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Marginal Fermi liquid at magnetic quantum criticality from dimensional confinement
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Metallic quantum criticality is frequently discussed as a source for non-Fermi liquid behavior, but controlled
theoretical treatments are scarce. Here we identify and study a novel magnetic quantum critical point in a two-
dimensional antiferromagnet coupled to a three-dimensional environment of conduction electrons. Using sign-
problem-free quantum Monte Carlo simulations and an effective field-theory analysis, we demonstrate that the
quantum critical point is characterized by marginal Fermi liquid behavior. In particular, we compute the electrical
resistivity for transport across the magnetic layer, which effectively acts like a Kondo impurity. Due to the
presence of the marginal Fermi liquid excitations, the resistivity exhibits a linear decrease with temperature at
criticality, in contrast to the usual quadratic decrease. Experimental realizations in Kondo heterostructures are
discussed.
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Non-Fermi liquid behavior, including that of strange met-
als, is often observed in correlated metals, but despite intense
recent research [1–3], its origins remain poorly understood.
Conceptually, one needs to distinguish cases where a de-
scription in terms of electronic quasiparticles remains valid,
with potentially singular corrections to observables arising
from their scattering, from those where electronic quasipar-
ticles cease to be well-defined. The boundary between the
two has been dubbed marginal Fermi liquid, characterized
by a linear-in-energy scattering rate [4,5]. Deviations from
Fermi-liquid behavior may occur in stable phases of mat-
ter, driven by either strong interactions, quenched disorder,
or a combination of both, or it may originate from zero-
temperature transitions between different quantum phases and
the associated fluctuations [6–8]. The latter, referred to as
metallic quantum criticality, has been studied experimentally
in a variety of heavy-fermion metals [9], in 3He bilayers [10],
and, most recently, in MoTe2/WSe2 moiré heterostructures
[11]. Theoretical investigations date back to the work of Hertz
[12], Millis [13], and Moriya [14], who used a perturbative
framework in the spirit of Landau-Ginzburg-Wilson (LGW) to
capture the physics of order-parameter fluctuations and their
effects on electronic properties. Subsequent work showed that
the LGW treatment is insufficient in two space dimensions,
and more refined theories have been considered [2,15,16].
Their predictions have been compared to the results of exten-
sive quantum Monte Carlo (QMC) simulations, with partial
success [17]. A common problem of many simulations is that
it is difficult to reach sufficiently low temperatures to access
the asymptotic quantum critical regime. In this paper, we
identify an example for a metallic quantum phase transition
that is both analytically and computationally tractable, and
realizes a novel instance of a marginal Fermi liquid. This is
achieved by dimensional mismatch [18,19]: We consider a
Kondo-lattice-type model [20] describing a two-dimensional

(2D) local-moment magnet embedded in a three-dimensional
(3D) metal. Such a setting has been proposed in Ref. [21] and
may be experimentally realized in heterostructures of layered
materials, such as a single CeIn3 layer embedded in bulk
LaIn3 [22]. Importantly, the Kondo interaction between the
two subsystems suppresses magnetic order and hence enables
one to tune the 2D magnet to a quantum critical point. At
this critical point, the heavy quasiparticles acquire a marginal
Fermi-liquid self-energy, and the electrical resistivity mea-
sured across the magnetic layer has a linear temperature
dependence at low T (see Fig. 1).

Model. We model the Kondo heterostructure [Fig. 1(a)] by
the Hamiltonian [21]

H =
∑
k,σ

εkc†
kσ

ckσ + JH

∑
〈i, j〉

Ŝ
f
i · Ŝ

f
j + JK

∑
i

Ŝ
c
i,Rz=0 · Ŝ

f
i ,

(1)

with 3D conduction-electron dispersion εk = −2t (cos kx +
cos ky + cos kz ), at half filling. Ŝ

f
describes local spin-1/2 de-

grees of freedom that reside on the sites of the square lattice i
in the layer at Rz = 0 and interact via a fixed nearest-neighbor
Heisenberg coupling JH = t/2. The last term parametrized by
JK describes the Kondo interaction between the local moments
and the spin density of the conduction electrons Ŝ

c
i,Rz=0 =

1/2
∑

σ,σ ′ c†
i,Rz=0,σ σσσ ′ci,Rz=0,σ ′ within the layer Rz = 0. The

presence of the local moments breaks momentum conser-
vation in the out-of-plane direction, such that kz is not a
good quantum number, whereas the in-plane momentum k2 =
(kx, ky) is conserved.

