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Mobility edges through inverted quantum many-body scarring
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We show that the rainbow state, which has volume-law entanglement entropy for most choices of bipartitions,
can be embedded in a many-body localized spectrum. For a broad range of disorder strengths in the resulting
model, we numerically find a narrow window of highly entangled states in the spectrum, embedded in a sea of
area law entangled states. The construction hence embeds mobility edges in many-body localized systems. This
can be thought of as the complement to many-body scars, an “inverted quantum many-body scar,” providing a
further type of setting where the eigenstate thermalization hypothesis is violated.
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When physical systems thermalize, most of the informa-
tion about their initial state is lost. In the context of quantum
mechanics, thermalization is explained through the eigenstate
thermalization hypothesis [1,2], which essentially states that
an eigenstate encodes thermodynamic observables character-
istic of its energy density. Settings in which quantum systems
violate the eigenstate thermalization hypothesis are presently
attracting much attention, both for understanding the founda-
tions of many-body physics, and for utilizing their unusual
properties, possibly even to store and control the flow of
quantum information [3].

The entanglement entropy of states in the bulk of the spec-
trum of thermalizing quantum many-body systems is expected
to scale with the volume of the system [4,5]. Strong disor-
der, however, affects all states in the spectrum through the
mechanism of many-body localization (MBL) inducing area-
law entanglement in the eigenstates and hence nonthermal
behavior [6]. MBL turns out to be a fragile phenomenon in the
sense that there is no agreement of whether it persists beyond
a (possibly very long) prethermal timescale [7–9]. The regime
of finite systems and finite time scales is, however, by itself
interesting and relevant for current experiments [10].

A weaker violation of the eigenstate thermalization hy-
pothesis occurs in systems with quantum many-body scars
[11–13]. Conventionally, scarred states are weakly entangled
with subthermal scaling of the entanglement entropy [14–20],
and procedures to embed these special states in the bulk of an
otherwise thermal spectrum have been developed [21].

These studies raise the question whether one can also have
the converse situation, namely, volume law entangled states
embedded in a spectrum of MBL states, which we will refer
to as inverted quantum many-body scars. Constructing such a
model would lead to a different type of nonthermal system be-
yond MBL and quantum many-body scars. The construction
is also interesting from the point of view of mobility edges in
MBL. A mobility edge separates localized from delocalized
states as a function of energy density, and its existence in
the thermodynamic limit, as a matter of principle, is also in
question [22–25].

First steps toward constructing inverted quantum many-
body scars were taken in Refs. [26,27], where a critical state
with logarithmic scaling of the entanglement entropy was
embedded in an MBL spectrum, albeit in a model with a
highly nonlocal Hamiltonian and a state with subvolume law
entanglement. A simpler, but still non-local, Hamiltonian was
also proposed, but for that case the embedded state was the
ground state or a low-lying excited state.

In this paper, we present a local Hamiltonian that allows
us to embed a volume-law state inside an MBL spectrum.
The volume-law state is an exact eigenstate for all disorder
realizations and hence remains intact even for strong disorder.
We specifically consider the rainbow state, which has volume-
law entanglement for almost all bipartitions. This state is also
referred to as an infinite temperature thermofield state [28].

In quantum many-body scar models, it is quite common
that states with energies close to a scar state also have lower
entanglement than the thermal part of the spectrum [15,29,30].
Here, we similarly find that states in the immediate vicinity
of the inverted scar state have higher entropy than the MBL
states. The number of high-entropy states scales exponentially
with system size, but with a small enough exponent that the
number of high-entropy states has measure zero in the large
system limit.

The high-entropy states produce mobility edges in the lo-
calized spectrum. While mobility edges have been observed
numerically at the transition from thermal to MBL behavior
in several moderate size systems [31], the mobility edges
produced by inverted scars are different, as they occur over a
broad range of disorder strengths and are particularly sharp as
a function of energy density. These properties may be appeal-
ing for experimental investigations and practical utilization.

It is well known that Anderson-localized single-particle
spectra of noninteracting systems can contain a few delo-
calized states, as happens, e.g., in quantum Hall systems,
when interactions can be neglected [32]. The model presented
here differs from that phenomenon in several ways. First, we
are here considering a strongly interacting system, and the
delocalized states appear in the middle of the many-particle
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spectrum, while the quantum Hall effects happen at low tem-
perature. Second, the rainbow state is volume-law entangled,
while the delocalized quantum Hall states are less entangled.
Third, the quantum Hall effects are eventually destroyed by
strong disorder, while in our case the rainbow state is immune
to the added disorder.

