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We theoretically investigate the effects of surface acoustic waves (SAWs) on an electric-field-driven sliding
motion of a one-dimensional charge density wave (CDW), which is initially pinned by impurities. By numer-
ically analyzing an extended Fukuyama-Lee-Rice model, we show that a mechanical vibration of the SAW,
which, in the model, is assumed to affect the CDW via the pinning site in the form of temporally oscillating
pinning parameters, induces Shapiro steps with self-similarity, i.e., the devil’s staircase, in the current-voltage
characteristics. It is also found that when the SAW acts as the vibration in the pinning strength, the mechanism
of the mode locking (harmonic and subharmonic responses) leading to the occurrence of the Shapiro steps is
modified, and as a result, the fractal dimension and parameter dependence of the SAW-induced staircase can
be considerably different from those for the conventional ac-electric-field-induced one. This suggests that an
unconventional type of fractal phenomena can emerge in the SAW-induced CDW dynamics.
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Fractals with their characteristic properties exemplified
by self-similarity and noninteger dimensions often appear in
nature in various forms such as coastlines, snowflakes, and
polymer chains [1,2]. Of particular interest are fractal phe-
nomena induced by dynamical effects, one example of which
is a sliding motion of a charge density wave (CDW), an elec-
tron condensate emerging typically in quasi-one-dimensional
conductors such as NbSe3, TaS3, and K0.3MoO3 [3–5]. When
the one-dimensional CDW is driven to slide by an external
dc electric field Edc [6–8], an electric current carried by the
sliding CDW ICDW as a function of Edc, i.e., the I-V charac-
teristics, is known to exhibit step-like fractal structures, the
so-called devil’s staircase, in the presence of an additional ac
electric field Eac [9–12]. Subharmonic responses emerging in
the staircase as fractional-value plateaus are closely related to
time crystals in periodically driven systems [13]. In this Letter,
motivated by recent experiments where mechanical vibrations
[14] including a surface acoustic wave (SAW) [15] were
applied instead of Eac, we theoretically investigate vibration
effects on the staircase formation in the CDW sliding.

The CDW state is characterized by a spatial modulation
in the electron density, which, in one dimension, takes the
following form:

ρ(x, t ) = ρ0 + ρ1 cos [φ(x, t ) + Qx]. (1)

Here, ρ0 is the average electron density, and ρ1 and Q are,
respectively, the amplitude and wave number of the CDW
modulation whose phase φ(x, t ) plays an important role for
the CDW dynamics. In materials, the CDW modulation is
locally deformed due to impurities, defects, and lattice distor-
tions, which can be described as a pinning of the CDW phase
φ [18,19]. Such a pinned object can be driven by an external
force overcoming an associated static friction [20,21], which,
in the present CDW case, is an external electric field E . When
the dc component of E , Edc, exceeds a threshold value, the

CDW is depinned and begins to slide with velocity v = 1
Q

dφ

dt ,

carrying the associated current ICDW proportional to v = 1
Q

dφ

dt
[3,4,6–8]. In this sliding regime, there exists a characteristic
frequency ωφ , the so-called narrow band noise [22,23], which
corresponds to a period for a specific part of the CDW, e.g., the
peak position of the wave, to pass through a fixed pinning site,
and thus is given by ωφ = vQ = dφ

dt . This oscillating mode ωφ

is related to ICDW via

ICDW ∝ dφ

dt
= ωφ. (2)

In the case without the ac component (Eac = 0), ICDW, or
equivalently, ωφ , gradually increases with increasing the driv-
ing force Edc.

When the dc and ac fields are simultaneously applied,
i.e., E = Edc + Eac sin(ωext ), the sliding mode ωφ is coupled
to the external frequency ωex, leading to the emergence of
plateau regions in the I-V characteristics [9–11,24–35]. A
typical theoretical result is shown in Fig. 1(a). The plateaus
where ωφ is mode-locked to ωφ = (p/q)ωex with integers p
and q are CDW analog of the Shapiro steps discussed in
the context of superconductivity [36–38]. The plateaus with
integer values of p/q are called harmonic steps and others
are called subharmonic steps. In the overdamped regime, the
former can be explained by a single-impurity model, whereas
the latter, corresponding to discrete-time-crystal states [13],
can be explained by many-body multi-impurity models [3].
One can see from Fig. 1(a) that so many subharmonic steps
construct a self-similar structure in the I-V characteristics.
Although, in general, the occurrences of the subharmonic
steps and the devil’s staircase are not equivalent, the fractal
nature has been confirmed in theoretical works [3,11,29,39]
and in one experiment as well [9]. The Eac-driven staircase is
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FIG. 1. The Ẽdc dependence of ω̃φ (the I-V characteristics) in
(a) the ac-electric-field case of Ẽac = 3.0, P̃dc = 2.0, and P̃ac = 0 and
(b) the SAW case of Ẽac = 0, P̃dc = 2.0, and P̃ac = 1.2, where the
results are obtained for ω̃ex = 0.6 and Nimp = 200. In each figure,
the inset shows a magnified view of a small area enclosed by a box
and the top left image shows the system setup in each case.

considered to belong to the universality class of the circle map
where the fractal dimension is D = 0.87 [10,12].

