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We analyze the near-adiabatic dynamics in a ramp through the critical point (CP) of the classical transverse
field Ising chain. This is motivated, conceptually, by the fact that this CP—unlike its quantum counterpart—
experiences no thermal or quantum fluctuations, and technically by the tractability of its effective model. For
a “half ramp” from a ferromagnet to the CP, the longitudinal and transverse magnetizations scale as τ−1/3 and
τ−2/3, respectively, with 1/τ the ramp rate, in accord with Kibble-Zurek theory. For ferro- to paramagnetic ramps
across the CP, however, they stay closer, τ−1/2 and τ−1, to adiabaticity. This adiabaticity enhancement compared
to the half ramp is understood by casting the dynamics in the paramagnet in the form of a non-Hermitian Dirac
Hamiltonian, with the CP playing the role of an exceptional point, opening an additional decay channel.
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Introduction. Recently, the study of the nonequilibrium
dynamics of many-body systems has attracted enormous
interest [1,2]. In particular, defect production after the nona-
diabatic passage through a critical point was found to exhibit
universal behavior with a scaling that is determined solely by
the universality class of the underlying phase transition [3,4].
This, the celebrated Kibble-Zurek mechanism, has been most
directly verified in the transverse field Ising chain [5,6].

Indeed, the transverse field quantum Ising chain [7] is a
paradigmatic, and one of the most thoroughly studied, mod-
els in physics. It plays an important role in understanding
quantum phase transitions [8] and duality, conformal field
theory [9], and is relevant, through a quantum to classical
mapping, for the statistical mechanics of the classical Ising
model in two dimensions. Moreover, it is closely tied to
topological phenomena [10] and the Kitaev chain [11]. In
addition to its theoretical appeal, experimental realizations
involve condensed [12,13] and artificial [14] matter.

Surprisingly, despite the great amount of interest in the
transverse field quantum Ising chain, its classical counter-
part has received only limited attention. This is all the more
remarkable as the study of classical spin chains has un-
earthed a number of surprises [15,16], such as a regime
of Kardar-Parisi-Zhang scaling in the Heisenberg chain [17]
or generalized hydrodynamics [18]. Moreover, classical spin
models are ubiquitous in that they are widely used not only
in physics [8,19,20], but also to model complex systems such
as neural or social networks [21], and physical realizations
include large interacting quantum spins [20], polariton simu-
lators [22], coupled nanolaser lattices [23], cold atoms with
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total collective spin dynamics [24], or precessing rigid bodies
such as a spinning top [25].

The identical ground state phase diagrams [8,26,27] of
classical and quantum transverse field Ising chains, being
nonintegrable [28] and integrable [8], respectively, possess
ferromagnetic (FM) and paramagnetic (PM) phases, separated
by a critical point (CP). However, critical exponents and the
ensuing universality classes are distinct. Moreover, the clas-
sical version lacks both quantum and thermal fluctuations,
rendering the corresponding CP unusual.

Here, we investigate the nonequilibrium dynamics in the
classical transverse field Ising chain for a wide variety of
ramps, starting from a ground state. We summarize the scal-
ing of physical quantities with the ramp speed in Table I.
While many decay exponents are in accord with Kibble-Zurek
scaling, those of deviations of the spins from adiabaticity for
a ramp from the FM across the CP differ—they stay closer
to the adiabatic limit. Our analysis accounts for this by in-
terpreting the classical dynamics as a non-Hermitian Dirac
Hamiltonian, where the CP plays the role of an exceptional
point, which allows for an additional decay channel due to
effective nonunitary dynamics.

