted in Fig. 3(b) and follows a characteristic
S-shaped curve that saturates in the ETH regime. The mono-
tonic increase of this amplitude as a function of λ means
that it provides a simple measure of the effect of chaos on
the OTOC, and from this point of view it is notable that
the liftoff is initially slow. A gradual lifting rather than
immediate destruction of nodes indicates that the Airy de-
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FIG. 3. (a) Tracking of the first OTOC minimum as a func-
tion of time. Interactions are introduced by varying �c(λ) =
(−0.5, λ, −0.2λ, 0.5λ), such that �c(0) = �c f and �c(1) = �cETH. Black
dots indicate the first minimum after the wavefront. (b) The height
of the first minimum as a function of λ follows an S-shaped curve.
The transition to chaos appears to be smooth, and the initial liftoff is
slow, indicating that the Airy function solution is qualitatively stable
against weak chaos.

scription of the light cone remains approximately correct even
in the presence of small integrability-breaking terms. Given
the close connection between caustics and invariant tori in
phase space, this behavior is consistent with the celebrated
Kolmogorov-Arnold-Moser (KAM) theorem in classical me-
chanics that states that some tori (and therefore caustics)
persist for weakly chaotic systems [142]. The survival of
the Airy wavefront with λ > 0 is therefore suggestive of
the existence of a quantum version of the KAM theory
[143–147]. The precise form of this theory remains unknown,
but a number of studies have successfully constructed large
numbers of quasiconserved quantities for certain weakly per-
turbed integrable models of finite size [145,148,149]. From
a physical perspective these ideas are closely connected to
the experimentally observed phenomenon of prethermaliza-
tion [150–158] and also to generalized hydrodynamics [159].
In both of these cases extra quasiconserved quantities pre-
vent thermalization at short to intermediate timescales after
quenches before full thermalization finally sets in.

Conclusions. Both numerics and rigorous results based on
catastrophe theory show that close to the main wavefront
free and ETH models can be distinguished by a change in
scaling of the parameters m(x) and b(x) in Eq. (5). The ability
of modern experiments to realize spin models and measure
light cone profiles [100–105] holds out the possibility that
this prediction can be tested in the laboratory. Our results
also demonstrate the structural stability of the Airy function
wavefront against weak chaos. The connection between Airy
functions, caustics, and invariant tori in phase space pro-
vides more evidence of the existence of a quantum analog
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of the KAM theory [145]. Such a theory would imply that
the transition to quantum chaos is smooth and is consistent
with experimental observations of prethermalized phases. It
also means that the influence of integrability extends be-
yond the isolated points of parameter space where it strictly
applies.
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