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Time-dependent driving holds the promise of realizing dynamical phenomena absent in static systems. Here,
we introduce a correlated random driving protocol to realize a spatiotemporal order that cannot be achieved
even by periodic driving, thereby extending the discussion of time translation symmetry breaking to randomly
driven systems. We find a combination of temporally disordered micromotion with prethermal stroboscopic
spatiotemporal long-range order. This spatiotemporal order remains robust against generic perturbations, with
an algebraically long prethermal lifetime where the scaling exponent strongly depends on the symmetry of the
perturbation, which we account for analytically.
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Introduction. Extending the concept of equilibrium phases
of matter to nonequilibrium settings attracts perennial interest.
Prominent examples involve many-body localization, where
the spatial disorder enables eigenstate ordering even at high-
energy density, a phenomenon that is disallowed in thermal
equilibrium [1,2]. Periodically driven Floquet systems enrich
the zoo of nonequilibrium phases, where exotic spatiotem-
poral behavior can be realized, for instance, in discrete time
crystals (DTCs) [3–5] or Floquet topological phases [6,7].

Here we ask, are there types of spatiotemporal ordering that
are genuinely new to temporal disorder, i.e., randomness in
the drive, that lie beyond what can be achieved in conventional
Floquet protocols? Closed time-dependent systems generally
lack energy conservation [8]. Temporal disorder removes even
the remaining quasiconservation as in Floquet systems [9,10],
opening up further deleterious energy absorption channels,
generally believed to quickly heat up the system until all
correlations become trivial and independent of the initial
state. Therefore, unlike the spatial disorder which underpins
eigenstate order [11–14], temporal disorder generally dimin-
ishes interesting dynamical phenomena [15–21] and would
therefore seem to hold little promise of exhibiting new spa-
tiotemporal types of order.

Nonetheless, a transient but long-lived prethermal regime
can exist if the heating rate is sufficiently controlled [22–32].
In the context of aperiodic driving, a low heating rate can
specifically be realized in drive protocols such as random
multipolar driving (RMD) or hyperuniform driving with a
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suppressed low-frequency driving spectrum. Here, the corre-
lated temporal disorder may lead to a tunably polynomially
suppressed heating rate for fast drives [33].

Prethermalization opens a long time window that can po-
tentially hold a rich variety of nonequilibrium phases enabled
by random drivings. Some cousins of Floquet phases, such
as DTCs and anomalous RMD insulators, have been recently
discovered in randomly driven systems [19,33–36]. However,
none of them answer our question as the temporal disorder
in these systems plays the role of an unwanted perturbation,
which destabilizes their corresponding Floquet phases, albeit
controllably gently. The challenge in moving beyond the Flo-
quet paradigm is thus to employ temporal disorder sufficiently
strong to qualitatively modify the dynamical properties while
sufficiently weak to keep heating under control.

In this Letter we provide an affirmative answer by present-
ing a prethermal phase characterized by two types of temporal
correlations: Conventional stroboscopic spatiotemporal DTC
order coexists with temporally disordered micromotion. This
lies outside the established Floquet lore, where micromotions
are restricted to follow the stroboscopic time evolution via a
deterministic gauge transformation [37]. We evade this con-
straint by randomly applying a spin-flip operation, leading
to a nontrivial π -shifted Fourier spectrum of micromotion
that is distinct from that of the driving protocol. The stability
of this spatiotemporal order can be analyzed via a Magnus
expansion, and we derive a static effective Hamiltonian in the
prethermal regime with a suppressed heating rate.

