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Slow heterogeneous relaxation due to constraints in dual XXZ models
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With the aim to understand the role of the constraints in the thermalization of quantum systems, we study
the dynamics of a family of kinetically constrained models arising through duality from the XXZ spin chain.
We find that integrable and nonintegrable deformations around the stochastic point give rise to ground state
phase transitions between localised and delocalised phases, which in turn determine the nature of the relaxation
dynamics at finite energy densities. While in the delocalised phase thermalization is fast and homogeneous, in the
localised phase relaxation is slow, temporal autocorrelations exhibit plateaus indicative of metastability, and the
growth of entanglement is heterogeneous in space. Furthermore, by considering relaxation from initial product
states, we demostrate that this slow thermalization can be rationalised directly from the presence of constraints
in the dynamics.
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I. INTRODUCTION

Thermalization is one of the major challenges in the dura-
bility of quantum technologies: quantum coherence—their
vital property—cannot be sustained indefinitely due to imper-
fect isolation from the environment [1–4]. It is also expected
to occur in extended isolated systems, where infinitely many
degrees of freedom provide an effective bath that leads to
equilibration of few-body observables. These attain stationary
values predictable by standard statistical ensembles or, in the
case of integrable systems with infinitely many conserva-
tion laws constraining the dynamics, generalizations thereof
[5–8]. In generic systems, where only the energy is con-
served, one can understand this in the context of the eigenstate
thermalization hypothesis. The latter, through a combination
of thermodynamic suppression of coherences and dephasing,
leads to a drastic reduction in the number of parameters re-
quired to describe stationarity [9–12].

While the statistical ensembles can predict the asymptotic
expectation values of the few-body observables, they give no
information about the timescales over which the relaxation
towards them occurs. Speed of relaxation can be affected
by various circumstances, such as the extent to which the
symmetries of the physical system are broken by the initial
conditions [13–15], the presence of emergent quasiconserved
quantities [16–20], or dynamical constraints [21–29]. The
latter are the main feature of kinetically constrained mod-
els (KCMs), originally conceived as toy models for slow
hierarchical dynamics of classical viscous fluids and glasses
[30–33]. Mimicking excluded-volume interactions [34]—a
feature of systems extending from supercooled liquids [35,36]
to Rydberg blockade [37,38]—can lead to a wide variety of
exotic quantum nonequilibrium phenomena that have recently
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been in the spotlight. Examples include jamming and related
Hilbert space fragmentation [39–44], quantum many-body
scars [45–48], anomalous transport [49,50], and cooperative
dynamics of fractons [51,52]. Excluded-volume interactions
and dynamical constraints often arise in models with tunable
interactions, where strong correlations between excitations
are induced in the large coupling limit [37,41,53–59]. Al-
ternatively, KCMs can sometimes be related to such models
through duality transformations [14,60–62], an approach we
follow here.

In this paper, we consider a family of one-dimensional
(1D) quantum models mappable to the anisotropic Heisen-
berg spin-1/2 chain and its nonintegrable deformation. We
investigate two phases of the model depicted in Fig. 1(a): a
phase where the ground state is localized (yellow) and one
where it is delocalized (red). A striking feature of the model
in the phase with a localized ground state is the emergence
of facilitated dynamics at finite energy density, as illustrated
in Fig. 1(b): certain local arrangements (pairs of spins down,
see below) can move freely, whereas certain other isolated
excitations remain frozen for long times. We demonstrate the
resulting separation of timescales by considering the evolution
of temporal autocorrelation functions of particle occupation
numbers starting from various initial states—cf. Fig. 1(c).
This, in turn, gives rise to a growth of the bipartite en-
tanglement entropy (EE) which is heterogeneous in space,
depending on the effect that the dynamical constraints have
on spatial fluctuations in initial product states.

II. MODELS

We consider a one-dimensional XPX model on a chain of
L spins 1/2 with open boundary conditions:

HXPX =
L−1∑

j=2

σ x
j−1

(
1−σ z

j

)
σ x

j+1+w1σ
z
j +w2σ

z
j−1σ

z
j+1. (1)
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FIG. 1. Ground-state phases and slow relaxation of the XPX
model. (a) Ground-state phase diagram of the XPX model in Eq. (1)
for L = 160 (from DMRG performed using the ITensor library
[63]). For smaller w1,2 (yellow region), the ground state is local-
ized, while for larger w1,2 (red region) it is delocalized. The arrow
indicates the values of w1,2 used in (b), (c). (b) Time evolution of
a spin configuration |· · · ↓ · · · ↓↓ · · ·〉 with dots denoting spins up
(from TEBD based on the Armadillo library [64,65]) and for w1 =
−2, w2 = −1/2 in the localized phase. (c) Normalized autocorre-
lation functions for individual initial configurations (light blue) and
their average (black) in the localized phase (w1 = −3.5, w2 = −1.5)
in a specific symmetry sector of the model.