The model that we investigate also raises interesting ques-
tions from a fundamental perspective. The model is generic,
except that the disorder must fulfill a particular mirror sym-
metry. As long as this symmetry is obeyed, the volume-law
eigenstate persists for all disorder strengths and system sizes.
It is well known that symmetry can lead to delocalization
[33–35]. The special property here is that the symmetry only
produces a narrow window of delocalized states rather than
delocalizing the entire spectrum. As is generally the case
for MBL systems, our finite size numerics is not capable of
judging whether the disorder strength at which the transition
to MBL takes place remains finite in the thermodynamic limit.
If MBL persists in the thermodynamic limit, we expect our
(symmetry protected) mobility edges to do likewise.

Finally, we investigate what happens if the mirror sym-
metry is broken. For a particular system size and disorder
strength, we find the inverted scarring to be quite fragile,
disappearing already for an admixture of about 0.3% of non-
symmetric disorder.

Model.—The starting point for our construction of an
inverted quantum many-body scar is the so-called rainbow
model [36–38] for a chain of 2N sites. Here, we consider the
general rainbow Hamiltonian

H = H1 ⊗ I − I ⊗ H2 + c Vint (1)

proposed in Ref. [39]. H1 acts on the sites 1 to N , and H2

acts on the sites N + 1 to 2N . H2 = MH∗
1 M, where M is the

mirror operation that maps site i into site 2N + 1 − i, and the
complex conjugation is performed in a chosen product state
basis. We shall here consider spin-1/2 particles with

H1 =
N−1∑

i=1

(
JxSx

i Sx
i+1 + JySy

i Sy
i+1 + JzS

z
i Sz

i+1

)

+
N∑

i=1

(
hxSx

i + hySy
i + wiS

z
i

) + Jp

N−2∑

i=1

Sz
i Sz

i+2 (2)

and choose the basis states to be products of eigenstates of the
Sz

i operators. Here, Sa
i are the spin-1/2 operators for the spin

at site i. The terms with strengths Jx, Jy, and Jz describe spin
interactions, the terms with strengths hx, hy, and wi represent a
magnetic field, and we include the next-nearest-neighbor term
of strength Jp to avoid integrability. We take the interaction
term in Eq. (1) to be Vint = �SN · �SN+1.

It was shown in Ref. [39] that the rainbow state

|ψRB〉 = 2−N/2
N⊗

i=1

(|↑,↑〉i,2N+1−i + |↓,↓〉i,2N+1−i ) (3)

is an exact eigenstate of H with energy ERB = c/4. The rain-
bow state is a product of Bell states between pairs of spins
on opposite halves of the system. The von Neumann entan-
glement entropy is ln(2) times the number of Bell pairs that
are cut by the chosen bipartition, and hence most choices lead

to volume-law entanglement [39]. The maximal entanglement
entropy is achieved for the half-chain bipartition.

We introduce disorder of strength δ by choosing wi from
a uniform distribution in the interval [−δ, δ]. The rainbow
state is an exact eigenstate independent of the disorder real-
ization. Disorder does, however, affect other states, driving an
eigenstate transition from a thermal to an MBL behavior in
Hamiltonians with local terms. We show in the following that
the disorder indeed many-body localizes the system, except
for a set of states near the rainbow state of measure zero.
Unless stated otherwise, we take Jx = 1, Jy = 1.5, Jz = 1.8,
hx = 1.5, hy = 0.8, Jp = 0.1, and c = 0.5 in the computa-
tions below. We do not expect the results to be specific to
this choice of parameters. The values have been chosen in
part to reduce the symmetry of the model and to have the
rainbow state close to the middle of the spectrum. The com-
putations for N � 6 are performed by employing full exact
diagonalization. For N > 6, we use the shift-invert spectral
transformation, implemented by PETSc [40,41], SLEPc [42],
and MUMPS [43] to perform Lanczos iteration on the trans-
formed matrix via parallel sparse LU factorization as a direct
solver.

Many-body localization.—We first show that the disorder
many-body localizes most of the states in the spectrum. We
do this by computing the mean and variance of the half-chain
entanglement entropy [44] and the level spacing statistics [5].