In the following, we first introduce our temporally random
driving protocol and elaborate on the prethermal time trans-
lation symmetry (TTS) breaking in a soluble instance. We
then analytically investigate and numerically verify its sta-
bility away from solubility. Upon perturbing from solubility,
the prethermal timescale grows algebraically with driving fre-
quency. Remarkably, the scaling exponent strongly depends
on the symmetry of the perturbations. Finally, we show that
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FIG. 1. (a) Distinct temporal correlations emerge for micromo-
tions and stroboscopic times (for system size L = 26). (b) Fourier
modes of micromotions exhibit a π -shifted spectrum different from
the drive, defining another type of TTS breaking. (c) This persists for
a long timescale τ , which grows with driving frequency 1/T . We use
Jz = 1, Jx = 0.1, Jy = 0.2, Bz = 0, δr = 0.15, L = 18.

the prethermal phase persists for generic initial states in a
localized model. Beyond the example of RMD driving, we
generalize our findings for random hyperuniform drivings.

Driving protocol and soluble model. We consider a step-
wise drive with two elementary time evolution operators for a
spin-1/2 chain of length L,

U +
0 = UzUx, U −

0 = UxUz,

Uz = exp (−iT Hz/2), Ux = exp (−iT Hx/2), (1)

where Hz only involves the nearest-neighbor Ising interaction
Hz=

∑
j Jzσ

z
j σ

z
j+1 of strength Jz, and a field Hx = Bx

∑
j σ

x
j

of amplitude Bx. The soluble case is Bx = π/T , where the
operator Ux simplifies to the perfect global spin flip X= ∏

j σ
x
j

of the Ising Z2 symmetry. As Hz preserves this Ising symme-
try, the product of two U +

0 operators can be generated by the
Hamiltonian Hz as

[U +
0 ]2 = exp (−iT Hz ). (2)

Consequently, for a Floquet drive generated by U +
0 and for a

Z2 symmetry broken initial state, the local magnetization at
stroboscopic times mT ,

Sm =
∑

j

〈
σ z

j (0)σ z
j (mT )

〉
/L, (3)

exhibits period-doubling behavior with respect to the T peri-
odic spin flips [see the blue dots in Fig. 1(a)]. Note, in this
soluble case, the oscillation amplitude of Sm never decays.
Also, the micromotion is also strictly period doubled, with the
magnetization, e.g., at half-integer times (m + 1/2)T ,

Rm =
∑

j

〈
σ z

j (0)σ z
j (T/2 + mT )

〉
/L, (4)

behaving as that at integer times, as it is connected by the
“gauge transformation” Ux.

Now we remove the strict periodicity and randomly
apply U ±

0 according to a random driving sequence {ym}
where ym = ±1. Its discrete Fourier spectrum, Y (ωk ) =∑M−1

m=0 ym exp(−iωkm)/
√

M where M denotes the length of
{ym}, exhibits a random distribution in frequency ωk space
with a flat envelope. A similar period-doubling phenomenon
still occurs at stroboscopic times as the relation in Eq. (2)
equally applies to any product of two operators U ±

0 .
However, the Floquet theorem does not apply and at half-

integer times, the magnetization is temporally disordered with
the expression Rm = (−1)mym: Its value depends on ym as
U ±

0 determines whether spin flip happens in the first or the
second half of a period T ; the phase (−1)m appears as the
spin flip changes the sign of magnetization and it disappears
after an even number of spin flips. The phase indeed implies
a π -shifted spectrum Ỹ (ωk ) = Y (ωk + π ) [see proof in the
Supplemental Material (SM) [38]], but both of them follow
the trivial and structureless frequency spectrum.

However, more interestingly, if Y (ωk ) is structured, this
π shift generally leads to a different spectrum of local ob-
servables, hence generalizing the notion of prethermal TTS
breaking to random driving protocols. We illustrate this idea
by using the family of correlated random drives, the n-RMD
protocol with a non-negative integer n which quantifies the
temporal correlation [33]. 0-RMD corresponds to the purely
random case discussed above. Time evolution is generated
by randomly applying one of the multipolar operators U ±

n ,
recursively defined as U ±

n = U ∓
n−1U

±
n−1. For n = 1, the en-

velope of the Fourier spectrum of the drive reads Y1(ωk ) ∼√
1 − cos ωk with a linear suppression at ωk = 0, as shown

by gray lines in Fig. 1(b). The π shift for the micromotion
persists and results in Ỹ1(ωk ) ∼ √

