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Coreless vortices as direct signature of chiral d-wave superconductivity
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Chiral d-wave superconductivity has been proposed in a number of different materials, but characteristic ex-
perimental fingerprints have been largely lacking. We show that quadruply quantized coreless vortices are prone
to form and offer distinctive signatures of the chiral d-wave state in both the local density of states and the total
magnetic moment. Their dissimilarity in positive versus negative magnetic fields leads to additional spontaneous
symmetry breaking, producing clear evidence of time-reversal symmetry breaking, chiral superconductivity, and
the Chern number.
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Exotic quantum states of matter continue to generate
surprising phenomena. A prime example is chiral supercon-
ductors, where superconductivity is not only combined with
nontrivial topology but also with spontaneous time-reversal
symmetry breaking (TRSB) [1], causing many unconventional
effects [2–6]. Most outstanding is the finite Chern number
set by the order parameter winding, resulting in topologically
protected chiral edge modes [7–14]. Early focus centered on
chiral p-wave superconductivity [3,15] and its similarities
to superfluidity in 3He [2–6], while chiral d-wave super-
conductivity has more recently received significant attention
due to proposals in a range of materials, including twisted
bilayer cuprates [16,17], twisted bilayer graphene [18–26],
Sn/Si(111) [27], SrPtAs [28–31], LaPt3P [32], Bi/Ni [33,34],
and URu2Si2 [35–38]. Furthermore, chiral d-wave super-
conductivity was recently proposed as a platform to realize
topological quantum computing [39–41].

Still, direct detection of both the superconducting pairing
symmetry and topological invariants remain two of the most
outstanding issues in physics. Consequently, undisputed dis-
coveries of chiral superconductors have proven elusive. To
make matters worse, recent studies have predicted that typical
fingerprints, such as chiral edge currents and intrinsic orbital
angular momentum (OAM), vanish for all pairing symmetries
except p-wave [42–49], further complicating measurements.
Indeed, while the chiral edge modes are topologically pro-
tected, their current and OAM are not [47,50,51]. In this paper,
we set out to resolve this issue for chiral d-wave superconduc-
tors by identifying robust experimental bulk signatures in the
form of distinctive vortex defects.

Vortices have been studied extensively in chiral p-wave
superfluids [2–6], predicting vortex defects with no analog
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in conventional single-component systems. A prime exam-
ple is the coreless vortex (CV) [52–56], which is multiply
quantized and nonsingular with a finite superfluid order
parameter everywhere. It has been sought experimentally
in superfluid 3He [55,57–65], with analogous states pro-
posed theoretically in spin-triplet chiral p-wave [66–75] and
multiband [76–79] superconductors. In comparison, however,
vortices in spin-singlet chiral d-wave superconductors are not
yet well understood, and it is not known how their higher
Chern number influence vortex defects and their distinctive
characteristics.

In this paper we establish that CVs can easily form, without
spin-triplet or multiband pairing, in chiral d-wave supercon-
ductors. They appear as quadruply quantized vortex defects,
consisting of a closed domain wall, stabilized by eight iso-
lated fractional vortices, and leave signatures in the local
density of states (LDOS) that are easily differentiable from
Abrikosov vortices. Furthermore, the chirality causes inequiv-
alent CVs in opposite magnetic field directions, leading to
further spontaneous symmetry breaking of rotational and axial
symmetries in only one field direction. We show that this
generates prime, smoking-gun, signatures in both LDOS and
total magnetic moment that differentiates not only TRSB and
chiral superconductivity, but also the orbital ordering, thus
directly accessing the Chern number. These signatures are
measurable using well-established experimental techniques,
including scanning tunneling spectroscopy (STS) and various
magnetometry setups.