We study the one-dimensional Hamiltonian

H =
∑

n

−JSx
nSx

n+1 − 2gSz
n, (1)

with unit length classical spins Sn ∈ S2 and ferromagnetic
Ising coupling J = 1, and transverse field strength g > 0.
We use periodic boundary conditions for the N spins. For
g < 1, the ground state is FM [26,30] and Sx

n,gs = ±
√

1 − g2,
Sz

n = g, the ± signs corresponds to the two degenerate ground
state configurations. The ground state energy per spin is
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TABLE I. The exponent of deviations from the adiabatic value
for several physical quantities as τ−a for various ramps. For the
PM to FM ramp, no defects are created. The PM initial state Sn =
(0, 0, 1) remains the solution of the Landau-Lifshitz equation for
any time-dependent g(t ). The FM to FM ramp is unrelated to Kibble-
Zurek theory since no CP is crossed. The scaling of the excess energy
as well as the FM to CP ramp follow the Kibble-Zurek theory. The
bold exponents follow from an effective non-Hermitian dynamics.
These exponents survive moderate randomness [29] in the initial spin
configuration.

Observables

Ramp type δx (τ ) δy(τ ) δz(τ ) �E (τ )/N

FM → FM 1 1 1 2
FM → CP 1/3 2/3 2/3 4/3
FM → PM 1/2 1/2 1 1

Egs/N = −2g − (1 − g)2. In the PM, Sz
n,gs = 1 for g > 1 with

ground state energy Egs/N = −2g. These two regions are
separated by a classical CP at g = 1, which corresponds to a
continuous second-order classical phase transition upon tun-
ing the transverse field with critical exponents α = 0, β =
1/2, without thermal or quantum fluctuations at zero tempera-
ture. The nonanalytic behavior of the transverse magnetization
at g = 1 also allows us to define the corresponding critical
exponent βz = 1.

The spin dynamics of the model is obtained from the clas-
sical Landau-Lifshitz equation of motion

∂t Sn = Bn × Sn, (2)

where the effective magnetic field for the nth spin is

Bn = −(
Sx

n−1 + Sx
n+1, 0, 2g

)
. (3)

A classical linear spin-wave theory [19] analysis reveals that
in the PM, the energy spectrum is ωq = 2

√
g[g − cos(q)] with

q the momentum. The energy disperses linearly with mo-
mentum around q = 0 at the CP g = 1, giving the dynamical
critical exponent z = 1, while the gap collapses as ∼√

g − 1
upon approaching the critical point [30], defining the exponent
of the correlation length as ν = 1/2. In the FM, the spin-wave
spectrum is ωq = 2

√
1 − g2 cos(q), yielding the same ν and

z. During any nonequilibrium dynamics, the system heats up,
and thermal fluctuations appear.

Similarly to its quantum counterpart [1,2,5,6], we are in-
terested in ramping the transverse field as g(t ) = g0 + (g −
g0)t/τ across the classical CP with a speed of 1/τ and 0 <

t < τ . Since these ramps are spatially homogeneous and start
from the ground state, where all spins behave identically, the
dynamics involves only the homogeneous long-wavelength
(q = 0) mode of the spins, and it suffices to study the dynam-
ics of a single spin as

∂t S = B × S with B = −2(Sx, 0, g). (4)

This corresponds to the effective Hamiltonian [30]

H = −(Sx )2 − 2gSz (5)

of a single classical spin with uniaxial anisotropy in the pres-
ence of transverse field. Note that this applies to spatially

homogeneous quenches in the ground states of the classical
model in Eq. (1). The spatial correlation length is infinite
in the original model and loses its meaning in the effective
description, where only temporal fluctuations appear. This
simplifies the problem immensely since only three, rather
than 3N , coupled differential equations need to be solved. We
have also investigated the full lattice model numerically in the
Supplemental Material [29] (see also Refs. [31–33] therein)
and found identical results to the single-spin model. Dynamics
in the quantum version of Eqs. (1) and (5) was considered in
Refs. [5,6,34–38].

Ramp from PM. For quenches with g0 > 1 and any final
g, the initial spin configuration, S = (0, 0, 1), is stationary
and remains a solution of Eq. (4) for any time-dependent
transverse field, in contrast to the Kibble-Zurek mecha-
nism [3,4,39], where the final energy density depends on
the ramp rate. Here, it is determined by the energy of the
infinitely long-lived “scar state.” Loosely speaking, the system
can neither choose any spin configuration (up or down in the x
direction) on the FM side for a spatially homogeneous quench,
nor can it be in a superposition due to the classical nature of
the spins. The same applies to ramps starting from the ground
state at the CP.