We first consider the half-chain von Neumann entangle-
ment entropy SN = −Tr[ρN ln(ρN )] of an exact eigenstate |ψ〉
of the system, where ρN = TrN+1:2N (|ψ〉〈ψ |) is the reduced
density matrix obtained after tracing over the spins N + 1 to
2N . When averaging the entanglement entropy over disorder
realizations, we choose the state with energy density closest
to a chosen value in each realization. The energy density
is defined as ε = (E − Ei

min)/(Ei
max − Ei

min), where Ei
min and

Ei
max are the minimum and maximum energies in the spectrum

of the ith disorder realization and E is the energy of the
state |ψ〉.

In Fig. 1(a), we plot the mean of the entanglement entropy
as a function of the disorder parameter δ for the state closest
to the energy density ε = 0.4. We have chosen this value to
consider states close to the middle of the spectrum, while not
being too close to the rainbow state, which for most disorder
realizations has an energy density close to 0.5. For weak
disorder, the mean entanglement entropy is comparable to the
Page value [4], which signals thermal behavior. For strong
disorder, the mean entanglement entropy is independent of
system size, which signals MBL. The standard deviation of
the entanglement entropy, plotted in Fig. 1(b), shows a peak
at the transition point, and the finite-size scaling collapse in
Fig. 1(c) suggests that the transition happens at δ ∼ 8 for large
systems.

The level spacing statistics is another diagnostic
to identify whether a system is MBL. Define the
energy spacing �n = En+1 − En and the ratio rn =
min(�n,�n+1)/ max(�n,�n+1), where En is the nth
energy in the spectrum, and let rave be the average of rn

over a selected part of the spectrum and over disorder
realizations. Arguments from random matrix theory predict
that rave ≈ 0.59 for thermal states in systems with broken
time reversal symmetry, while rave ≈ 0.386 in MBL systems.
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FIG. 1. (a) Disorder averaged half-chain entanglement entropy
divided by the Page [4] value SPage = [2N ln(2) − 1]/2 for the eigen-
state closest to the energy density ε = 0.4 plotted against the disorder
strength δ for different system sizes. The transition from thermal
behavior at weak disorder to MBL behavior at strong disorder is
seen. The number of disorder realizations is 104 for N ∈ {4, 5, 6},
5000 for N = 7, and 1500 for N = 8. (b) The standard deviation of
the half-chain entanglement entropy �s computed for the same set of
data shows a peak at the transition point. (c) The finite-size scaling
collapse for �s suggests that the transition happens at δ ∼ 8 for large
systems.

Figure 2 shows rave as a function of energy density and
system size. When the system size increases, the Hilbert space
dimension increases, and we hence also average over a larger
number of states in the spectrum as detailed in the caption. It
is seen that rave approaches the Poisson value rave ≈ 0.386 for
large system sizes, which signals that most of the states in the
spectrum are many-body localized.

Highly entangled states.—The entanglement entropy of
the rainbow state is N ln(2) for the half-chain bipartition.
Since the rainbow state remains unchanged upon introducing
disorder, it has a high entropy compared to the many-body
localized states, which are area-law entangled. We now take a
closer look at the behavior of the states in the spectrum that
have energies close to the energy of the rainbow state.

Figure 3(a) shows the half-chain entanglement entropy as a
function of disorder strength. To probe the states in the vicin-
ity of the rainbow state, we here perform disorder averaging
over states that have the same n − ni

RB, where n labels the
states in the spectrum from lowest to highest energy and ni

RB is
the n for the rainbow state for the ith disorder realization. The

FIG. 2. (a) Adjacent gap ratio rave at strong disorder δ = 10
computed for the 13, 50, 100, or 800 energy levels closest to the
considered energy density for N = 4, 5, 6, or 7, respectively, and
averaged over 3000 disorder realizations. As the system size 2N
increases, rave gets close to the Poisson (POI) value, which signals
that the majority of the states in the spectrum are many-body local-
ized. (b) The same data, but plotted as a function of system size for
different energy densities.

figure shows a narrow band of high-entropy states. Crucially,
this band is also present for disorder strengths for which the
other states in the spectrum are many-body localized. Upon
increasing energy, one hence finds a mobility edge followed
by an inverted mobility edge. It is interesting to note that
the entanglement entropy changes much faster with energy
density when crossing the band of high-entropy states than
it does when crossing the white arc in the left half of the
figure that separates the thermal region (red) from the MBL
region (blue). We also note that the transition from high to
low entropy when crossing the band of high-entropy states is
particularly sharp, as seen in Fig. 3(b).