Quite recently, the Shapiro steps have also been observed
in a different kind of experiment where, instead of Eac, a time-
dependent strain [14] was applied. In addition, the effect of
another type of mechanical force, the SAW, on CDW sliding
has also been reported [15], though in this case, an electrical
contribution as well as the mechanical one might be relevant.
In contrast to the electromagnetic interaction between Eac and
CDW, how the mechanical forces affect CDW is an interesting
issue. In this work, assuming that the mechanical vibration
indirectly interacts with the CDW via the pinning sites, we
theoretically investigate its effect on the CDW dynamics. We
mainly focus on the SAW case with presumably spatially
nonuniform strains as a typical platform for a pinning-strength
vibration (see Sec. I in [40]), which is a key ingredient for
the following results. We will show that the pinning-strength
vibration caused by the SAW induces Shapiro steps with
a nontrivial fractal dimension and a parameter dependence
of the step width which is qualitatively different from the
Eac-induced one.

Although even the threshold-field physics cannot fully be
explained by a compact theory [48], many aspects of the
CDW sliding can be described by the Fukuyama-Lee-Rice
model [49–51] whose overdamped equation of motion in one
dimension is given by(

γ
∂

∂t
− v2

ph∇2

)
φ = PimpNp(x) sin(φ + Qx) + eQ

m∗ E , (3)

where e, m∗, and vph are the electric charge, the effective
mass of the CDW, and the phason velocity, respectively, and
γ is the phenomenologically introduced damping constant.
In the first term on the right-hand side of Eq. (3), Pimp rep-

resents the pinning strength and Np(x) = ∑Nimp

i=1 δ(x − Ri ) is
the distribution function of pinning sites whose positions and
total number are denoted by Ri and Nimp, respectively, where
we assume, for simplicity, that the pinning strength does not
depend on the pinning-site position. In the usual case without
the SAW, both Pimp and Ri are static constants, and the elec-
tric field E = Edc + Eac sin(ωext ) gives rise to the nonlinear
CDW dynamics. In the presence of the SAW, however, Pimp

and Ri would not be static constants any more, as explained
below.

In the SAW experiment shown in the image of Fig. 1(b),
the substrate oscillation driven by the SAW with frequency
ωex should more or less propagate into the CDW, shak-
ing the pinning position and strength with frequency ωex

[41,42,52]. Since the ωex-dependent “pinning-position” vi-
bration turns out to play essentially the same role as Eac

[40,42] (in [41] treating a similar situation, due to a single-
impurity assumption and a truncation of the nonlinear effect,
results different from those in [40,42] are obtained), here, we
consider the ωex-dependent “pinning-strength” of the form
Pimp(t ) = Pdc + Pac sin(ωext ), which could be caused by, for
example, strain-induced parameter changes [44] and the influ-
ences of nonuniform strains on the effective pinning [40]. In
the presence of this temporally periodic pinning force Pimp(t ),
we switch on Edc to drive the sliding motion of the CDW with
Eac remaining off.

Since Eq. (3) cannot be solved analytically due to the
nonlinear pinning force, we numerically solve Eq. (3), which
can be rewritten in the dimensionless form as

dφi

dt̃
− (φi+1 − 2φi + φi−1) = P̃imp sin(φi + βi ) + Ẽ . (4)

The spatial coordinate is discretized in units of a length
scale l , which can be either the mean impurity distance
[26,31] or the phase correlation length, and βi involving
the randomly distributed Ri is a random number between
0 and 2π (for details, see Sec. I in [40]). Other dimen-
sionless quantities are defined by t̃ = t/[(γ l2

imp)/v2
ph], Ẽ =

(eQl2
imp/m∗v2

ph)E , and P̃imp = (l2
imp/v

2
ph )Pimp. Then, the CDW

current [see Eq. (2)] averaged over space and time is given by
ICDW ∝ 1

Nimp

∑Nimp

i=1 〈 dφi

dt̃ 〉t̃ = ω̃φ , where 〈〉t̃ denotes the time av-
erage. We note that a nonlinear equation analogous to Eq. (4)
appears in the Frenkel-Kontorova (FK) model [39,42,53,54]
to which the following results could be applied when the
FK-potential depth vibrates.