1 + cos ωk where the sup-
pression can be clearly observed at ωk = π (red lines) in
Fig. 1(b). Indeed, this behavior exists for the full family of
n-RMDs, where the envelope of the Fourier spectrum follows
Yn(ωk )∼ ∏n

j=1

√
1 − cos(2 j−1ωk ), and a π shift leads to

Ỹn(ωk ) ∼
√

1 + cos ωk

n∏
j=2

√
1 − cos (2 j−1ωk ), (5)

for n � 2 (see details in SM [38]). Similar π shifts should
also occur for other random protocols as long as the driving
sequence has a nontrivial frequency spectrum. As a special
feature of the n-RMD protocol, Ỹn(ωk ) is also a reflection
of Yn(ωk ) [see Fig. 1(b)], which, however, is not a general
property of TTS breaking in randomly driven systems.

Stability. A natural question is whether this TTS breaking
persists away from the soluble case. The question of stability
is also important for experimental realizations. Naively, the
answer would seem to be negative, simply because the contin-
uous Fourier spectrum opens energy absorption channels to
destabilize the whole phenomenon.

However, we have previously shown that generic many-
body systems driven with an n-RMD protocol can exhibit
algebraically long prethermal lifetimes in the high-frequency
regime, i.e., the driving frequency is the dominant energy
scale of the system [33,39]. By contrast, this is not the case
here, as the spin-flip operator Ux acts instantaneously regard-
less of driving frequency (or, alternatively, requires the field
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strength to scale up with driving frequency as Bx = π/T ),
and the high-frequency condition is a priori not satisfied.
Also, the fact the spin-flip operator occurs randomly in time
prevents the existence of a deterministic rotating frame where
the strong field always vanishes.

We can nonetheless demonstrate that the period-doubling
signal persists for a finite but algebraically long lifetime even
away from the fine-tuned point. We also find that the lifetime
of the prethermal regime strongly depends on the symmetry of
the perturbation. To do so, we consider two types of generic
perturbations: (i) the imperfection in spin-flip operations with
a field strength Bx = π/T + δr with δr always nonzero in the
following discussion; and (ii) perturbations to the Hamiltonian
Hz, which (a) either preserve the Z2 symmetry, satisfying
X�Z2 X = �Z2 or (b) violate the symmetry X�X = −�. We
can show that the concomitant prethermal lifetime scales as
(a) T −(2n+3) and (b) T −(2n−1), respectively.

The multipolar operators U ±
n being unitary, they can be

written in the form U ±
n = exp[−i(2n−1T )H±

n ] where H±
n is

some static Hamiltonian operator. Such a Hamiltonian is
generally nonlocal and hard to determine for many-body
systems. However, by using a Magnus expansion, H±

n =∑∞
m=0(2n−1T )m�±

n,m, we can derive its high-frequency expan-
sion that governs the prethermal dynamics [39]. Subsequently
we employ a Fermi’s golden rule (FGR) argument to predict
the scaling of the prethermal lifetime.

We start from the Z2 preserving perturbations by changing
Hz in Eq. (1) to H = Hz + �Z2 . It leads to two dipolar opera-
tors,

U −
1 = e−iT H/2e−iT δr

∑
i σ

x
i e−iT H/2,

U +
1 = e−i T

2 δr
∑

i σ
x
i e−iT H e−i T

2 δr
∑

i σ
x
i , (6)

where we use the Z2 symmetry of the perturbed Hamiltonian
H and also the property X 2 = 1. Consequently, the strong
field Bx cancels out and the high-frequency regime is now
well defined if 1/T is much larger than any other local energy
scale. By treating T as a small parameter, for n = 1, the
Magnus expansion leads to