Ramp within the FM phase. For simplicity, we consider
g(t ) = gt/τ with 0 < t < τ and g < 1. By introducing the
difference

δ j (t ) = S j (t ) − S j
gs[g(t )], j = x, y, z, (6)

between the time-evolved and adiabatic ground state values
of the spins, the effective dynamics to lowest order in δ is
described from Eq. (4) by only two coupled equations as

∂tδ
y(t ) = 2

√
1 − (gt/τ )2δz(t ), (7a)

∂tδz(t ) = −2
√

1 − (gt/τ )2δy(t ) − g

τ
, (7b)

with initial condition δy,z(t = 0) = 0 and Sx(t ) implicit via the
unit length constraint. For g � 1 and long enough quenches,
this is solved to a good approximation by taking

√
1 − (gt/τ )2

as a time-independent constant to yield

δz(t ) = −g sin
[
2

∫ t
0

√
1 − (gt ′/τ )2dt ′]

2τ
√

1 − (gt/τ )2
, (8)

and δy(t ) follows from using Eq. (7b). Notably, both contain
the 1/τ term from the denominator of Eq. (8), which stems
from the source term in Eq. (7b). At the end of the quench
t = τ , all spin components deviate from their ground state
values ∼τ−1. From this and Eq. (5), the naive expectation for
the scaling of the excess energy would be the same. However,
in reality, the excess energy vanishes as τ−2 since the τ−1

prefactors in the two terms in Eq. (5) cancel. This is expected
to be the typical scaling for the near-adiabatic dynamics away
from the CP [40].

Ramp from FM to CP. In this case, we consider g(t ) = t/τ
with 0 < t < τ . The dynamics is still described by Eq. (7)
with g = 1, and the time evolution ends at the CP. From a
numerical analysis of the problem, we learn that to a good
approximation,

√
1 − [Sx(t )]2 ≈ Sz(t ) = t

τ
+ δz(t ).

At the heart of the problem lies the square root vanishing
longitudinal spin component,

√
1 − (t/τ )2 at the CP, which
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FIG. 1. Numerical data for deviations from the adiabatic value
for spin components x, y, and z (blue, red, and green) from top to
bottom after quenching to the critical point (g = 1) from the FM
(g0 = 0) phase. The black dashed lines depict the τ−1/3 and τ−2/3

scalings.

renders any adiabatic approximation rather difficult, since any
temporal derivative of the above expression diverges at the
CP. This can be cured by retaining higher-order terms in δ

in Eq. (7). In this case, we have to replace the
√

1 − (t/τ )2

term by
√

1 − [t/τ + δz(t )]2 which cures the aforementioned
singularity at the CP for any finite δz(τ ). Equation (8) is
replaced by

δz(t ) = − sin[2φ(t )]

2τ
√

1 − [t/τ + δz(t )]2
, (9)

with φ(t ) = ∫ t
0

√
1 − [t ′/τ + δz(t ′)]2dt ′. The self-consistency

condition at the end of the quench at the CP reads

δz(τ ) ≈ − sin[2φ(τ )]

2τ
√−2δz(τ )

, (10)

which yields δz(τ ) ∼ τ−2/3 and δy(τ ) follows the same scal-
ing via Eq. (7b). From the unit length constraint, we obtain
δx(τ ) ∼ τ−1/3. These features are shown in Fig. 1 from the full
numerical solution of Eq. (4) using a fifth-order Runge-Kutta
method.