The model has been studied previously using sign-
problem-free QMC simulations [21,23]. It forms an an-
tiferromagnetic (AFM) heavy-fermion metal for small JK

and undergoes a continuous quantum phase transition to a
paramagnetic heavy-fermion metal at the critical coupling
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FIG. 1. (a) Schematic setup of proposed transport experiment
on Kondo heterostructure. (b) Schematic temperature dependence of
resistivity ρ(T ). The marginal Fermi liquid at the quantum critical
point gives rise to a linear decrease with temperature for tempera-
tures below the coherence scale Tcoh, in contrast to the conventional
quadratic decrease in case of a Fermi liquid. At larger temperatures
beyond Tcoh, intrinsic interaction effects in the metal lead to an
increase of ρ(T ) (dashed line). (c) Resistivity at the quantum critical
point from effective field theory and QMC simulations, both indicat-
ing the expected linear scaling and very good quantitative agreement.

Jc
K/t = 3.019(4). In particular, the dimensional mismatch

gives rise to a metallic ground state despite the presence
of particle-hole symmetry, which entails Kondo insulators in
spatially homogeneous systems. The absence of Kondo break-
down is indicated by a finite spectral weight of the composite

fermion [20] ψ
†
i,σ = ∑

σ ′ c†
i,Rz=0,σ ′σσσ ′ · Ŝ

f
i at small energies

below the coherence scale Tcoh throughout the phase diagram.
Therefore, Ref. [21] concluded that the quantum critical point
(QCP) can be described in a Landau-Ginzburg-Wilson setup,
with a dynamical exponent z = 2. In the following, we set up
an effective field theory to analyze the effect of the critical
fluctuations on the fermion excitations, which are shown to
exhibit marginal Fermi liquid behavior [7].

Field theory. The properties of the quantum critical
regime at finite temperature can be described in terms of an
imaginary-time Bose-Fermi action,

S = 1

2

∑
�n,q2

��n,q2
· D−1

0 (�n, q2)�−�n,−q2

+
∑

ωn,k2,σ

ψ̄ωn,k2,σ [G(0)
ψψ ]−1ψωn,k2,σ

+ 2geff

∫ β

0
dτ

∑
i

Sψ

i (τ ) · �i(τ ). (2)

The critical fluctuations of the AFM order parameter are
incorporated by the real bosonic field � with Matsubara fre-
quencies �n. The Grassmann fields ψ and ψ̄ represent the
composite fermions, with Matsubara frequencies ωn, which
dominate the fermion density of states at criticality [21].

FIG. 2. Self-energy for (a) order-parameter and (b) fermion
fields. Dashed internal lines correspond to D propagators and dotted-
dashed ones to Gψψ propagators. Squares denote the effective
interaction strength geff.

The effective coupling geff considers only the most relevant
interaction between the AFM fluctuations and the spin den-
sity of the composite fermions Sψ

i = 1/2
∑

σ,σ ′ ψ̄i,σ σσσ ′ψi,σ ′ .
Similar models have been discussed in various contexts,
describing, e.g., conduction electrons coupled to ferromag-
netic [24,25], Ising-nematic [26–28], or antiferromagnetic
[16,29,30] order parameters, as well as to a U(1) gauge
field [31–33]. In two dimensions, these setups can poten-
tially host non-Fermi liquid states, characterized by the lack
of well-defined quasiparticles [2,7]. Importantly, the critical
fluctuations may alter the behavior of the fermion excitations
beyond the well-established Hertz-Millis theory [12–14],
which considers only the dressing of the order-parameter
fluctuations by correlations of essentially noninteracting elec-
trons. In the above equation, the bare fermionic propagator
includes the mean-field hybrization effects,

G(0)
ψψ (ωn, k2) = 4

J2
K

T̃MF(ωn, k2)

= 4J−2
K

v−2
MFiωn − ε̃k2 − g0(ωn, k2)

, (3)

in terms of the mean-field transition matrix T̃MF, en-
coding the out-of-plane scattering of conduction elec-
trons off the spin layer. Here, we introduce g0(ωn, k2) =
1/(