H±
1 = Hz + �Z2 + δr

∑
i

σ x
i + O±(T 2), (7)

where the zeroth- and the first-order expression is the same
for both U ±

1 , with differing higher-order terms O±(T 2) sup-
pressed for high-frequency drives. Indeed, one can generalize
this result (see SM [38]) to larger n, and by induction show
that the Hamiltonian, H eff

n := ∑n
m=0(2n−1T )m�±

n,m, truncated
at nth order is the same for U ±

n .
Therefore, the operator H eff

n plays the role of a static
effective Hamiltonian generated by an arbitrary sequence
of U ±

n . For a generic nonintegrable H eff
n , the system will

first locally equilibrate to a prethermal state that can be lo-
cally captured by a Gibbs ensemble ρeff ∼ exp(−βeffH eff

n ).
The effective inverse temperature βeff can be determined by
the initial expectation value of H eff

n . Additional higher-order
terms are generally different for U ±

n and the most dominant
ones’ amplitude is O(T n+1). They appear randomly in time
and induce a heating rate γ ∼ T × [O(T n+1)]2 ∼ O(T 2n+3)
according to FGR [39]. Hence, the lifetime of the prethermal

plateau should scale as τ ∼ T −(2n+3) which we numerically
verify below.

Now we discuss the situation with Z2 symmetry breaking
perturbations with H = Hz + �. For n = 1, the same expres-
sion for U −

1 is obtained as in Eq. (6). However, U +
1 is different,

U +
1 = e−i T

2 δr
∑

i σ
x
i e−iT (Hz−�)e−i T

2 δr
∑

i σ
x
i . (8)

A similar perturbation expansion leads to

H±
1 = Hz ∓ � + δr

∑
i

σ x
i + O±(T 2). (9)

Note the zeroth-order terms differ by the symmetry break-
ing perturbation �. Hence, for n = 1 we do not have a
well-defined time-independent Hamiltonian to approximate
1-RMD dynamics when the Z2 symmetry of H is explicitly
broken. The existence of a prethermal regime is thus not
guaranteed even for large driving frequencies 1/T → ∞.

Prethermal behavior can, however, be obtained by increas-
ing the multipolar order. For n � 2, the perturbative expansion
H eff

n truncated at the (n − 2)th order coincides for U ±
n . Conse-

quently, it is the next, (n − 1)st, order with amplitude O(T n−1)
which destabilizes the system. The resulting prethermal life-
time scales as τ ∼ T −(2n−1). This scaling equally applies to
n = 1 if the symmetry breaking � is sufficiently weak, i.e.,
� does not strongly couple the initial low-energy state and
excited states of Hz. In the following, we support our analysis
with numerical simulation via exact diagonalization.

Numerical simulation. We first consider an ordered initial
state polarized in the positive z direction, before extending the
discussion to more general initial states. We consider a generic
nonintegrable Hamiltonian

H = Hz +
∑

j

Jxσ
x
j σ

x
j+1 + Jyσ

y
j σ

y
j+1 + Bzσ

z
j , (10)

to generate Uz. Periodic boundary conditions are used such
that the translation invariance permits us to simulate the dy-
namics for larger system sizes. The spin flip has the fixed
rotation imperfection δr = 0.15. Nonzero Jx,y introduces Z2

preserving perturbations whereas Bz violate the symmetry.
We first consider a single temporal disorder realization for

