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Anomalous conductivity due to two-stream instability in bilayer graphene
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We investigate the electron-hole two-stream instability (or Coulomb drag) in bilayer graphene in the hydrody-
namic regime, accounting for the effects of temperature, initial drift velocity, magnetic field, and collisions. We
put in evidence a purely electrostatic mechanism leading to current relaxation, giving rise to a well-defined dc
longitudinal conductivity ∝T 3/2. Due to competition between electrostatic and collisional processes, two distinct
transport regimes are identified. An analysis on the Hall conductivity revealed that the two-stream instability
effects also correct the most recent results obtained within the linear response theory.
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Introduction. The study of graphene samples of extreme
purity has led to the realization of an electronic regime that
was first proposed theoretically in the 1960s, namely, the
hydrodynamic regime [1]. In this regime, electron-electron
collisions dominate over scattering with disorder and elec-
tronic dynamics can be described with fluid equations. While
the hydrodynamics of monolayer graphene has been exten-
sively studied [2–7], the validity of hydrodynamic regimes
for electrons in graphene bilayers is fairly recent [8,9]. The
hydrodynamic behavior of graphene has been a subject of in-
terest in recent years, particularly the electron-hole Coulomb
drag [10,11], which has been shown to play a significant
role in the transport properties near the Dirac point—or
at charge neutrality (CN) [12,13]. Experimental and theo-
retical works on Coulomb drag have shown that the drag
resistivity is strongly dependent on temperature, doping, mag-
netic field, and interlayer coupling strength [14–19]. For
instance, recent studies have shown that the Coulomb drag
between two well separated graphene sheets can give rise
to interesting phenomena, such as increasing of drag resis-
tivity of graphene heterostructures at low temperatures [20],
anomalous resistivity scaling when the two layers are kept
at different temperatures [21], and the emergence of new
transport regimes in the presence of a magnetic field [22].
However, the hydrodynamic regime in bilayer graphene struc-
tures at CN has not been fully addressed, with few examples
reporting on the quadratic scaling of the resistivity with
temperature [23,24], especially regarding the late stages (sat-
uration) of the electrostatic instabilities.

In this Letter, we investigate the electron-hole two-stream
instability taking place at CN in bilayer graphene, previously
studied in systems composed of two well separated lay-
ers [10]. We show that, below a critical temperature, in which
an electrostatic instability is found to take place, there is a
strong suppression of the conductivity due to the electrostatic
turbulence generated in the instability process. Conversely,
above that critical temperature, the conductivity matches the
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one expected from a linear response theory [9]. Our findings
may have important consequences in applications with bilayer
graphene devices operating at the neutrality point and also
pave the stage towards the investigation of electrostatic tur-
bulence in Coulomb drag configurations.

Two-fluid model. In light of the quadratic dispersion of
the low-lying quasiparticles in AB-stacking bilayer graphene
(BLG), εe,h(p) = ±|p|2/2me,h, of effective mass me,h ≡ m �
0.033m0 [25], with m0 being the bare electron mass, the fluid
equations can be obtained from a quantum kinetic model [9]
and recast as

∂nν

∂t
+ ∇ · jν = 0, ν = {e, h}, (1)

∂jν
∂t

+ ∇ ·
(

jν ⊗ jν
nν

+ Pν

m

)
= qν

m
(nνE + jν × B0) + nν

Fcol
ν

m
.

(2)

In our analysis, we neglect the effects of the trigonal warp-
ing, which has been shown to be relevant away from the
charge neutality point and for very low temperatures, T �
10 K [26,27]. Here, jν = nνvν is the current density, qe,h = ∓e
is the electron/hole charge, and Pν = PνI is the pressure dyad
of the νth species. The electric field E = Esc + E0 comprises
a self-consistent portion Esc and an externally applied dc field
E0, B0 is the transverse magnetic field, and Fcol encodes
the processes of momentum dissipation. Under weak pertur-
bations, the relaxation time approximation can be applied,
leading to

Fcol
ν = Fν,ν ′ + Fν,dis ≈ −vν − vν ′

τν,ν ′
− vν

τdis,ν
. (3)

Notice that the intraspecies collision terms are absent be-
cause they conserve the total fluid momentum. The collision
times can be given as τν,ν ′ = τ0(nν + nν ′ )/nν , where τ−1

0 �
0.15kBT/h̄ [9]. Motivated by experiments [28], we neglect
the contribution due to impurities, resulting in a Matthiessen
rule of the form τ−1

dis,ν = τ−1
ph,ν + τ−1

imp,ν � τ−1
ph,ν , and electron-

phonon collision time can be estimated as τ−1
ph � 0.05kBT/h̄.