Pauli matrices acting in the site j are denoted by σα
j , α ∈

{x, y, z}, while 1 is the identity. The dynamical constraint
1−σ z

j =2|↓〉〈↓| j allows the spins in sites j−1 and j+1 to
flip only if a spin down is between them.

When w2 = 0, the XPX model is integrable and belongs to
a family of models,

(2)

related by degenerate duality maps often referred to as the
bond-site transformations. One of them yields the anisotropic
Heisenberg model [14,60,62]

HXXZ =
L−1∑

j=2

XjXj+1 + YjYj+1 + w1ZjZ j+1 (3)

and the second one the XOR-Fredrickson-Andersen model

HXOR-FA =
L−1∑

j=2

τ x
j

(
1 − τ z

j−1τ
z
j+1

) + w1τ
z
j−1τ

z
j+1, (4)

whose kinetic constraint—a quantum XOR gate—allows a
spin flip to occur only between two oppositely aligned spins
[66]. Operators Xj,Yj, Zj , and separately τα

j , α ∈ {x, y, z},
satisfy Pauli algebra and can be represented as Pauli matrices
acting in site j. For w2 �= 0, the integrability is broken [14]:

the corresponding nonintegrable deformations are HXXZ +
w2 Zj−1ZjZ j+1Zj+2 and HXOR-FA + w2 τ z

j−2τ
z
j+2.

We note that there is some freedom in specifying
the duality transformations. Choosing Xj �→σ x

j−1σ
x
j , Yj �→

σ x
j−1σ

y
j σ

z
j+1 · · · σ z

L , Zj �→σ z
j · · · σ z

L for 1 � j � L, with con-

vention σ x
0 = 1, the conserved magnetization Sz = ∑L

j=1 Zj

of the Heisenberg model is mapped into the semilocal charge
S̃z = ∑L

j=1 σ z
j · · · σ z

L of the XPX model: [HXPX, S̃z] = 0. De-
spite not being local, such an operator may crucially affect
local relaxation [14,60].

Notably, all of the models in the family Eq. (2) have
classical stochastic counterparts. The one for the XPX model
with w2 = 0 and w1 = −1 − s is associated to W(s) =
−U (HXPX + (1 + s)1)U −1, where U =∏L/4

j=1σ
z
4 j−1σ

z
4 j and we

have assumed L/4 ∈ N for convenience. The operator W(s =
0) is a stochastic Markov generator, while for s �= 0 it is a de-
formed (or tilted) generator encoding the large deviation (LD)
statistics [33,67,68] of the number of spin-flips (dynamical
activity [69–71]) in trajectories of the dynamics [72].

Via duality to the XXZ model, and up to trivial boundaries,
W(s = 0) corresponds to the stochastic generator of the clas-
sical symmetric simple exclusion process (SSEP) [73], and for
s �= 0, it encodes the LDs of the activity in the SSEP [74,75].
The SSEP is known to have a phase transition in the space of
its (long-time) stochastic trajectories between an active and an
inactive phase, which shows up as a nonanalyticity at s = 0
in the largest eigenvalue of W(s) (in the large-size limit)
[74–76]. The dynamical LD method [33,67,68] provides a
means for a statistical ensemble description of trajectories,
and the ensuing dynamical phase transition, in the classical
stochastic SSEP [74–76]. In the dual picture for the quantum
model, this transition (occurring at w1 = −1) corresponds to
the ferromagnetic-paraferromagnetic phase transition in the
ground state of the XXZ model [77,78]. In what follows, we
explore how it affects the relaxation in the XPX model.

III. LOCALIZED AND DELOCALIZED PHASES

In the context of quantum dynamics, the inactive and active
phases of the XPX model will be referred to as the localized
and delocalized phases, respectively. Choosing the inverse
participation ratio IPR = ∑

ψ |〈ψ |GS〉|4 as a measure of lo-
calization (|GS〉 is the ground state and |ψ〉 are computational
basis states), we indeed find IPR close to one in the former
and close to zero in the latter. As shown in Fig. 2 [see also
Fig. 1(a)], these two phases extend beyond the integrable line
w2 = 0. For all w2 � 0, they are separated by a first-order
transition, both along w1 as well as w2. Instead, for w2 > 0
the transition is a second-order one, cf. Fig. 2.