1-RMD with symmetry preserving perturbations (Bz = 0). In
Fig. 1, we plot the magnetization Sm at stroboscopic times
as blue dots in Fig. 1(a). Similarly to conventional discrete
time crystals, Sm oscillates with a period 2T with an amplitude
decaying at short times but equilibrating at a nonzero value in
the prethermal regime. The magnetization Rm for the micro-
motions (red) has approximately the same amplitude as Sm but
oscillates in a random fashion. The discrete Fourier spectrum
of Rm/|Rm| up to the time t = 100 is plotted in Fig. 1(b).
A clear suppression occurs at ωk = π as predicted whereas
the drive (gray) has a suppression at ωk = 0, suggesting that
the different type of TTS breaking survives perturbations
in the prethermal regime. In Fig. 1(c), after averaging over
200 temporally disordered realizations, (−1)mSm is plotted
and different colors correspond to different driving frequen-
cies. After a short transient period, it relaxes to a nonzero
value. The system heats up to infinite temperature after a
long timescale, which increases for larger driving frequencies.
A similar phenomenon also occurs when Z2 symmetry is
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FIG. 2. Prethermal lifetime τ strongly depends on the
presence/absence (blue/red lines) of Z2 symmetry in the
perturbation. (a) Dynamics of the stroboscopic magnetization.
(b) Algebraic lifetime scaling vs driving frequency 1/T for
multipolar order n = 1. Scaling exponent is approximately 2n + 3
for Z2 preserving perturbation with Bz = 0, and 2n − 1 for Bz = 0.5
for n = 1. (c) Scaling results for n = 2. We use Jz = 1, Jx = 0.1,
Jy = 0.2, Bz = 0, δr = 0.15, L = 18.

broken (Bz �= 0) as shown in Fig. 2(a). But for a fixed fre-
quency, e.g., 1/T = 6 (light red), (−1)mSm decays much
faster than the Z2 preserving case (blue), highlighting the
importance of symmetry in stabilizing the nonequilibrium
phases with random drives.

The dependence of the prethermal lifetime can be further
quantified by setting a threshold value s0 for the magnetiza-
tion. We extract the time ts0 where (−1)mSm first drops below
s0, and the prethermal lifetime τ is determined as the average
〈ts0〉s0 for five different threshold values 0.32, 0.32 ± 0.05,
0.32 ± 0.025. The average is performed to reduce numerical
noise and the following results do not rely on specific thresh-
old values. In Fig. 2(b), τ is plotted with the error bar denoting
the standard deviation and both axes use a log scale. A lin-
ear dependence is observed for both types of perturbations,
suggesting an algebraic scaling τ ∼ (1/T )α . The exponent
α is obtained by a linear fit in the high-frequency regime,
and we obtain the scaling exponent α ≈ 2n + 3 for Bz = 0
and α ≈ 2n − 1 for Bz �= 0. This scaling exponent is tunable
by increasing the multipolar order as we verify for n = 2 in
Fig. 2(c).

The persistence of the spatiotemporal order relies on the
fact that the polarized initial state corresponds to a suffi-
ciently low temperature of the effective Hamiltonian H eff

n in
the prethermal regime [40]. For more generic initial states
at a finite temperature, (−1)mSm quickly drops to zero and
this prethermal phase will not exist, in accordance with the
absence of long-range order at finite temperature in one di-
mension (1D). This issue can be resolved by introducing,
for instance, sufficiently strong spatial disorder to realize the
eigenstate order even at high temperatures.

Let us thus consider the Hamiltonian H = ∑
j (Jz +

Jj )σ z
j σ

z
j+1 + Jxσ

x
j σ

x
j+1, with the spatially disordered couplings
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FIG. 3. (a) Dynamics for random product state in the z direc-
tion. Prethermal phases persist for sufficiently strong disorder with
a lifetime increasing for larger driving frequencies. For weak disor-
der (red), the spatiotemporal order quickly vanishes. (b) Algebraic
lifetime scaling vs frequency with exponent close to 2n + 3. We use
Jz = 1, Jx = 0.1, Bz = 0, δr = 0.08, n = 1, L = 16.