√
iωn − εk2 + 2t

√
iωn − εk2 − 2t ) with in-plane disper-

sion εk2 = −2t (cos kx + cos ky), while v−2
MFiω − ε̃k2 incorpo-

rates the Kondo resonances from screening the local moments
with weights v2

MF and dispersion ε̃k2 = (t ′/t )εk2 . The deriva-
tion of Eq. (3) and a comparison with QMC data are given
in the Supplemental Material (SM) [34]. Furthermore, we
model the bare antiferromagnetic susceptibility with the stan-
dard asymptotic form D(0)(�n, q2) = (�2

n + c2
B(q2 − Q)2 +

M2
0 )−1, with instability wave vector Q = (π, π ) and boson

velocity cB. M2
0 describes the bare spectral gap. Interac-

tions dress the propagators via self-energies � and �ψψ

as D(�n, q2) = [D(0)(�, q2)−1 + �(�n, q2)]−1 and Gψψ =
4/J2

K[T̃ −1
MF − (4/JK )2�ψψ ]−1. At the QCP, the gap vanishes,

M2 ≡ M2
0 + �(� = 0, Q) = 0, while a finite value M2 > 0

(M2 < 0) drives the system into the paramagnetic (antiferro-
magnetic) heavy-fermion metal. In the following, we perform
a one-loop analysis that captures the most important in-
teraction effects; see Figs. 2(a) and 2(b) for corresponding
diagrams.

Results at T = 0. We start with the behavior at the QCP.
Note that G(0)

ψψ does not exhibit the typical free-particle poles
in the vicinity of the Fermi surface. Instead, only a discon-
tinuity appears at in-plane momenta k2 within the projected
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FIG. 3. (a) 3D Fermi surface. (b) Projected 2D Fermi surface. (c) Thermal gap as a function of temperature from Hertz-Millis asymptotics
M2(T ) ∼ T log T (solid line) and QMC at linear system size L = 12 (dots). (d) Imaginary part of fermionic self-energy as a function
of Matsubara frequency from effective field theory (triangles) and L = 12 QMC (dots) for different temperatures. The black dashed line
corresponds to the result at T = 0. The inset shows the variation at the Matsubara frequency ωn = 3πT as a function of temperature, which
follows a logarithmic asymptotics (solid line). (e) Imaginary part of retarded fermionic self-energy as a function of real frequency ω from
effective field theory.

2D Fermi surface, shown in Fig. 3(b). This more regular
infrared behavior has important consequences for the critical
properties. The evaluation of Fig. 2(a) leads to the dressed
boson propagator at criticality as [34]

D(�, q2) = 1

c2
B(q2 − Q)2 + α|�| , (4)

with the nonanalyticity, parametrized by the nonuniversal
prefactor α, representing Landau damping, in a form typically
encountered in AFM metallic QCPs [12]. It implies a dynam-
ical exponent z = 2, in agreement with the QMC results [21].
For the fermion self-energy, we find from Fig. 2(b), using the
dressed boson propagator [34],

�ψψ (ω, k2) = −iγ (εk2 )ω log

(
e2�2

α|ω|
)

, (5)

which holds for k2 within the projected 2D Fermi surface.
Here, γ (εk2 ) denotes a nonuniversal momentum-dependent
prefactor and � is the momentum cutoff. Analytic contin-
uation �ψψ (iω → ω + i0+) to real frequencies yields the
retarded self-energy �R

ψψ whose imaginary part encodes the
decay rate of the single-particle excitations. For the Kondo
heterostructure, we find −Im �R

ψψ (ω, k2) ∼ |ω|, which im-
plies marginal-Fermi-liquid scaling. We note that the notion
of marginal Fermi liquidity was historically based on the
concept of local charge and spin responses [4]. However, as
we demonstrate in the SM [34], in our setup, featuring dimen-
sional mismatch, the charge and spin responses are local not
only in the marginal Fermi liquid state, but also in the standard
Fermi liquid, and as such are not characteristic of non-Fermi
liquid behavior. In our work, we therefore use the more recent
understanding of the concept of a marginal Fermi liquid that is
based on the decay of the single-particle excitations and their
scaling with energy [35–41]. The unusual scaling originates
from the discontinuity of G(0)

ψψ and differs from the decay rate
∼|ω|1/2 obtained in the case of a critical AFM order parameter
coupled to a 2D Fermi surface [29].