To close Eqs. (1) and (2) with an equation of state, we re-
sort to the local quasiequilibrium hypothesis [4] by assuming
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the two species to be distributed according to a drifting Fermi-
Dirac distribution [29]. In terms of the inverse temperature
βν = 1/(kBTν ) and the chemical potential μν , the densities
read

nν (x, t ) = Nf m

2πβν h̄2 ln (1 + eβνμν ), (4)

where Nf = 4 accounts for spin and valley degeneracy [25].
We then invert the expression in (4) to write the chemical
potential as a function of density and plug the result into the
pressure to obtain

Pν = − Nf m

2πβ2
ν h̄2 Li2

[
1 − exp

(
nν

2πβν h̄2

Nf m

)]
, (5)

with Li2 being the polylogarithm function of second order.
Below, we shall set β−1

e = β−1
h = kBT .

Euler-Poisson system. In the long-wavelength limit kd 	
1, with k = (kx, ky) being the wave vector, k = |k|, and d ∼
1 Å the interlayer spacing, the self-consistent electric field
Esc = −∇φ can be written in terms of the electrostatic field
φ, and its Fourier transform reads

φ(k) = e

2εk
[nh(k) − ne(k)], (6)

where ε is the dielectric permittivity of the substrate (for the
sake of numerical illustration, we set ε = ε0 in the remainder
of the manuscript). Additionally, we introduce the system size
L and the screening length λscr = πε0 h̄2/[ln(2)e2m] ≈ 5.8 Å,
which sets the typical scale of charge imbalance in the plasma.
In our study, we consider conditions in which the system is
much larger than the screening length, L � λscr.

Two-stream instability. The two-stream instability is a
trademark instability in classical plasma physics, which is
excited by placing two particle populations with a relative drift
velocity in contact, e.g., a cold electron beam impinging on a
steady plasma [31] or two counter-propagating beams. In the
present electron-hole plasma, both species have equal mass;
the dc electric field E0 will drive the electrons and holes in op-
posite directions with the same drift velocity, thus triggering a
hydrodynamical instability. To illustrate this effect in bilayer
graphene, we proceed to the direct numerical simulation of
the two-fluid mode in Eqs. (1) and (2), together with Eqs. (5)
and (6), with the help of TETHYS [32–34]. Our algorithm
consists in a finite-volume method with a semi-implicit
scheme [35–37], advancing the force terms implicitly and the
flux terms explicitly [38,39]. More precisely, the fluxes are
estimated with a third-order monotonic upstream-centered
scheme for conservation laws (MUSCL) [40], coupled to a
min-mod slope limiter [41], and then computing the fluxes
at the boundaries using the Harten–Lax–van Leer–Contact
(HLLC) flux [40,42]. The time evolution is carried out with
a third-order total variation diminishing (TVD) Runge-Kutta
method [43]. A signature of this process is the formation
of charge bunches in the linear stages of the instability, as
depicted in Fig. 1(a). At the late stages, quasineutrality is re-
stored globally and the bunches coalesce, leading to saturation
of the instability [see Fig. 1(b)], which we address later on.

To investigate the instability conditions analytically, we
perform a linear analysis of the two-fluid model, by consider-
ing perturbations of frequency ω and momentum k on top of
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FIG. 1. Two-stream instability in bilayer graphene. (a) Charge
imbalance density at the linear phase of the instability (t =
0.016L/v50) [30], highlighting the formation of charge bunches in
the inset. (b) Charge imbalance density at the nonlinear phase of
the instability (t = 0.18L/v50). The simulations were performed on
a 256 × 256 grid with periodic boundaries for v0/v50 = 3.0 and
L = 1000 λscr.

an electron-hole fluid counterstreaming with initial velocities
ve,h = ±v0ex and initial charge densities set to their value
at charge neutrality, i.e., Eq. (4) evaluated at zero chemical
potential. Instability occurs provided the condition

ω2 = −
√

q2
scrv

4
thk2+4qscrk2

x v
2
0v

2
thk + 4k2

x v
2
0

[
v2

th ln(4)k2 + ω2
c

]
+ qscrv

2
thk + v2

th ln(4)k2 + k2
x v

2
0 + ω2

c < 0, (7)

where vth = √
kBT/m is the thermal velocity, qscr = λ−1

scr is
the effective screening wave number, and ωc = eB/m is the
cyclotron frequency. We observe that the unstable mode has
a vanishing real part, thus behaving as a purely growing
(stationary) wave of growth rate γ ≡ Im(ω). The threshold
condition in γ = 0 can be expressed as v0 > vmin(θ ), where

vmin(θ ) ≡
√

ω2
c

k2
x

+ v2
th ln(4)

cos2 (θ )
(8)

and θ = arctan (ky/kx ) is the angle of k with respect to the
x axis. The cutoff velocity in Eq. (8) is always finite for
finite temperature and tends to the critical velocity vC ≡√