Jj randomly chosen from [−δJz/2, δJz/2]. The system starts
from a product state containing spins polarized randomly in
the ±z direction with total magnetization zero. We perform
400 simulations to average over different initial states, and
spatial and temporal disorder realizations with the multipo-
lar order n = 1. The magnetization (−1)mSm is plotted in
Fig. 3(a). For sufficiently strong disorder δJz = 7.8 (blue),
with localization established, the system maintains strong
memory of the initial state, (−1)mSm ≈ 0.8, in the prethermal
regime. We extract the prethermal lifetime when the magne-
tization starts deviating from the prethermal plateau by using
five different threshold values 0.76, 0.76 ± 0.02, 0.76 ± 0.01,
and plot it in Fig. 3(b) where an algebraic scaling is observed.
We do not observe notable finite-size effects in our simulation
(see details in SM [38]). The fitted scaling exponent is close
to 2n + 3 as predicted. In contrast, for a weak disorder δJz =
0.2 (red), eigenstates of the truncated effective Hamiltonian
are not ordered at a high-energy density, hence, the system
quickly heats up with a vanishing magnetization.

Discussion. We show that a different type of spatiotem-
poral order absent in Floquet systems can be achieved by
structured random protocols, which is manifest through a
π -shifted spectrum of the dynamics of local observables com-
pared to the spectrum of the drive. Many-body localization
is employed here to stabilize the Z2 ordering in the prether-
mal regime. It can be alternatively achieved by using higher
dimensional spin models or long-range interactions in 1D
[40–43], and classical spin models will also be suitable for
large-scale numerical simulations [44,45].

We emphasize that, although our results build on the
concrete n-RMD protocol, this alternate type of TTS break-
ing is quite generic. To provide another concrete example,
consider a driving protocol with the Hamiltonian H = Hz +∑

j Jxσ
x
j σ

x
j+1 to generate the time evolution and apply Ux =

exp[−i(1 + δ′
r )π/2

∑
j σ

x
j ] with imperfection δ′

r to flip the
spins instantaneously at time t = mT + T/2 + δtm for integer
m and random δtm ∈ [δtmax, δtmax]. This randomness can be
chosen to be “hyperuniform,” i.e., with suppressed large-scale
fluctuations [46,47], leading to an algebraic suppression of
low frequencies similar to the RMD sequence but with a
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FIG. 4. (a) Dynamics of the magnetization. For the blue line,
spins flip randomly according to a hyperuniform sequence, while
for the black line, spins flip deterministically. System size L = 20
and rotation imperfection δ′

r = 0.01. (b) Fourier modes of magne-
tization exhibit a π -shifted spectrum different from the drive. The
algebraic suppression (dashed black) has an exponent α/2. We use
Jz = 1, Jx = 0.2, α = 3.8, L = 16, δ′

r = 0, δtmax = 0.1, T = 1 for the
numerical simulation.

continuously tunable scaling exponent α/2 (see details in the
SM [38]). In Fig. 4(a), starting from the initial state

∏
i |↑〉,

we plot the time evolution of the magnetization
∑

j〈σ z
j 〉/L

where the regular period-doubling behavior occurs strobo-
scopically. In contrast, the random micromotions exhibit the
π -shifted spectrum as shown in Fig. 4(b). Such a pattern can

also be long lived by choosing a small δtmax (see SM [38]).
A systematic investigation of the prethermal lifetime and its
relation to hyperuniformity is an intriguing subject for future
study.

Another important feature is the symmetry dependence of
the prethermal lifetime scaling. An intriguing direction for
the future is then a systematic symmetry classification of
heating dynamics. Similar questions are also worth study-
ing in Floquet systems and quasiperiodically driven systems
[17,36,48–50].

Going forward, we anticipate the extension of our proto-
col to Floquet topological phases and their generalizations
[51,52]. In Ref. [7], the soluble limit involves four-step hop-
ping processes and a fifth-step random disorder potential.
One can reshuffle the fifth step, such that particle hopping
is temporally disordered while stroboscopic dynamics remain
deterministic. Investigating the prethermal phenomenon away
from this soluble limit will be worth pursuing in the future.
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