By using the fourth-order Runge-Kutta method with a
random initial configuration for φi and time step 
t̃ = 0.1,
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FIG. 2. The log-log plot of N (r) as a function of 1/r in the (a) ac-
electric-field and (b) SAW cases, where the same parameters as those
in Fig. 1 are used. Solid lines indicate power-law functions of the
from (1/r)D with (a) D ∼ 0.92 and (b) D ∼ 0.51, which are obtained
by fitting the numerical data. For comparison, the slope in the trivial
case of D = 1 is also shown.

we integrate Eq. (4) typically up to t̃ = 2.0 × 105, where the
first 104 time steps are discarded for relaxation. Although
the total number of impurities is fixed to be Nimp = 200,
we have made spot checks that results for Nimp = 200 and
400 are unchanged. The random average over the impurity
distributions corresponding to the βi configurations is taken
over 30 samples. We calculate ω̃φ ∝ ICDW in two cases, the ac-
electric-field case of Ẽ = Ẽdc + Ẽac sin(ω̃ext̃ ) and P̃imp = P̃dc

and the SAW case of Ẽ = Ẽdc and P̃imp = P̃dc + P̃ac sin(ω̃ext̃ ).
The former is mainly for reference. Throughout this paper,
P̃dc = 2.0 and ω̃ex = 0.6 are basically used.

Figure 1 shows a typical example of the Ẽdc dependence of
ω̃φ , i.e., the I-V characteristic, for a fixed βi configuration in
Fig. 1(a) the ac-electric-field case of Ẽac = 3.0 and P̃ac = 0
and Fig. 1(b) the SAW case of Ẽac = 0 and P̃ac = 1.2. As
readily seen from the main panel of Fig. 1(b), the Shapiro
steps appear in the SAW case, as in the well-known case of
the ac electric field shown in Fig. 1(a). The harmonic and
subharmonic steps can be identified from the relation ω̃φ =
(p/q) ω̃ex. In the case of Fig. 1 where the external frequency is
fixed to be ω̃ex = 0.6, the plateau at ω̃φ = 0.6 corresponds to
the 1/1 harmonic step of p = 1 and q = 1, and subharmonic
steps with noninteger values of p/q such as the 1/2 step of
p = 1 and q = 2 corresponding to ω̃ex = 0.3 can be identified
in the same manner. We note that the 0/1 harmonic step
corresponds to the non-sliding region of ω̃φ = 0. In each of
Figs. 1(a) and 1(b), consecutive subharmonic steps in a small
Ẽdc window (see the magnified view shown in the inset) con-
struct a structure similar to the entire staircase over the wide
Ẽdc region. A fractal structure characterized by self-similarity
of this kind is known as the devil’s staircase.

To check the fractal nature of the Shapiro steps, we cal-
culate the fractal dimension D in the same manner as that
in [10,11]. In the Ẽdc region between the 0/1 and 1/1 steps
(suppose that l is the width of this region), we first count
the total width S(r) of steps that are larger than an arbitrar-
ily taken stepwidth r, and then, calculate a function N (r) =
[l − S(r)]/r, which, for the devil’s staircase, should behave as
N (r) ∝ (1/r)D in the r → 0 limit. We note that in the absence
of the subharmonic steps as in the single impurity model, the

FIG. 3. The parameter dependence of the harmonic 1/1-step
width W1/1 (upper panels) and the subharmonic 1/2-step width W1/2

(lower panels) in the (a) ac-electric-field and (b) the SAW cases. In
(a) [(b)], the horizontal axis denotes Ẽac/ω̃ex (P̃ac/ω̃ex), and red and
blue symbols represent the Ẽac (P̃ac) dependence at ω̃ex = 0.6 and the
ω̃ex dependence at Ẽac = 3.0 (P̃ac = 1.2), respectively.