An interesting feature of the localized phase, indicated in
Fig. 1(b), is what could be described as fractonic nature of the
excitations [56]: an isolated spin down remains immobile for
long times, while two adjacent spins down can move without
an energy cost. We note that the isolated spin down in the
integrable XPX model (w2 = 0) corresponds to a domain wall
in the XXZ model, which does not melt in the |w1| > 1 regime
due to being close to a stable kink solution [79–84]. The
fractonic dynamics in which particles can move only if paired
(assisted hopping) is a sort of dynamical facilitation [32],
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FIG. 2. Order of ground-state phase transitions in the XPX
model. Panels in the first and second rows show the derivatives of
the ground-state energy on w1, respectively, w2. For w2 � 0, the
transition between the localized and delocalized phase (i.e., between
the regions color-coded yellow and red, respectively) is a first-order
transition. For w2 > 0, it is of the second order.

which can lead to separation of timescales [33]. Remarkably,
the resulting metastability exhibited by correlation functions
which involve the entire spectrum of HXPX, and which will
be explored in the following, is tied to the localization of the
ground state.

IV. SLOW RELAXATION

To probe metastability, we consider the average tempo-
ral autocorrelation of the one-site occupation number n j =
(1 + σ z

j )/2:

ct = 1

L

L∑

j=1

〈ψ |n j (t )n j |ψ〉. (5)

Here, n j (t ) = eiHXPXt n je−iHXPXt and |ψ〉 is a computational
basis product state (an eigenstate of all σ z

j ). For such ini-
tial states ct corresponds to the average magnetization of
the initially occupied sites at time t . To smooth out fast
fluctuations we furthermore define ct = t−1

∫ t
0 dτ c(τ ), which

asymptotically approaches the diagonal-ensemble prediction
c∞ = L−1 ∑

j

∑
E�=Em

ψ∗
� ψm〈�|n j |m〉, the sum over j running

over the initially occupied sites only.
Figures 3(a)–3(d) portray the autocorrelation functions

(ct − c∞)/(c0 − c∞), normalized to lie between 0 and 1, for
a selection of initial states |ψ〉 in the semilocal-charge sec-
tor S̃z = L − 4 with L = 14. The same panels show also the
average of (ct − c∞)/(c0 − c∞) over all |ψ〉 in that sector.
In contrast to the delocalized phase, Figs. 3(b)–3(d) (red
background), where all correlation functions quickly attain
stationary values, a large number of correlators in the local-
ized phase, Figs. 3(a) and 3(c) (yellow background), exhibit
plateaus which persist for long times before finally relaxing.

Averaging the correlation function over the initial states
reveals a hierarchical decay typical for classical glassy sys-
tems, where it is associated with a sequence of different length

FIG. 3. Slowdown of the relaxation in the localized phase. (a)–(d) Normalized time-integrated autocorrelations (ct − c∞)/(c0 − c∞) from
initial computational basis states (light blue) and their average over the sector S̃z = L − 4 (black) for L = 14. (a), (b) The integrable case
(w2 = 0); (c), (d) the nonintegrable one (w2 �= 0). (a), (c) In the localized phase; (b), (d) in the delocalized one. (e) Normalized time-integrated
correlation 〈ct − c∞〉 averaged over all computational basis states (all sectors of Hilbert space). In the delocalized regime (overlapping curves,
topmost being dashed), there is almost no w1 dependence of the relaxation time, while in the localized regime there is a clear slowdown of
relaxation with increasing |w1|. The relaxation time seems to obey exponential scaling τrel ∼ exp(α|w1 + 1|). (f) Estimate of log τrel from the
area under 〈ct − c∞〉/〈c0 − c∞〉 as a function of log t , averaged over the entire Hilbert space.
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FIG. 4. Dynamic heterogeneity of the entanglement entropy. (a)–(c) Evolution of the time-integrated bipartite entanglement Sj (t ) (top
panels) and the time-integrated temporal autocorrelation of the one-site occupation number 〈ψ |nj (t )nj |ψ〉 (bottom panels), starting from three
different initial computational basis states |ψ〉 (black squares denote spins down, white ones spins up). The plots are for the localized regime
of the nonintegrable model with w1 = −2, w2 = −1/2. (d) Snapshots of the EE profile at different times. The initial configuration for which
the time autocorrelations have plateaus indicative of slow relaxation exhibits spatially heterogeneous entanglement evolution. The evolution of
EE in the configuration with fast relaxation is instead faster and homogeneous.

scales on which relaxation occurs [85–87]. This is most appar-
ent in the autocorrelation 〈ct − c∞〉/〈c0 − c∞〉, where 〈−〉 is
the infinite-temperature average over the entire Hilbert space,
plotted in Fig. 3(e). Defining the relaxation time τrel as the one
required by the average correlator to fall below a certain cutoff
value ε, there is a clear distinction between the delocalized
phase, with no dependence on w1, and the localized one, for
which Fig. 3(e) suggests τrel ∼ eα|w1+1| for some α > 0 which
may differ between the successive plateaus.