In addition to these perturbative results, we can make pre-
cise statements about the universality class of the bosonic
sector of the Kondo heterostructure, which typically is a hard

problem in metallic quantum criticality. In the present case
with dimensional mismatch, higher-order vertex functions
beyond the quartic interaction turn out to be renormalization-
group irrelevant, such that the bosonic sector is described by
Hertz-Millis scaling with dynamical critical exponent z = 2
in d = 2 spatial dimensions (see SM for details [34]). The
resulting scaling relations [13] affect the behavior of the
marginal-Fermi-liquid self-energy �ψψ at finite temperatures,
as discussed next.

Finite temperature and comparison with QMC. We fol-
low the procedure developed in Ref. [42] and compute
�ψψ (ωn, k2) self-consistently at the one-loop level, to capture
thermal effects properly, while we use numerical input from
the QMC simulations to set the values of the nonuniversal pa-
rameters characterizing the dressed propagators. For instance,
in the case of the boson propagator, in the vicinity of the
instability wave vector Q = (π, π ), we expect an asymptotic
behavior,

D(�n, q2) = 1

d−1
0 �2

n + c2
B(q2 − Q)2 + M2(T ) + α|�n|

, (6)

where we have introduced, in addition to the Landau damping,
an analytic frequency dependence with nonuniversal prefactor
d−1

0 and an effective finite-temperature gap M2(T ), realizing
the thermal cutoff, with M2(0) = 0. In general, M2(T ) may
realize a rather rich behavior as a function of temperature
[43]. Here, however, Hertz-Millis scaling dictates the form
M2(T ) ∼ T log T , which agrees well with the QMC results
[see Fig. 3(c)]. This allows us to fix all nonuniversal parame-
ters in the bosonic sector uniquely. Similarly, the renormalized
hopping amplitude t ′/t of the Kondo resonances can be ex-
tracted directly from the QMC results for the propagator of
the conduction electrons. The weight of the resonances v2

MF,
as well as the fermion-boson coupling geff, can be obtained
by matching the self-consistent result for �ψψ (ωn, Q) at a
fixed temperature, which we choose as T/t = 1/10 (see SM
[34] for details). To compare with the effective field theory,
we use the identity Im [T̃ (ωn, k2) − g0(ωn, k2)] = v−2

MFωn −
4J−2

K Im �ψψ (ωn, k2). The left-hand side can be extracted
directly from the QMC data while the right-hand side is
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obtained from the effective field theory. To enhance the res-
olution we divide by ωn. The resulting agreement between
the effective field theory and the QMC data for the fermionic
self-energy as a function of the Matsubara frequency ωn

for different temperatures and linear system size L = 12 is
remarkable [see Fig. 3(d)]. This includes the correction to
the linear behavior in general, as well as the pronounced
increase at the smallest ωn. Importantly, the effective field
theory allows us to extrapolate to lower temperatures down
to T = 0. As revealed in Fig. 3(d), this limit is approached
only logarithmically with decreasing temperature.

Transport. Finally, we address the question how the
marginal Fermi liquid can be observed experimentally. Since
the Kondo interactions are restricted to the spin layer, they
do not affect the bulk thermodynamic properties of the con-
duction electrons. Transport across the spin plane, however, is
sensitive to the presence of the local moments. In the follow-
ing, we consider a simple setup in which the region above the
spin plane, Rz > 0, is subject to a static homogeneous electric
potential, eV > 0. By symmetry, only a uniaxial, stationary
current density along the positive out-of-plane direction 〈j z〉
will be generated. Within linear response, the conductivity σ

is given by Ohm’s law 〈j z〉 = σV/(2a), where a = 1 is the
lattice constant [44]. The calculation of σ is tremendously
simplified by the conservation of in-plane momenta, which al-
lows us to theoretically decompose the Kondo heterostructure
into L2-independent one-dimensional scattering problems, la-
beled by k2. Each of these realizes an interacting quantum dot
in the layer Rz = 0, connected to two identical leads formed
by the noninteracting regions Rz < 0 and Rz > 0, respectively.
For a fixed k2, the conductivity can, therefore, be obtained via
the Meir-Wingreen formalism [45]. As is derived in detail in
Ref. [34], the total conductivity is obtained by summing the
Meir-Wingreen result over k2:

σ = −4πe2t2
∫

d2k2

(2π )2
dωa0(ω, k2)n′

F (ω)
∣∣
μ=0a(ω, k2).