fractal dimension D is trivially 1 and that the deviation of the
D value from 1 points to the emergence of the fractal nature in
the staircase involving the subharmonic steps. Figure 2 shows
the log-log plots of N (r) as a function of 1/r in the [Fig. 2(a)]
ac-electric-field and [Fig. 2(b)] SAW cases, where in counting
S(r), we regard a plateau whose ω̃φ is unchanged within a
precision of the order of 10−4 as a single Shapiro step. As one
can see from Fig. 2, the N (r)’s in both cases linearly increase
toward 1

r → ∞ (r → 0) in the log-log plot, suggestive of the
fractal behavior N (r) ∝ (1/r)D. Actually, the numerical data
can be well fitted by power-law functions of the form a (1/r)D,
where the fractal dimensions are obtained as D ∼ 0.92 and
D ∼ 0.51 in the ac-electric-field and SAW cases, respectively.
Although the D values depend on the system parameters as
reported for a similar model [39], the former is close to the
experimental value of D ∼ 0.91 obtained for the ac electric
field [9] and the theoretical universal value of D = 0.87 for the
circle map [10,11]. The latter value of D ∼ 0.51, on the other
hand, is much smaller than the two above values, indicating
that the mechanisms of the step formation, i.e., the mode
locking, in the ac-electric-field and SAW cases are different.
To see the possible difference in the mode-locking likely
relevant to the fractal nature, we next examine the parameter
dependence of the Shapiro step width.

Figures 3(a) and 3(b) show the parameter dependence of
the 1/1 harmonic step width W1/1 and the 1/2 subharmonic
one W1/2 in the ac-electric-field and SAW cases, respectively
(W0/1 data are also available in [40]), where red (blue) sym-
bols are obtained by changing the amplitude (frequency) of
the time-varying external field with the frequency (ampli-
tude) being fixed. Although the larger P̃ac region of P̃ac > P̃dc

might be unrealistic, we present the data just for compar-
ison with Fig. 3(a). In the ac-electric-field case shown in
Fig. 3(a), the harmonic step width W1/1 (see the upper panel)
exhibits a damping oscillation with increasing Ẽac or 1/ω̃ex as
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reported elsewhere [25,45,47,53,55], and such a situation
is also the case for the subharmonic-step width [54] (see
the lower panel). In the SAW case shown in Fig. 3(b), on the
other hand, W1/1 monotonically increases with increasing the
amplitude P̃ac, whereas it is almost independent of the external
frequency ω̃ex, suggesting that the 1/1 step is robust against
higher-frequency SAW. The subharmonic step width W1/2 also

does not show an oscillating behavior as a function of P̃ac
ω̃ex

.
The difference can intuitively be understood by a washboard
description where the swing of a particle between potential
local maxima is essential for the oscillation valleys of W1/1

[55]. Since the swing is caused by the periodic driving force
Eac, W1/1 shows no oscillation in the SAW case of Eac = 0
where the SAW corresponds to a vibration of the potential
depth, i.e., a vertical motion in the washboard description, and
such a situation should also be the case for other nondriving
vertical vibrations.

To further examine how the CDW mode ωφ is coupled
to the external frequency ωex, we perform the perturbative
calculation proposed in [32] (for details of the following
calculation, see Sec. IV in [40]). Assuming that the CDW
phase takes the form of φ(x, t ) = φ0(t ) + δφ(x, t ) with the
globally sliding mode φ0(t ) = ωφ t − E ac

ωex
cos(ωex t ) and local

deviation δφ(x, t ), we self-consistently determine ωφ . For
later convenience, the electric field E is normalized as E =
( eQ
γ m∗ ) E . By substituting the above expression for φ(x, t ) into

Eq. (3), we obtain

δφ(x, t ) = 1

v2
ph

∫
dx′dt ′G̃(x − x′, t − t ′)EP[x′, φ(x′, t ′)],

(5)

ωφ = 1

γ
〈EP[x, φ(x, t )]〉x,t + Edc, (6)

with the pinning term

EP[x, φ(x, t )] = PimpNp(x) sin[φ0(t ) + δφ(x, t ) + Qx], (7)

where 〈〉x,t denotes the average over space and time and
G̃(x, t ) = G(x, t ) − 〈G(x, t )〉x,t with the Green’s function G
satisfying ( γ

v2
ph

∂
∂t − ∇2)G(x, t ) = δ(x)δ(t ). As EP[x, φ(x, t )]

involves ωφ via φ0(t ), Eq. (6) turns out to be the self-
consistent equation for ωφ . By using the expansion with re-
spect to δφ, EP = PimpNp(x){ sin[φ0(t ) + Qx] + cos[φ0(t ) +
Qx]δφ + · · · }, we can solve Eq. (5) successively to ob-
tain δφ(x, t ), which will further be substituted into Eq. (6)
to determine ωφ . Noting that NP(x) represents the ran-
dom impurity distribution, the leading-order contribution to
〈EP[x, φ(x, t )]〉x,t turns out to be of second order in Pimp, and
is given by