v2
th ln(4) ≈ 1.117vth as θ → 0, which equals the first-sound
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FIG. 2. (a) Maximum growth rate as a function of v0/vC for
T = 50 K and T = 100 K (red and blue lines, respectively), and
B = 0, 2, 5 T (solid blue and red lines, dashed red line, and dashed
blue line, respectively). The numerical estimates (dots) for B = 0
are superimposed. (b) Orientation of the wave vector corresponding
to the most unstable mode. The same identification applies (note
that the solid lines overlap). For illustration, we have set kmax =
64 × 2π/L.
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velocity of a 2D Fermi gas, vC = √
(∂Pν/∂nν )/m [44,45]. A

qualitative rationale behind this threshold follows like this:
for sufficiently slow drifts, the thermal motion dominates,
and so the particles tend to move incoherently, preventing the
coherent excitation needed for the instability [46].

Another interesting feature of the instability is the most
unstable mode kmax = kmax(cos θmax, sin θmax), which maxi-
mizes the growth rate, such that γmax ≡ γ (kmax), for a set
of external parameters (v0, T, ωc). While γmax is a growing
function of k, kmax should not be larger than the thermal
wave number and the inverse electron mean-free path, where
the hydrodynamic description fails. In practice, we should

consider k 	 qscr. Otherwise, in Fig. 2(b) we observe that the
most unstable mode is aligned with the flow at the thresh-
old, but as v0 increases, it rotates and tends asymptotically
to θ = π/2. Interestingly, the most unstable directions for
different temperatures collapse onto each other when plotted
as a function of v0/vC , so the angle is a universal function of
this quantity. Coincidentally, the rotation is also accompanied
by a stabilization of the maximum growth rate, as illustrated in
Fig. 2(a), meaning that γmax stops depending on v0 when the
most unstable wave vector develops a transverse component.
Then, we set ky = 0 in Eq. (7) and minimize the expression
with respect to v0 to find the peak velocity

vpeak ≡
√{

kv2
th[qscr + k ln(16)] + 2ω2

c

}{
kv2

th[3qscr + k ln(16)] + 2ω2
c

}
2k

√
kv2

th[qscr + k ln(4)] + ω2
c

. (9)

Hence the maximum growth rate γmax is obtained by evaluat-
ing γ at the peak velocity. In the long wavelength limit k 	
qscr, it simply reads γmax � vth

√
kqscr/2. For modes close to

the instability threshold, the effect of collisions will eventually
become noticeable but, for most temperatures, as the initial
velocity is increased, there will still be available modes that
are just slightly affected by collisions. This stops being the
case when the maximum growth rate at a given temperature is
of the order of the collision frequency, which occurs when

T � Tcol ≡ 16
h̄2qscr

mkB
k. (10)

We observe that only for very small wave numbers do col-
lisions start contributing significantly to the damping of the
growing waves near room temperatures.

A final comment regarding the effect of magnetic field.
We notice that the validity of a semiclassical description,
i.e., away from Landau levels [9], bounds the admissible
values of the magnetic field: for temperatures ranging as
T = 50–100 K, it should not exceed 2–5 T. As shown in
Fig. 2(a), the magnetic field plays no significant role in the
instability growth rate. Like collisions, only for very large
wavelengths should we start observing significant effects. In
any case, away from the weak field limit, the hydrodynamic
model becomes again incomplete: even away from the Landau
level (quantum) limit, kinetic effects should take place, giving
rise to a hierarchy of modes called Bernstein modes [22,47].

In order to corroborate our analytical estimates, we extract
γ numerically by fitting the most unstable Fourier mode of
the electric field, |Ekmax |, in the linear stages (see Fig. 3). We
employ periodic boundary conditions for all hydrodynamic
variables and initially add a small density perturbation whose
amplitude is �5% of its value at CN to simulate the natu-
rally occurring random density fluctuations. The comparison
depicted in Fig. 2 shows an excellent agreement with the
simulations.

Nonlinear transport properties. In the simulations per-
formed in this section, both species start at rest and accelerate
under the influence of an external electric field E0 of varying
magnitude, with the remaining initial conditions left un-

changed. Within the linear theory developed in [9], the dc
longitudinal conductivity σxx = jx/Ex

0 was found to be inde-
pendent of temperature in the sole presence of Coulomb drag
and phonon collisions. At charge neutrality, the dc conductiv-
ity reads

σ CN
xx = 2 ln(32)

π

Nf e2

2h̄
� 2.206

Nf e2

2h̄
. (11)

Throughout this section, the current we refer to is the total
electric current density j = e(nhvh − neve). In the absence of
a magnetic field and at CN, the linear theory predicts that
a steady state is reached when the fluids reach the steady-
state velocity vh = −ve ≡ v∞, where v∞ = 5h̄eE0/mkBT . As
such, the effects of the two-stream instability are expected to
take place if v∞ > vmin, which translates into the condition