To count the number of high-entropy states in the spectrum,
we introduce a cutoff fc and count how many states have an
entropy higher than Sc = fcN ln(2). This number is plotted
as a function of system size for fixed disorder strength and
different cutoffs in Fig. 4. It is seen that the number of high-
entropy states scales exponentially with system size, but the
exponent is small enough that the fraction of high-entropy
states to the total number of states goes to zero in the large
system limit.

Sensitivity to symmetry breaking.—We test the stability of
the observed behavior to a perturbation which distinguishes
between the two half-chains in the Hamiltonian Eq. (1), and
thereby violates the symmetry underpinning the rainbow state.
Concretely, we add further disorder −wi + χi to the second
half of the chain, i.e., sites 2N + 1 − i, where χi is uniformly
distributed within [−δp, δp]. We find, for N = 6 and δ = 7
[Fig. 3(b)], that high-entropy states are formed for δp � 0.02,
which is about 0.3% of δ.
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FIG. 3. (a) The disorder averaged half-chain entanglement en-
tropy 〈SN 〉 as a function of disorder strength δ and energy density
relative to the rainbow state ε − εi

RB for N = 6. We average states
with the same value of n − ni

RB over 2000 disorder realizations,
where ni

RB denotes the index of the rainbow state which lies at
energy density εi

RB = (ERB − Ei
min )/(Ei

max − Ei
min ) for the ith dis-

order realization. The dark horizontal line at zero is produced by
the rainbow state, and other highly entangled states are seen in its
vicinity. Within the strongly disordered regime where the rest of
the spectrum is many-body localized, these highly entangled states
produce a mobility edge. (b) A zoom of panel (a) showing the band
of high-entropy states. Most of the high-entropy states have energies
below the rainbow state, but a few of them are at energies higher
than the rainbow state. (c) 〈SN 〉 for a fixed δ = 7 as a function of
additional disorder of strength δp on the second half of the chain only.
The high-entropy states disappear for δp ≈ δ/300. [The symmetric
case δp = 0 also provides a magnified version of the mobility edges
at the cut denoted by the short, vertical, green line in panel (b).]

Conclusion.—We have demonstrated a scenario in which
an inverted quantum many-body scar with volume-law scal-
ing of entanglement entropy is embedded in a spectrum of
many-body localized states. The construction does not depend
on the microscopic details of the Hamiltonian, except that a
specific symmetry constraint needs to be obeyed. Similarly
to many quantum scar models, the states in the vicinity of
the scar state have modified entanglement compared to the
remainder of the spectrum. The number of high-entropy states
scales exponentially with system size, but not as fast as the
dimension of the Hilbert space. The high-entropy states thus
form a narrow band in the spectrum, demarcated by sharp

FIG. 4. Scaling of the number of atypical eigenstates with high
entanglement entropy as a function of system size for δ = 10. The
number of atypical eigenstates is obtained by counting the num-
ber of eigenstates with entropy higher than a certain cutoff value
Sc = fc N ln(2) in each disorder realization, and this number is then
averaged over 2000 disorder realizations for N = 3, 4, 5, 6, or 1090
for N = 7. For all considered fc, the number of atypical eigenstates
scales exponentially with N , and the dashed lines indicate the best
fit with the function 2aN+b. The inset shows a as a function of fc.
Note that a < 2 for all considered fc, which means that the fraction
of atypical states approaches zero for large system sizes.

mobility edges. From our finite-size numerics, we cannot
conclude whether the disorder strength at which the transition
to MBL happens remains finite in the thermodynamic limit,
but if it does, we expect the mobility edges to also remain.
The sharp mobility edges over a broad range of disorder
strengths in the finite systems may additionally be appealing
for experiments and applications. We have also shown that the
symmetry constraint does not need to be exactly obeyed to see
inverted quantum many-body scarring.

Multiple exact volume-law scars may be built by includ-
ing further symmetries in the Hamiltonian [39] and this can
lead to an interesting phase with multiple volume-law states
within a spectrum of MBL states. It would also be interesting
to investigate the dynamics in these multiple inverted scar
models and study the late-time behavior of some simple initial
states.
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