E (2)
P (ωφ ) ∝

∫
dt dt ′Pimp(t )Pimp(t ′)G̃(0, t − t ′)

× sin[φ0(t ) − φ0(t ′)]. (8)

In the ac-electric-field case of Eac �= 0 and Pimp = Pdc, ωφ

and ωex are coupled in the sin[φ0(t ) − φ0(t ′)] part in Eq. (8),

which contains

eiφ0(t ) = ei[ωφ t− Eac
ωex

cos(ωext )] =
∑

p

(−i)pJp

(
E ac

ωex

)
ei(ωφ−pωex )t ,

(9)
with the Bessel function Jp(x). Thus, we have

E (2)
P (ωφ ) ∝ P2

dc

∑
p

J2
p

(
E ac

ωex

)
Im[H̃ (ωφ − pωex)], (10)

where H̃ (ω) = ∫
dk
2π

G̃(k, ω) is a function diverging at ω = 0

[31,40]. Since E (2)
P (ωφ ) increases to diverge at ωφ − pωex =

0, the solution of Eq. (6) is definitely ωφ = pωex, which
corresponds to the p/1 harmonic step. Since the coefficient
P2

dc

∑
p J2

p ( E ac
ωex

) is related to the robustness of the solution

against Edc, it should determine the step width, as it can be
inferred from the Bessel-function-like oscillating behavior of
the step width as a function of E ac

ωex
[see Fig. 3(a)]. We note

that higher-order contributions are relevant to subharmonic
steps [31].

In the SAW case of Eac = 0 and Pimp = Pdc + Pac sin(ωext ),
Pimp(t )Pimp(t ′) sin[φ0(t ) − φ0(t ′)] in Eq. (8) yields the ωφ-ωex

coupling of the form

Pimp(t )eiφ0(t ) = Pdceiωφ t + Pac

2i
[ei(ωφ+ωex )t − ei(ωφ−ωex )t ]. (11)

In contrast to the ac-electric-field case where the global vi-
bration of the CDW [the oscillating part in φ0(t )] is indirectly
coupled to ωφ via the pinning site [see Eq. (9)], the pinning-
site vibration of the SAW directly acts on ωφ [see Eq. (11)].
Then, E (2)

P (ωφ ) is calculated as

E (2)
P (ωφ ) ∝ Im

⎡
⎣P2

dcH̃ (ωφ ) + P2
ac

4

∑
p=±1

H̃ (ωφ − pωex)

⎤
⎦.

(12)

Due to the direct ωφ-ωex coupling, ωex appears only in H̃ (ω)
yielding the mode-locking condition for the 1/1 step, and its
step width determined by the coefficient of H̃ (ω) becomes
an ωex-independent increasing function of Pac, being con-
sistent with the numerical result shown in the top panel of
Fig. 3(b). The direct coupling process of Eq. (11) works also
in higher-order contributions relevant to other steps includ-
ing the subharmonic ones, so that the Bessel-function-like
oscillating behavior does not appear in the SAW case. The
analytical result presented here, i.e., Eq. (12) [Eq. (10)],
is consistent with the numerical result shown in Fig. 3(b)
[Fig. 3(a)], which suggests that the mode-locking in the SAW
case (the ac-electric-field case) is direct (indirect). Such a
qualitative difference in the step formation, i.e., whether the
mode locking is direct or indirect, could also affect the entire
structure of the staircase, eventually leading to the difference
in the fractal dimension as demonstrated in Fig. 2.

In this work, we investigated the effect of the SAW on the
overdamped sliding motion of the CDW, assuming that the
SAW affects the CDW via pinning sites, where importantly,
the pinning-strength vibration Pac induces the unconventional
direct mode-locking distinct from the Eac-induced indirect
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one. In the associated experiments, the impurity-position vi-
bration [40–42] may also be relevant, and the SAW generated
in the piezoelectric substrate may inversely yield an electric
field by the piezoelectric effect. In addition, the SAW fre-
quency of the order of a few GHz is below but not so far from
values typical of the underdamped CDW motion [23,56–59]
in which a ∂2

∂t2 φ term dropped in Eq. (3) becomes important.
These elements which are not taken into account in this work
might be relevant to the CDW dynamics in the presence of
the SAW, but experimental data enabling us to discuss them
are yet to be reported. Although the validity of the sim-
plified modeling used here should carefully be assessed by

analyzing the fractal dimension and the parameter dependence
of the step width in future experimental works, we believe
that this work presenting the unconventional mode-locking
mechanism will promote the exploration of new classes of
fractal phenomena and periodically driven systems.
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