T � TC ≡
(

25

ln(4)

e2h̄2

mk3
B

E2
0

) 1
3

. (12)
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FIG. 3. Time evolution of the most unstable Fourier coefficient
of the longitudinal electric field for v0/v50 = 2.0 and B = 0, for T =
50 K (red line) and T = 100 K (blue line). The dashed lines are the
exponential fit in the linear regime. The simulation was performed
on a 1024 × 1024 grid with periodic boundaries.
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FIG. 4. Left: conductivity at charge neutrality as a function of
temperature in the collisionless (blue dots) and collisional (red dots)
limits. The solid line is the best-fitted ansatz for the collisionless case
and the dashed line represents the conductivity in Eq. (11). Right:
transverse (red) and longitudinal (blue) conductivities in the linear
(solid line) and nonlinear regimes (dots) as a function of βEF for
T = 50 K and B = 0.05 T. In both plots, we set E0 = 74.4 kV/m.

Alternatively, under experimental conditions where the tem-
perature is kept constant, it is possible to define a critical
applied field triggering instability as

E0 � E0,C ≡
√

ln(4)

5

(
k3/2

B m1/2

eh̄

)
T 3/2. (13)

The plasma modes amplified by the two-stream instability
absorb energy from the translational degrees of freedom. Deep
into the nonlinear stages, i.e., after the formation of the plateau
in Fig. 3, an electrostatic turbulent spectrum builds up as a
consequence of the nonlinear wave interactions, leading to the
termination of the instability [48]. In this saturation regime,
the power supplied by the external electric field in the form
of Joule heating j · E0 is appropriately redistributed among
the plasma oscillations and the kinetic and thermal energy,
producing an oscillating quasisteady state. In other words,
the two-stream instability suppresses the conductivity of the
electron-hole plasma.

Motivated by the performed simulations, we propose a
phenomenological ansatz for the saturation current of the form

jsat
x = A jmin

x = 2Aen0

√
ln(4)

kBT

m
∝ T 3/2, (14)

where A is a numerical factor, jmin
x ≈ 2en0vC is the threshold

current, and n0 ∼ T is the density, as given by Eq. (4). This
guess is justified because the drift velocity saturates near vC ;
hence the temperature dependence of the two currents should
not vary appreciably and the fact that, near the threshold for
instability, the growth rate of the unstable modes is similar
for each temperature, thus so should be the percentage of
dissipated current. The fit shown in Fig. 4(a) provides A(L =

100λscr ) = 0.67, meaning that about 33% of the current at the
onset of instability is dissipated. For better screening, there
is a larger energy transfer to the unstable waves, which es-
tablishes a lower saturation current: e.g., A(L = 1000λscr ) =
0.44. In addition, stronger electric fields promote overshoots
of the saturated velocity past vC , enabling further current
dissipation as more energetic modes are excited: for instance,
the saturation current close to the critical electric field for
T = 50 K is jsat

x � 1.81n50v50 (in simulation units), whereas
for E0 = W50/(eL) ≈ 74.4 kV/m it is ∼1.65n50v50, exhibiting
an obvious decline.

When collisions are introduced, two distinct regimes can
be identified in Fig. 4(a). Before the critical temperature, σxx

follows the power law in Eq. (14). After that value, we enter
the linear regime, where the conductivity becomes constant
with temperature, taking on the value predicted in Eq. (11).
Comparing the Hall conductivity Fig. 4(b) with the one ob-
tained within the linear regime, we witness that there is a small
suppression of the conductivity, but the overall shape remains
the same. The same occurs for the longitudinal conductivity,
but the suppression is more noticeable, particularly for small
charge imbalances. Close to the threshold for instability, the
transverse component of the unstable modes is much smaller
than the longitudinal one, resulting in less dissipation of cur-
rent due to the two-stream mechanism along the y direction.

Conclusions. A hydrodynamic theory of the two-stream
instability in bilayer graphene was put forward. We have
demonstrated the existence of a threshold drift speed, close
to the thermal speed, controlling the onset of the instability
of the electron-hole plasma at charge neutrality. At the non-
linear, late times, stages of the instability, the electrostatic
field produced is responsible to the suppression of the con-
ductivity. We have also observed that a transverse magnetic
field and collisions quench the instability growth rate but,
for typical parameters, their role only becomes apparent for
very long wavelength modes. The theoretical predictions were
confirmed numerically, validating the used scheme.

In the isothermal regime, two distinct regimes dominated
either by electrostatic or collisional processes have been iden-
tified. In the first, the conductivity scales as ∝T 3/2 at charge
neutrality, contrasting with the temperature-independent value
predicted by the linear theory. Away from charge neutrality,
both σxx and σxy are suppressed relative to the linear case,
although the first is more severely suppressed. Our findings
open the venue for the implications of nonlinear response in
the determination of other relevant physical quantities.
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