Model and method. We aim to study fundamental prop-
erties intrinsic to chiral d-wave superconductors, since such
superconductivity has been proposed in a range of materials
with widely different properties [14,16–41,80–84]. We thus
consider a two-dimensional (2D) spin-singlet chiral d-wave
superconductor. For simplicity, we focus here on a cylindrical
Fermi surface in disk-shaped samples with radii R = 25ξ0,
with superconducting coherence length ξ0 ≡ h̄vF/2πkBTc,
Planck constant h̄, Fermi velocity vF, Boltzmann constant
kB, and superconducting transition temperature Tc. We model
clean systems with specular edges, and apply a perpendicular
magnetic-flux density Bext = Bext ẑ with homogeneous flux
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�ext = BextA across the sample area A. We assume type-
II superconductivity, varying the Ginzburg-Landau constant
(κ ∈ [1,∞]). Our companion paper [85] establishes robust-
ness of the CV and its signature in many other systems, e.g.,
with different symmetries, Fermi surfaces, geometries, system
sizes, additional vortices, and nonmagnetic impurities.

We use the well-established quasiclassical theory of super-
conductivity [86–99], solving self-consistently for the order
parameter � and vector potential A [100], via the gap equa-
tion and Maxwell’s equation, keeping all parameters fixed
during convergence. Apart from providing attractive pair po-
tentials in the two dx2−y2 - and dxy-wave channels [101], and
providing a chiral start guess (see below), we do not constrain
the superconducting state in any way. This allows the system
to choose another state, e.g., the single-component nodal d-
wave state, but we always find the chiral state to be stable.
We use a state-of-the-art implementation that runs on graph-
ics processing units (GPUs) via the open-source framework
SuperConga, already extensively used for studying vortex
physics in conventional superconductors [99].

Chiral d-wave superconductivity. Any 2D d-wave
superconducting state can be described via the order
parameter �(pF, R) = �dx2−y2 (pF, R) + �dxy (pF, R).
Here, R is the center-of-mass (c.m.) coordinate and
pF = pF(cos θF, sin θF) the Fermi momentum. Each
component can be parametrized with amplitudes and phases
as �� (pF, R) = |�� (R)|eiχ� (R)η� (pF) with basis functions
ηdx2−y2 (pF) = √

2 cos(2θF) and ηdxy (pF) = √
2 sin(2θF). We

assume degenerate nodal components, guaranteed in three-
and sixfold rotational symmetric lattices [14] and thus relevant
for most proposed chiral d-wave superconductors [18–31]. In
Ref. [85] we establish that nondegeneracy do not change the
results. A chiral d-wave state is characterized by a relative
π/2 phase shift between these two d-wave components,
causing TRSB [102]. To elucidate chirality, we reparametrize

�(pF, R) = �+(pF, R) + �−(pF, R), (1)

with �±(pF, R) ≡ |�±(R)|eiχ±(R)η±(pF), where
η±(pF) ≡ e±i2θF is the eigenbasis of the OAM operator
L̂orb

z ≡ (h̄/i)∂θF , with eigenvalue lorb
z = ±2h̄. Thus, the two

components have opposite chirality and we refer to �± as
the chiral components, while �dx2−y2 and �dxy are the nodal
components. In a chiral superconductor, one of the two
degenerate ground states, �+ or �−, becomes dominant
just below Tc, while the other becomes subdominant. The
subdominant component is fully suppressed in the bulk,
but may appear at spatial inhomogeneities, such as edges,
vortices, or impurities. Thus, the general form Eq. (1) is
required when considering finite or vortex systems. The two
chiral states �± are fully gapped in the bulk with a nontrivial
topology classified by Chern numbers ±2 [7–14]. Hence, each
state hosts two chiral edge modes traversing the bulk gap,
leading to finite LDOS at boundaries at all subgap energies.
Chiral d-wave superconductors can also host domain walls,
which are topological defects separating regions of opposite
chirality. While they generally increase the free energy, they
can be stabilized, e.g., geometrically or by disorder [103].
Four chiral edge modes appear at a domain wall, two on each
side and pairwise counterpropagating [104].
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FIG. 1. CV in disk with dominant chirality �+, T = 0.1Tc,
�ext = 8�0 (�0 ≡ hc/2|e|), κ = 80, R = 25ξ0. [(a),(b)] Ampli-
tudes and [(c),(d)] phases of the nodal components, with same in
[(e)–(h)] for the chiral components. Red circles: fractional vortices.
(i) Magnitude and [(j),(k)] components of the charge-current density
( j0 ≡ 2πkBTc|e|NFvF). Arrows: j direction. (l) Induced magnetic-flux
density (b0 ≡ 10−5�0/πξ 2

0 ).