(7)

In the above, n′
F (ω) = dnF (ω)/dω denotes the derivative

of the Fermi distribution and a0(ω, k2) = −π−1Im g0(iωn →
ω + i0+, k2) is the free one-dimensional density of states
of the leads. The only genuine interaction contribution is
given by the dressed local spectral function of the con-
duction electrons a(ω, k2) = −π−1Im g(iωn → ω + i0+, k2)
that derives from the dressed local Green’s function [34].
At T = 0, the conductivity attains a nonuniversal value,
σ (T = 0), which originates from scattering off conduction
electrons from the Kondo-screened local moments. How-
ever, the deviation δσ (T ) = σ (T ) − σ (0) shows the same
temperature dependence as the imaginary part of the an-
alytically continued retarded self-energy Im �R

ψψ , implying
that the conductivity is sensitive to the nature of the
composite fermion excitations and their marginal-Fermi-
liquid behavior. The diagrammatic evaluation [34] reveals
that the frequency and temperature dependence of the re-
tarded self-energy can be expressed as Im �R

ψψ (ω, k2) ∼
T �̂R

ψψ (ω/T, M2(T )/αT ), where �̂R
ψψ is a momentum-

independent, universal scaling function [see Fig. 3(e)].
In the quantum critical regime, we obtain two different
limiting behaviors: (i) For large frequencies |ω|/T � 1,

FIG. 4. Conductivity as a function of temperature from effective
field theory at criticality (red solid line) and QMC simulations for
JK = 3.04t ≈ Jc

K (blue triangles) and JK = 4.50t > Jc
K (yellow trian-

gles) for linear system size L = 10. The black dotted (dashed) line
indicates the linear (quadratic) marginal-Fermi-liquid (Fermi-liquid)
scaling.

we have �̂R
ψψ ∼ |ω|/T , such that Im �R

ψψ ∼ |ω| recovers the
marginal-Fermi-liquid behavior from the QCP, as expected;
and (ii) for small frequencies |ω|/T 
 1, we obtain a con-
stant �̂R

ψψ (0, M2(T )/αT ), which scales like T 2/M2(T ) ∼
T/ log T in the limit of small temperatures. Since the overall
scale of the self-energy is set by the temperature, we ob-
tain δσ (T ) ∼ T up to logarithmic corrections (see Fig. 4).
Converted to the resistivity ρ(T ) = 1/σ (T ), these results
imply a linear decrease with temperature for temperatures
below the coherence scale Tcoh, as schematically indicated in
Fig. 1(b). In the paramagnetic heavy-fermion metal at suffi-
ciently large JK, we find instead the Fermi-liquid self-energy
Im �R(ω, k2) ∼ max(ω2, T 2), resulting in δσ (T ) ∼ T 2, im-
plying the conventional form of ρ(T ) at low temperatures
[46], as also indicated in Fig. 1(b).

The conductivity may be also accessed from the QMC
simulations without numerical analytic continuation, provided
that one approximates n′

F (ω) ≈ −δ(ω). Such replacement
neither affects the temperature scaling nor introduces a large
numerical error (see Ref. [34]). The value of a(ω = 0, k2) at a
single real frequency can then be obtained from the QMC data
at imaginary times in a controlled way for T → 0. Figure 4
shows that the QMC simulations indeed display the expected
linear (quadratic) scaling for JK ≈ Jc

K (JK > Jc
K). Moreover,

at criticality, we even find very good quantitative agreement
between the QMC data and the effective field theory. This is
also reflected in the resistance as a function of temperature at
the quantum critical point, as presented in Fig. 1(c).

Summary. We have identified a quantum critical point
in a model for a Kondo heterostructure, which realizes a
novel instance of a marginal Fermi liquid, characterized by
a linear temperature dependence of the electrical resistiv-
ity measured across the magnetic layer. Our results call for
careful low-temperature transport experiments on appropriate
heterostructures made of single magnetic layers embedded in
bulk metals, which can be tuned close to a quantum critical
point. In this respect, we note that various heavy-fermion
compounds, such as bulk CeIn3, feature a pressure-driven
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quantum phase transition [47], suggesting that pressurized
CeIn3/LaIn3 [22] or related heterostructures could realize
some of the physics discussed in this work. On a more general
note, our work provides a path to engineer, and characterize in
transport experiments, exotic quantum phases of matter using
the concept of dimensional mismatch.
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