An alternative estimate for the relaxation timescale is
the area under the averaged correlator in the logarithmic
timescale: log τrel ≈ ∫ ∞

log tmin
d[log t](〈ct − c∞〉/〈c0 − c∞〉)

[88]. We show this τrel in Fig. 3(f) as a function of w1

ranging between the delocalized and the localized regime
of the integrable model (w2 = 0): there is a clear crossover
from a regime where τrel is only weakly dependent on w1,
coinciding with the delocalized phase (red background) to
one of exponential dependence on w1 in the localized one
(yellow background). Note the lack of dependence on system
size for the sizes accessible to our numerics. This indicates
that relaxation can be slow but not divergent with system size,
a typical feature of glassy dynamics.

Note that through duality between the models, cf. Eq. (2),
the metastability presented above should also occur for the
autocorrelation function of the domain-wall occupation num-
ber (1 − ZjZ j+1)/2 in the XXZ model, as well as for the
autocorrelation function of (1 − τ z

j−1τ
z
j+1)/2 in the XOR-FA

model.

V. LARGE COUPLING REGIME

The slow relaxation observed above should be contrasted
with the one in the strong coupling limit of the XPX model.

In particular, for w2 = 0 and w1 → −∞ the dynamics of
the XPX model is described by the integrable dual-folded
XXZ model [41,42,89]. The latter has an exponentially large
sector of jammed states, typical for Rydberg blockade sys-
tems [45,90], and exhibits strong Hilbert space fragmentation
[39,44,91]. For finite w1, the dual-folded XXZ model accu-
rately describes the time evolution of the XPX model up to
times t ∼ |w1|. On such timescales, the dynamics is confined
to small subsectors of Hilbert space and time-averaged corre-
lation functions ct exhibit plateaus. While we have checked
that they can be correctly predicted by the folded model’s
diagonal ensemble, such plateaus are not observed for the
values of w1,2 considered herein, but instead appear for much
larger values of |w1,2| (see Ref. [92] for a perturbative picture
of prerelaxation in certain nonintegrable deformations of the
XXZ model). Indeed, the plateaus seen in our examples per-
sist on time scales that are exponential and not linear in the
parameter.

VI. DYNAMIC HETEROGENEITY IN ENTANGLEMENT

Entropy growth provides crucial insight into the role
of kinetic constraints in the emergence of metastability
[21,22,93,94]. To demonstrate the heterogeneity of dy-
namical facilitation, we consider the bipartite EE S j (t ) =
−Tr[ρ j (τ ) log ρ j (τ )], where ρ j (t ) is the time-evolved reduced
density matrix of the subsystem consisting of sites 1, 2, . . . j.
Figures 4(a)–4(c) show S j (t ) = t−1

∫ t
0 dτS j (τ ) for several

initial states in the localized phase (w1 = −2, w2 = −1/2)
of the XPX model on L = 14 sites. Figure 4(a) shows the
difference between the EE growth when spins down which
facilitate relaxation are initially closer (faster EE growth) and
the one when they are further apart (slower EE growth). Note
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that the heterogeneity of the EE evolution is accompanied
by plateaus in the correlators 〈ψ |nj (t )n j |ψ〉. Figure 4(b) il-
lustrates the interplay of the kinetic term and the three-site
potential energy term (for w2 �= 0): facilitation caused by the
spin down closer to the boundary affects less neighboring
sites, which are thus entangled faster by the quantum unitary
dynamics, that is, S12(t ) � S2(t ) for all t . Finally, due to the
assisted hopping in the localized regime, a large density of
paired spins down results in a quick equilibration, as shown
in Fig. 4(c). The profiles of EE plotted at different times in
Fig. 4(d) further corroborate the observation that metastability
is associated with dynamic heterogeneity, as is also the case in
classical glassy materials with or without quenched disorder
[34,35,93,95].

VII. DISCUSSION

We have investigated how metastability and slow hetero-
geneous relaxation emerge from the kinetic constraints in the
XPX spin chain (and by extension in its duals, the XXZ and
XOR-FA models). The onset of anomalously slow dynamics
coincides with a ground-state phase transition from a delo-
calized to a localized one. This is similar to what occurs
in other 1D and 2D constrained models [21,22,24,27] for
deformations around their stochastic (frustration-free) points.

In our case, we also find that the two phases with distinct
relaxation extend beyond the range of parameters for which
the model is integrable and which include the stochastic point.
Interestingly, another contrast to previous results is that the
ground-state transitions delimiting the two dynamical regimes
are not always first order.

While the models studied herein bear some resemblance
to certain KCMs with a variety of low-entangled nonthermal-
izing eigenstates [24,96], the methods for constructing such
states do not straightforwardly generalize here due to cru-
cial differences in either dynamical facilitation or interaction.
Whether the onset of slow heterogeneous dynamics in quan-
tum KCMs is related to nonthermalizing states interwoven
into the energy spectrum or the presence of some other exotic
symmetries constraining the dynamics [47,97,98] remains one
of the intriguing open questions.
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