Regular Abrikosov vortices are topological defects asso-
ciated with a 2π phase winding that locally suppresses the
order parameter into a paramagnetic and normal-state core.
Superconductivity recovers over the coherence length ξ0 from
the core, with a diamagnetic screening over the penetration

depth, λ0 ≡
√

c2/(4πe2v2
FNF), with the speed of light c, ele-

mentary charge e = −|e|, and normal-state density of states
at the Fermi level NF. In a two-component order parameter,
an Abrikosov vortex consists of a spatially overlapping 2π

phase winding in each phase, χdx2−y2 and χdxy for chiral d wave.
These individual phase windings are referred to as fractional
vortices, as they can carry fractional flux quantum [1,105–
119]. Spatially separating them leads to a nonsingular vortex,
but usually also increased energy [77], thus preventing sep-
aration. However, certain environments, especially a domain
wall, can still favor separation. In fact, since a domain wall
locally suppresses the order parameter, it typically attracts
Abrikosov vortices, which can then split up into fractional
vortices [106,120]. This is the key concept for CV formation.

Coreless vortex. Figure 1 shows a robust [121] CV com-
puted self-consistently in a chiral d-wave superconductor. Top
(middle) row shows the amplitudes and phases of the nodal
(chiral) order parameter components. Of central interest is
the existence of four spatially separated fractional vortices in
each nodal component (red circles), showing that there are
no singular vortices. The fractional vortices locally suppress
the corresponding nodal amplitude and lie on a circularly
formed domain wall. The domain wall is clearly seen in the
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amplitudes of the chiral components as it separates an outer
region with dominant chirality �+ from an inner region with
dominant chirality �−, setting the CV radius RCV ≈ 10ξ0.
The dominant chiral phase χ+ winds −4×2π , but the cen-
ter of this winding lies in the region where already �+ ≈ 0
(and �− �= 0). The vortex is thus nonsingular and coreless.
Consequently, the CV reduces the depairing caused by the
external flux without paying the cost of a normal-state core,
making it energetically favorable. In sharp contrast, all com-
ponents are zero in Abrikosov vortex cores, see Supplemental
Material (SM) [122] for comparison and generality of results
vs external flux. χ− is constant bar an irrelevant π shift, see
SM [122].

We can understand the phase winding of the CV in Fig. 1
by noting that a chiral state with vorticity m has a phase
winding m × 2π in the dominant chiral component, here with
m = −4. Meanwhile, the subdominant chiral component is
constrained to winding p = m + 2M with the Chern number
M set by the dominant chirality, see SM [122] for deriva-
tion. This quadruply quantized CV is the most stable CV as
it corresponds to a commensurate scenario where the phase
windings from the chirality and vorticity exactly cancel in
the subdominant component, p = −4 + 2 × 2 = 0, thus both
maximizing condensation and minimizing kinetic energy. In
contrast, we find that any other CV have higher energy, as
|m| �=4 leads to p �= 0, which both topologically suppresses
�− and increases the kinetic energy, see SM [122]. Hence, we
find that a CV is very generally quadruply quantized in a chiral
d-wave superconductor, with a total of 2|m| = 8 fractional
vortices present in the nodal components, in contrast to the
double quantization found in p-wave superfluids [66].

The CV generates additional interesting properties. In
Figs. 1(i)–1(l) we plot the resulting charge-current density (j)
and induced magnetic-flux density (Bind). There is a current
running in opposite directions on either side of the domain
wall due to its chiral edge modes. There are also chiral edge
modes at the disk edges and superposed Meissner screening
currents, which generates an overall nontrivial current profile.
The induced flux density shows a clear paramagnetic (blue)
inner region, but in contrast to an Abrikosov vortex, the max-
imal paramagnetism is not at the center but at the domain
wall. This magnetic ring structure offers a distinct signature
for scanning magnetic probes, enhanced at lower κ .