The transition time ttr when this scaling appears due to the
close vicinity of the CP, is determined from Sx(τ − ttr ) ≈ 0.
Using the above scalings, this gives ttr ∼ τ 1/3: The presence of
criticality makes its presence felt at t ∼ τ − τ 1/3. These fea-
tures are illustrated in Fig. 2. From the above scalings and the
structure of the effective Hamiltonian in Eq. (5), it is tempting
to conclude that the excess energy pumped into the system
by the nonequilibrium ramp scales as �E/N ∼ τ−2/3, since
both terms in Eq. (5) produce this scaling. This is, however,
again not correct. The prefactors of the leading-order terms
cancel, leaving the subleading term for the excess energy,
�E/N ∼ τ−4/3.

These exponents follow Kibble-Zurek scaling [3,4]. In
general, an operator is expected to scale with the speed of
the drive after the ramp as [34,36,39,41] O − O0 ∼ τ−χ/(1+μ)

measured from its adiabatic value O0 with χ the critical
exponent associated to O and μ = zν in conventional Kibble-
Zurek theory. Using the critical exponents for Eq. (1) for the
spins and linear spin-wave theory, we obtain μ = 1/2, the
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FIG. 2. Temporal data collapse of δz(t ) close to the CP for var-
ious ramp rates after a ramp from the FM (g0 = 0). The data are
obtained from the numerical solution of Eq. (4). Deviations from zero
start to appear at times ∼τ 1/3 before reaching the CP. A similar data
collapse characterizes the other spin components.

conventional value expected in related models [35,36]. Also
the transition time [6] is expected to scale as τμ/(1+μ), in ac-
cord with Fig. 2. As to the excess energy, its critical exponent
is [42] 2 − α = 2, which gives the observed −4/3 exponent.
Note that these differ from those identified for the quantum
counterparts [6,35,36] of Eqs. (1) and (5).

Ramp from FM to PM. This is the continuation of the previ-
ous FM to CP ramp. The temporal variation of the transverse
field is g(t ) = gt/τ with g > 1, 0 < t < τ . For the initial FM
part of the ramp for t < τ/g, we use the results in the previous
section and pick up the time evolution at the critical point,
t = τ/g.

By linearizing Eq. (4), the effective dynamics couples only
the x and y components, resulting in two coupled differen-
tial equations. These equations of motion may be written in
a suggestive form of a non-Hermitian Hamiltonian, namely
a Schrödinger equation [43–51] of a quantum spin-1/2 in
a complex magnetic field or the non-Hermitian (0 + 1)-
dimensional Dirac equation [52]

i∂t

(
δx(t )
δy(t )

)
=

(
0 2ig(t )

−2ig(t ) + 2i 0

)(
δx(t )
δy(t )

)
, (11)

and δz(t ) follows from the unit length spin constraint, τ/g <

t < τ . Equation (11) is a non-Hermitian, parity-time (PT )-
symmetric [53–55] Dirac equation, where non-Hermiticity
arises from the 2iδx(t ) term in Eq. (11). The instantaneous
eigenvalues are ±2

√
g(t )[g(t ) − 1]. These vanish exactly at

the CP g(t ) = 1, t = τ/g, where the effective dynamics starts.
This corresponds to an exceptional point [48,49,56] with
a vanishing spectrum at g = 1, consistent with the critical
exponent μ = 1/2. There, not only do the eigenvalues be-
come degenerate but also the two eigenstates coalesce and no
longer form a complete basis. The system becomes increas-
ingly Hermitian with time for g 	 1. The initial condition to
Eq. (11) is the one and only eigenstate of the right-hand side of
Eq. (11) at the exceptional point, namely [δx(τ/g), δy(τ/g)] ∼
τ−1/3(1, 0) [57].
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This represents a variation of the theme of non-Hermitian
Kibble-Zurek scaling [58,59]. By starting the time evolu-
tion from the single eigenstate of the Dirac equation in
Eq. (11) at the exceptional point, the norm of the “wave func-
tion,” [δx(t ), δy(t )] decays in time [60]. This occurs even in
PT -symmetric systems due to the nonunitary noneigenstate
evolution. By taking a fixed g(t ) = g � 1 in Eq. (11), the norm
of the initial state (1, 0) evolves in time as 1 − g−1 sin2(Et )
with E = 2