We next turn our attention to the distinct LDOS signatures
of a CV. Figures 2(a)–2(d) show the LDOS N (ε) subgap,
developing from a single ring at the domain wall at zero
energy, to two concentric ring structures emanating from the
domain wall at higher energies. Figure 2(e) displays the LDOS
along a line across the system and clearly shows how the ring
separation grows with energy (or bias voltage). We attribute
these ring-like states primarily to the vorticity, as a domain
wall itself hosts only a small subgap DOS from the chiral edge
modes, similar to the system edges seen in Fig. 2(e). Notably,
this stands in contrast to the point-like LDOS generated in the
core of an Abrikosov vortex [123–126], see SM [122].

Size and shape. The finite CV radius RCV is determined
by competing forces [127]. The repulsive interaction between
the fractional vortices balances an attractive surface tension
from the domain wall currents, implying that the CV size
is changed by anything influencing the currents or fractional

0 1.5N(ε)/2NF

FIG. 2. CV LDOS, same parameters as Fig. 1, and broadening
δ ≈ 0.03kBTc. [(a)–(d)] LDOS at fixed energies ε. (e) LDOS along
dashed line in (a). Arrows: same points in (a) and (e).

vortices. In Figs. 3(a) and 3(b) we plot the zero-energy LDOS
across a CV to show how RCV is tuned directly by both the
external magnetic flux and temperature. In particular, a higher
flux leads to a smaller CV due to smaller separation of the
fractional vortices, in analogy with denser Abrikosov vortex
lattices at higher flux. Low temperature increases both the
attraction and repulsion and therefore has less of an effect,
but eventually leads to a small contraction. Please note, the
small peak at the disk center is only present in fully symmet-
rical systems. In Figs. 3(c) and 3(d) we extract the LDOS
at the domain wall and illustrate how its zero-energy peak
increases substantially with both external magnetic flux and
temperature, even surpassing the coherence peaks and thus
providing yet another clear signature of CVs. Beyond tem-
perature and flux, we find that the penetration depth λ0 also
influences the CV, by modifying the screening currents and
fractional vortex separation [85]. For λ0 > R the CV radius
RCV remains nearly constant (negligible screening), while
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FIG. 3. [(a),(b)] Zero-energy LDOS across a CV [dashed line in
Fig. 2(a)]. (a) Fixed T = 0.1Tc, varying �ext = �0 (blue) to 14�0

(red). (b) Fixed �ext = 8�0, varying T = 0.1Tc (blue) to 0.9Tc (red).
[(c),(d)] LDOS in the domain wall of a CV [arrows in Fig. 2(e)]
with same parameters as (a) and (b). Horizontal arrows: CV size.
Horizontal dashed lines: zero-energy peak height for high versus low
flux (c), and temperature (d).
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FIG. 4. CV with broken axial and rotational symmetries at
�ext = −8�0, but otherwise the same parameters as Fig. 1. [(a),(b)]
Chiral order parameter amplitudes and [(c),(d)] phases. [(e)–(h)]
LDOS at fixed energies ε. [(i),(j)] Magnetic moment mz for CV
in positive flux (CV+, solid lines) and −mz in negative flux (CV−,
dashed lines) or n Abrikosov vortices (m0 ≡ 2μBN with Bohr mag-
neton μB and particle number N [99]).

for λ0 < R, the radius shrinks monotonically to RCV ≈ 4ξ0

at λ0 = 2ξ0 (strong screening). Thus, adding (non)magnetic
impurities should (increase) reduce RCV [128]. Beyond ra-
dius, we find that the overall CV shape can also change in
the presence of strong anisotropy caused by, e.g., the Fermi
surface, geometry, or other vortices, see Ref. [85], demonstrat-
ing strong tunability, while preserving the definitive signatures
established here.

Spontaneous symmetry breaking. So far, we have studied
CVs in a system with dominant chirality �+ for a posi-
tive external magnetic flux, �ext = 8�0. Next we show that
changing to negative flux leads to inequivalent CV proper-
ties, beyond simple effects of TRSB. Specifically, antiparallel
(parallel) chirality and vorticity leads to canceled (enhanced)
phase winding. Note that the following negative flux results
are equivalent to instead changing the dominant chirality to
�− [129]. Figures 4(a)–4(d) show the amplitude and phase of
a CV at �ext = −8�0. We find again that the CV is quadruply
quantized with winding m = 4 in the dominant phase χ+.
However, the subdominant χ− has winding p = 4 + 2 × 2 =
8, since the vorticity and Chern number contributions now
add, rather than cancel. This asymmetry is thus not present
in a TRSB but nonchiral superconductor. Furthermore, in-
stead of an axisymmetric winding center in χ−, there are
now eight disassociated winding centers, thus spontaneously
breaking axial and continuous rotational symmetries. This
occurs because any axisymmetric solution would suppress
�− at the center thus reducing superconductivity, while here
the winding centers occurs where �− is already effectively

zero. Importantly, these winding centers lead to additional
phase gradients that deforms the domain wall into concave
circular segments. The resulting CV in negative flux becomes
a symmetry-broken and octagon-like solution with character-
istic concave segments.

The broken symmetry is highly visible in the LDOS, see
Figs. 4(e)–4(h), where the zero-energy peaks along the do-
main wall now takes a characteristic octagon and concave
shape. More importantly, we find an even more intricate
pattern at higher energies, with interweaving eight-corner
concave shapes due to the eight additional winding centers,
see also SM [122]. This is thus a property due to the super-
posed vorticity and chirality, which by definition cannot be
present in a nonchiral superconductor. Taken together, LDOS
measurements on a CV in opposite field directions not only
discriminate chiral from nonchiral TRSB states, but also give
a direct signature of the quadruple quantization, thus measur-
ing the d-wave pairing symmetry and its Chern number. We
find that these distinctive signatures survive strong broadening
(see SM [122]), nondegenerate nodal components, anisotropic
Fermi surfaces, irregular systems, and nonmagnetic impu-
rities, see Ref. [85]. We attribute this broad generality to
chirality and vorticity both being quantized and topological.
Finally, in Figs. 4(i) and 4(j) we provide bulk signatures of
CVs by showing the total orbital magnetic moment mz [99]
vs temperature and flux, clearly distinguishable for symmet-
ric and symmetry-broken CVs, as well as from Abrikosov
vortices. Since experiments can already distinguish the spec-
troscopic and magnetic signatures from different number
of Abrikosov vortices [130], Figs. 4(i) and 4(j) show that
they should also be able to distinguish the symmetric and
symmetry-broken CVs. Furthermore, the overall offset and
slope varies between different vortex solutions, tunable by
fixing temperature or flux, while measuring as a function of
the other.

To summarize, we establish quadruply quantized CVs as
smoking-gun signatures of chiral d-wave superconductivity.
These CVs are stable and consist of a closed domain wall
with eight isolated fractional vortices, with a radius tun-
able by external flux, temperature, and material properties.
While the CV is circular symmetric in one field direction,
it spontaneously breaks rotational and axial symmetries in
the other, together resulting in direct fingerprints of TRSB,
chiral superconductivity, d-wave symmetry, and the Chern
number, in both the LDOS and magnetic moment. Applying
our results to earlier study [66], we conclude that a square-
shaped CV LDOS in a chiral p wave may likewise be a
signature of both p-wave pairing symmetry and M = ±1
Chern number. Beyond these direct experimental signatures,
our results also establish chiral d-wave superconductors as
platforms for realizing fractional vortices and chiral CP1

skyrmions [76–79,131,132], highly relevant in both magnetic
materials and liquid crystals [133,134] as well as in particle
and high-energy physics [135–138].

Note added. A preprint [139] appeared about skyrmionic
chains in a twisted-bilayer model using Ginzburg-Landau
theory. Using a pseudospin formalism [131], the CVs in
our paper are analogous to chiral CP1 skyrmions [79] here
with skyrmion number Q = 4, which are different from the
skyrmionic chains. Moreover, we establish the experimental
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accessible signatures for distinguishing time-reversal symme-
try breaking, chiral superconductivity, and the Chern number.
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