√
g(g − 1), which decays initially before revival

sets in. However, by reintroducing g(t ), when the driving rate
∂t E/E is larger than the revival frequency E , there is not
enough time for revival and only the norm decay remains.
Most of the decay occurs at the close vicinity [58] of the ex-
ceptional point, i.e., within a τ 1/3 temporal window, similarly
to the FM side of the transition (see Fig. 2). The resulting
suppression of [δx(τ )]2 + [δy(τ )]2 from its initial value scales
as τ−1/3. This comes from 1/3 = μ/(1 + μ). Altogether, the
overall decay exponent of δx(τ ), including the initial value, is
1/2 = 1/3 + 1/6. This is a combination of two factors: The
1/3 comes from the τ−1/3 scaling of the initial condition,
while the additional suppression factor 1/6 from the non-
Hermitian time evolution around the exceptional point, i.e.,
1
2μ/(1 + μ).

In addition to these scaling ideas, we treat these two
coupled first-order differential equations with the Wentzel-
Kramers-Brillouin (WKB) method, similarly to Dirac sys-
tems [61]. By solving the wave function away from the
exceptional point, corresponding to the turning point in WKB
approaches, we obtain the asymptotic form of the wave
function. We then match this form with the initial exact so-
lution of the linearized version of Eq. (11). This amounts
to replacing g(t ) by g in the first line of Eq. (11) while
keeping g(t ) = gt/τ in the second line. This is solved ex-
actly using Airy functions and we obtain δx(τ ) ∼ δy(τ ) ∼
exp[±iτ2

∫ g−1
0

√
t ′(t ′ + 1)dt ′]τ−1/2. The numerical solution

of Eq. (4) using the Runge-Kutta method for the FM to PM
ramp is illustrated in Fig. 3.

The deviation of the z component from the adiabatic
value follows from the unit length constraint as δz(τ ) ∼
[δx(τ )]2 + [δy(τ )]2 ∼ τ−1, i.e., the initial value ∼τ−2/3 is fur-
ther suppressed by τ−μ/(1+μ). Building on these, the excess
energy also scales as τ−1. This is connected to Kibble-Zurek
ideas [62]: The difference between the 1/τ exponent of excess
energy for a half ramp and a full ramp is exactly μ/(1 + μ) =
1/3, which translates to 4/3 − 1/3 = 1 in our case.

Overall, the deviations from the adiabatic value of the spin
are suppressed for a full FM → PM ramp compared to a half
ramp. This chimes with the robustness of the PM ground state
spin configuration, which remains immune to any quenches.
But it is in contrast to the response of the quantum transverse
field Ising chain, where the transverse magnetization follows
the same τ−1/2 scaling for both full and half ramps [63,64].

Discussion. We have studied near-adiabatic dynamics in
the classical transverse field Ising chain. Rich behavior and

100 101 102 103
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FIG. 3. Numerical solution of the deviations from the adiabatic
value for spin components x, y, and z (blue, red, and green) from
top to bottom after quenching from FM (g0 = 0) to PM (g = 3).
The black dashed lines depict the τ−1/2 and τ−1 scalings obtained
analytically.

scaling are identified based on the ramp type, summarized in
Table I. The scaling of physical quantities after the FM to CP
ramp follows the Kibble-Zurek prediction. Most interestingly,
the dynamics of the FM to PM ramp encompasses a region
where the effective dynamics is described by a non-Hermitian
Hamiltonian around an exceptional point, emerging from the
classical equations of motion of the parent model. This effec-
tive non-Hermitian description incorporates a suppression of
the defect production, accounting for the suppressed deviation
from adiabaticity compared to the half ramp.

These results are not limited to the one-dimensional classi-
cal transverse field Ising model, but apply more generally. By
considering H = ∑

〈n,m〉 −JSx
nSx

m − gSz
n for any lattice with

uniform coordination in arbitrary dimensions, the very same
phase diagram and effective Hamiltonian apply not only to
the ground state properties but also for the near-adiabatic
dynamics.
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